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Abstract. In this paper we introduce a new function space which unifies and gen-
eralizes the Besov-type and the Triebel-Lizorkin-type function spaces introduced by
S. Jaffard and D. Yang- W. Yuan. This new function space covers the Besov spaces
and the Triebel-Lizorkin spaces in the homogeneous case, and further the Morrey
spaces. We define the new function space through wavelet expansions. We establish
characterizations of the new function space such as the g-transform characterization
in the sense of Frazier-Jawerth, the atomic and molecular decomposition character-
ization. Moreover, in the inhomogeneous case, we give a characterization by local
polynomial approximation. As application, we investigate the boundedness of the
Calderon-Zygmund operator and the trace theorem on the new function space.

Key words: wavelet, Besov space, Triebel-Lizorkin space, trace theorem, Calderon-
Zygmund operator, atomic and molecular decomposition.

1. Introduction

It is well known that function spaces are now of increasing applications in
many areas of modern analysis, in particular, harmonic analysis and partial
differential equations. The most general scales, probably, are the scales
of Besov spaces and Triebel-Lizorkin spaces which cover many well known
classical concrete function spaces such as Lebesgue spaces, Lipschitz spaces,
Sobolev spaces, Hardy spaces and the space BMO.

In recent years D. Yang and W. Yuan in [10], [11] introduced a new class
of Besov-type and Triebel-Lizorkin-type spaces which includes the @) spaces.
S. Jaffard in [4] introduced the oscillation spaces in order to quantify the
degree of correlations between positions of large wavelet coeflicients through
the scales. In this paper new function spaces are introduced which unify and
generalize the function spaces in [4] and [10], [11]. This new function space
covers the Besov and Triebel-Lizorkin spaces in the homogeneous case, and
further the Morrey spaces.

The plan of next sections in the paper is as follows:

2000 Mathematics Subject Classification : 42B35, 42B20, 42C40.



112 K. Saka

In Section 2 we define corresponding sequence spaces of our new function
spaces and we give some embedding properties for the sequence spaces.

Furthermore, we discuss the almost diagonality and we give conditions
under which the almost diagonal operators are bounded on the correspond-
ing sequence spaces.

In Section 3 we will define our new function spaces by wavelet expansions
through the sequence spaces. Those new function spaces cover the Besov
spaces and Triebel-Lizorkin spaces in the homogeneous case and the Morrey
spaces. Furthermore, the function spaces introduced by Jaffard [4], Yang-
Yuan [10], [11] and Sawano-Tanaka [7], are special cases of the new function
spaces.

In Section 4 we investigate equivalent characterizations of the new func-
tion spaces. We establish the y-transform characterization in the sense of
Frazier-Jawerth [1] and further the smooth atomic and molecular decompo-
sition characterization of the new function spaces.

In Section 5, as applications, we investigate the boundedness of the
Calderon-Zygmund operators and the trace theorem on the new function
space.

In Section 6 we describe the corresponding results of previous sections
for the inhomogeneous cases. Moreover, we give a characterization by local
polynomial approximation treated as in [5] for inhomogeneous cases.

We use C to denote a positive constant different in each occasion. But
it will depend on the parameters appearing in each assertion. The same
notations C are not necessarily the same on any two occurrences. We set
N={1,2,...} and Ny = NU {0}.

2. Sequence spaces

We consider dyadic cubes in R” of the form Q = [0 27%)" 4+ 27k for
k € Z" and | € Z and use notations [(Q) = 27! for the side length and
TQ = 27!k for the corner point. Throughout the paper, when dyadic cubes
(Q appear as indices, it is understood that ) runs over all dyadic cubes of the
above form @ = [0 27%)" + 27k in R". We denote by x g the characteristic
function of a set E in R".

Let s € R and 0 < ¢ < co. For a sequence ¢ = (cg) indexed by dyadic
cubes @, we define
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q

> UQ) Cleglxe
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with the usual modification for ¢ = oo.

For a sequence ¢ = (cg) we define some sequences indexed by dyadic
cubes Q:

by, (@) = ( >

j=z—logy Q)

> UP)Cleplxp

q 1/q
) ; 0<p< oo,
I(P)=2—7

Lr(Q)

, 0<p< oo,
Lr(Q)

Cfgq(Q):H{'>_Z ( > l(P)‘SICPIXP>q}1/q

log, U(Q) M I(P)=2"7
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n
q

{ > ( > l<P>—S|cprxP)q}l/q

crs (@ =UQ)” :
La(Q)

J>—logy U(Q) *U(P)=277
with the usual modification for ¢ = oo.
: .5 55 : L s (s s s
We use notations a,,, €, to denote either by or f; ., and a;,, €, to

denote either by, or f7 .
We define the sequence spaces

a;q = {c = (cq) : ||c] as, < oo},

and

g (¢ln) = {e=(cq)  llellyy (o) < 00}
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where ||c

g ety = leey,
We have following properties for the sequence spaces a,, (eén) In what

follows, the symbol C stands for continuous embeddings.

Theorem 1 (The embedding theorem)  Suppose that s, s € R and 0 < p,
q, G, n < oo.

(1) g (e2,7") C apy(eg,) C i (el ) if 0 < er,eo.
(2) g (e2,,) C g (e2l,) 0 < G < G < 0.

(3) a5, (es) Cape” L.

(4) @no(e5q) = €5

(5) frog = Fone(f)-

m)wmns<p,p4qﬁ—{m

(7) When s > %,

s+s'—n

bs (ez‘n)_bpq Cif 0<p<(<n <o,

b () =ba” P i 0<C<p<n<o

(8) When s =

%\3

s+s -2 ’ s+s' —2
by ¢ C b5 (€8n) C bpoo ¢

bie C Do (€2c) C by

Proof. The properties (1) through (6) are simple consequences of both the
monotonicity of the {%-norm and Holder’s inequality. (See [9, Proposition
2 in 2.3.2]). We will prove the first statement of (7). By (3) we have
the embedding l')f,;rs/_n/ ‘5 5§q (ezln) Therefore it suffices to prove the
converse inclusion. Applying the monotonicity of the [P-norm, we have for
0<p=<(<n=<oo

if 0<p<(<n<oo,

T 0<C<p <.
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le

6;q(62;) - biq(ei/c)

S{( SIECED LSS D0 B

1(Q)=2"" J>l I(P)=271,PCQ
. a/py 1/q
SO ESRD SR SIS S0 .
leZ j=>l (Q)=2"11(P)=2"9,PCQ
. L a/py 1/q
I3 g ]
ez >l I(P)=2-3

5+s 7?
Pq

a/py 1/q
cofs (2 omt 5 o)} -
€z

I(P)=2""

where the last inequality follows from Hardy’s inequality if sp —n > 0. This
yields the first statement of (7). In order to prove the second statement of
(7), we observe from (2), (3) and the first statement of (7),

‘E\i

s+s’ —ﬂ ’ +%
q

b = Bhalein) Sl TG TG

if 0 < ¢ < p < o0. Hence we have the second statement of (7). Similarly to
(7) by the monotonicity of [P-norm and (3), we have

by F Cb(ele) © Bpneledy) ol

if 0 <p<({<n<ooands=n/p. Therefore we obtain the first inclusion
of (8). We will prove the second inclusion of (8). Similarly to (7) we see

binc (€2) C by

=3

if 0 < ¢ < p < oo. Hence we have from the embedding theorem of the Besov
space by, and the first inclusion of (8),

n .o

e C I')C%OO (e2) Cbgno(ey) Clpp <

33

if 0 < ¢ < p < oco. This completes the second inclusion of (8).
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Let k1, ko > 0 and L > n. We say that a matrix operator A associated
with matrix {agp}gp, indexed by dyadic cubes @ and P, is (k1, k2, L)-
almost diagonal if the matrix {agp} satisfies that

lagr| _
op w(@Q.P)
where
k1
w(Q,P) = (gggg) (1 + l(P)_1|xQ — :vp|)7L if 1(Q)<I(P),
w(Q,P) = (1+U(P) fog —apl) " if 1(Q) =U(P),
and
ko
w(Q, P) = <§Eg;) (1+1Q) zg —xp|)‘L if 1(Q) > I(P).

Lemma A Let Q, P be dyadic cubes. Let ki, ko € No, L > n and L1 >
n+ ki, Ly >n+ ky. Assume that ¢g, pp are functions on R™ such that

pg(x)xVdr =0 for |v| < ka1, (A1)
RTL

b (@)] < C(L+1(Q) o — zg|) ", (A.2)
0760 (x)| < CUQ) M (1+1Q) Ve —ao|) ™" for 0< |y <ks, (A3)
/ pp(z)x’der =0 for |v| < ke, (A.4)
lp(@)] < O(L+1(P) Mo —zpl) "5, (A.5)
|07 pp(z)| < CUP)" M (1 +1(P) o — xp])_L for 0<|y| <ki. (A.6)
(A.1) and (A.6) are void when ki = 0, while (A.3) and (A.4) are void when

ko = 0.
Then we have
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0 UQ) (b er)| < c(“@) (U UP) Mg —zp]) "

I(P)
if Q) <I(P)

and

k2
2) Z<P>-”|<¢Q,sop>\sc(“”) (14+1Q) o —zp)) "

UQ)
if 1(P)<1(Q).

Hence {I(Q) " (¢q, ¢r)topr is (ki, ke + n, L)-almost diagonal.
Proof.  See Corollary B.3 in [1].

Lemma B  Suppose that s, s € R and 0 < p, q, (, n < co. Let ky,
ks € No, L >n and Ly > n+ ki, Ly > n+ ky. Assume that ¢g, ¢p as in
Lemma A.

Then for c € ay, (62;7) and a dyadic cube Q, we have Y pcp(ep,dq)
is convergent if ki > 8—&—3’—%—%, ko >J —n—3s and L > J where
J =n/min(1,¢,n) in the case ezln = fa’?, or J =n/min(l, ¢) in the case
e =bs .

¢n ¢n

Proof. We will prove this lemma using an argument similar to that for
Lemmas 4.1 and 4.2 in [6].

Let @ be a dyadic cube and ¢ € aj, (ez;,) Then

Serloridal < X lerlltordall+ 3 lerllior. o)
2

HQ)<U(P) UQ)>U(P)

=01 + 03.
Using Lemma, A, we get

1(Q)\™ _
n<C Y lenl@" (i) (o ir) g —ar)

HQ)<UP)

Using the fact that
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since ¢ € a?

pq (62;7), we obtain that

L

o1 < C Z 2—j(k1—s—s’+%+%)l(Q)n+k1 Z (1 + Z(P)fl‘xQ _ xp’)_
72108, 1(Q) (P)=27
<C Z 2—j(k1—s—s/+%+%)l(Q)n+k1 < 00
j=>log, Q)

becausek:l>s+s’—%—%andL>n.

To estimate o9, we will use the operator M; defined by M(f) =
M(fH)Y/* for the maximal operator M. Using Lemma A and [6, Lemma
7.1] with 0 < ¢t <1 and L > n/t, we get

I(P)\"™ . L
o9 < C lep|l(P)" | —= (1 +UQ) g —x |)
? Wg@) " <Z(Q)) d

j=—log, Q) I(P)=2-7

for x € @. Using the monotonicity of the [9-norm and Hdlder’s inequality,
we get

a3 (i X werne)w))”

>~ log, 1(Q) I(P)=2-3

for z € Q where 0 < n < oo if ko > n/t —n — s’. Taking L¢(Q) norm
(0 < ¢ < o0) and using the Fefferman-Stein inequality for 0 < ¢ < min(({, n),
we have

o2 =1(Q)” ¢ lozll e (o)

< Cl(Q)n/t—n/(—kg

> (M(wéjgf-sf,cP‘Xp))")”"

72— 1logy U(Q) LE(Q)
k ., n\ 1/n
S CZ(Q)n/t—n/C— 2 ( Z < Z 978 ‘CP|XP> )
j>—logy 1(Q) “Ml(P)=2—7 LS(Q)

< Cl(Q)n/tfn/csz+sfn/pl(Q)f(sfn/p) < C’Hc

/)<OO.

re (@) az, (12
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Repeating the above argument, we will prove the case ( = co. Taking the
L"(Q) norm, we have

o2 =1(Q) " " [lozl (o)

< Cl(@)ﬂ/t*n/nsz

(L, (5 o)) )

j>—log, 1(Q) Ln(Q)
n o, n\ 1/n
< CUQ™MTRIQ) ™ ( > ( >0 \CP|XP> >
j2—log, U(Q) NU(P)=2-3 L7(Q)

< CZ(Q)"/t_k2+S_”/pl(Q)_(s_”/p)cf;;n(@ <Ce

as,(fel,) < 0

Using the above same argument, we can also prove in the case of B-type
that

o < Cl(@)n/t—n/c—szrs—n/pl(Q)—(S—n/p) < Clle

“¢,(@) HCHIS
if ko > J —n — s where J =n/min(1,¢). This completes the proof of the
lemma.

The results about the boundedness of almost diagonal operators in [1],
are generalized into the following conclusions.

Theorem 2  Suppose that £ < s < 0o, s € R and 0 < p, q, ¢, n <

00. A (ki, ks, L)-almost diagonal operator is bounded on ay, (ezln) if k1 >
max (s, s+ s — %), ko > J—s" and L > J where J =n/min(1,{,n) in the

case 62;7 = fg;, or J =n/min(1,() in the case 62;7 = bzln
Proof. We assume that A = (appr) is almost diagonal. Let ¢ = (cq) €

g (62;7) For dyadic cubes @ and P with P C @, we write Ac = Apc +
Ajc+ Asce with

(Aoc)p = Z appcpr,
UP)<SUP)<UQ)

(Alc)p = Z app/Cpr and
I(P)<I(P)
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(AQC)P = Z app/Cpr.
(P)<SU(Q)<U(P")

We will consider the case of the F-type. Since A is almost diagonal, we see
that for dyadic cubes Q with [(Q) = 27,

(Aoc) 5 ()
, ; 1/n
S 5 woriamire]
> 1(P)=2- L4(Q)

SCH{Z ) 2”'"(2 > |app,,|cp,|>"xp}”"

j=l(pP)y=2-73 j>i>LI(Pr)=2—1

SCH{Z > 21'8”7<Z S oGk

J=1U(P)=2-3 j>i>li(Pry=2-i

n 1/n
(14U op = ap)Hep) e

L(Q)

L(Q)

Using Lemma 3.1 of [10] for the maximal function M f, we have
Agc) ;o
(Aoc)s2r (@)
<C {Z Z 9ds'nog—jkin
J>Li(P)=2-3
. 7 1/n
(gl o))
gzizl W(P)=2"" LYQ)
. ’ . ny 1/n
<C {ZQ—J(k1—s )77< Z 21k1M< Z |CP”XP’>> }
Jj=l j>i>l1 I(Py=2-1 LS(Q)
ey ny 1/n
SC {ZQ]ST]M< Z |Cp/|XP/> }
Jjzl I(P)=2-3 LS(Q)
y ny 1/n
cof{ze( T ) V| =eep
jzl I(P)=2-1 LE(Q)




A new generalization of Besov-type and Triebel-Lizorkin-type spaces and wavelets 121

where these inequalities follow from Hardy’s inequality and the Fefferman-
Stein vector valued inequality if k1 > s', 1 < ( < oo and 1 < n < oc.
Similarly to the above Ay case we can prove that

(Aic) <Cc

fe(Q) fe (@)

if ko >n—5s,1<(<ooand 1< n<oo. Note that we also get the same
estimate for the case ( = co. Hence we have

||AZC

. < ) =
(1) < Cle r=01

as,(fer)

ifky >, ko>n—s,1<(<ocand 1<n< .
For the B-type case we have

(A0S (@)

, n 1/n
SO DI RIVERIT
i>t N i(py=2- Le(Q)

SC{Z S o9 Y Y gk

>tV y(py=2-7 J>i>l1(P)=2—"
L n 1/n
. (1 +l(P,)_1’1‘p — wp/’) ’Cp/’Xp }
Le(Q)

< C{ Z 2—j(k1—5/)'r] Z Z 2lk1M

Jj=l I(P)=2-7 j>i>l
n 1/n
(2 ke )|
I(P)=2—% L(Q)

; ’ . ny 1/n
o{Sen( Lt £ )| )
jzl j>i>l I(P)=2—"% LS(Q)

. ’ . n 1/"7
< C{ 22_](1431—5 )n( Z 9ik1 Z lep [ ) }
izl j>i>l |(P)=2-1 LS(Q)
- n 1/m
S C<2235 n Z ’CP”XP/ > = chz;(Q)
>l |(P)=2-7 L¢(Q)




122 K. Saka

where the inequalities follow from Hardy’s inequality and the boundedness
of maximal operators if k&1 > s, 1 < ( < oo and 0 < 1 < oo. Similarly to
the above Ag case we obtain that

(Aic) < Ccp

b (Q) £(Q)

ifks >n—5s",1<(<ocoand0<n<oo. Hence we have
n

||Aic||dzs)q(b2/rz) S CHCHdzszq(bz,ﬂ), ' 0’ 1

ifky >s,ke>n—5,1<(<o0and 0<n< co.

Next, we will give the estimates for the A5 case. By applying the bound-
edness of maximal operators on the L¢-space, we obtain, for 1 < ¢ < oo and
0<n< oo,

(A20) 2 ()
, 1/n
T = arriaonn e
§>11(P)=2- Le(@)
SCH{Z 3 l(p)s/n<z Y gk
J>1 1(P)=2- 1>i |(Pry=2-

L n 1/n
. (1+Z(P/)71’xp—$p/’) |Cp/’> Xp}

< CH{ S gt 3

LS(Q)

3>l W(P)=2-7
' n 1/n
. <Z2’Lk1M< Z |CP/|XP/>> XP}
1>i I(P)=2-1 Le(Q)
< CHQ—l(/ﬂ—s/)ZziklM( Z ‘CP"XP’>
1>i I(Pry=2-i Le(Q)
< 02 lkh=s) Z 2ik1 M( Z \cP/\xp,>
1>i I(P)=2-" Le(@)
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S C2—l(k1—8/) Z 2ik:1

> lerlxr

1>i 1(Py=2-i L(Q)
< oM ki—s'+2) Z2ik1 Z lep|
1>i I(P")=2-1,QCP’

if k1 > s’. We also see the same estimate for the case { = co.
Similarly, for the B-type case we have

(A2¢) (@)
, n 1/n
(2] = wmiaonn| )
i>1 Ny (py=2-i L(Q)
cofy| £ oy w e
g2t i(p)y=2-J I>i [(Pr)y=2—"
_L n 1/n
(L4 UP) ap —ap]) e Ixe }
L(Q)
: ’ . n 1/n
§0{22_J(k1_8 m Z Z21k1M< Z |CP’|XP’>XP }
gzl (P)=2-7 1>3 1(P)=2—1 L¢(Q)
< c27 ! Y "otk M( > |cP,|XP,>
1>i W(Pry=2—" Le(Q)
S C27l(k17$/) Z Qikl Z ‘Cp/‘XP/
1>i I(P)y=2-1 L(Q)
<Ol 8) Sk ST ey
i UP)=271,QCP’

if k1 > 5,1 < (<ooand0<n < oo. Hence we have, for p < oo,

[ Asc]

Fia(ed))

: H <Z 2 Z(Q)_SQ(AW)Z&(Q)XQ) N

I€Z 1(Q)=2""

Lr(R")
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SCH{Z Y giagrillstd)a

lez |(Q)=2""
4 q 1/q
. (Zszl Z ‘cpf‘> XQ}
>4 I(P=2—%,QCP’ Lr(R™)

' ay /g
< C”{ 22—l(k1—s—s +TL/C)(I<Z 21k1 Z |CP”XP’> } HLP(R”)

l€Z 1>i 1(Pry=2-1

ay1/q
< CH{ Z2l(s +s—n/C)Q( Z |CP’|XP’> }

lez [(Pry=2-1

Lr(R")

=C|lc

gore e S Clell gy e

where these inequalities follow from Hardy’s inequality and (3) of Theorem
1if ky > s+ s —n/¢. For the case p = 0o we also get the same estimation.
Similarly, for the B-type case we see

|Azc

; < s
b, (ez,) < Cllellss (20

if k1 > s+ s’ —n/¢. Thus we obtain the desired conclusion

[|[Ac

< ClJe

a5q(2n) HCH)

for min(¢,n) > 1 when 62;7 = ff; or for ( > 1 when ez/n = bz/n For the other
cases of ¢ and 7 the desired conclusion follows by the usual routine. See [1]
for details.

3. Definition

Let S = S(R™) be the space of all Schwartz functions on R and S, =
Seo(R™) = {f €S : [gn f(x)xdx = 0, for all v € Ng}. S, = SL(R") =
S'/P denotes the topological dual of So, where P denotes the set of all
polynomials on R™.

Let r € N and L > n. We will use a family of (r, L)- smooth wavelets
Y such that {279/2)) (29 — k) (i=1,...,2" =1, j € Z, k € Z™)} forms
an orthonormal basis of L?(R™) and satisfies that for v € N7,
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1@ (2)| < C(1 4 |o])~maxELo) for some Lo > n + 7, (3.1)
0" (@)| < CA+[a)™" for 0<fy| <, (3.2)
YD (2)xVdz =0 for |y| < r. (3.3)

Rn

We denote g(z) = Q) (xz — zq)), g = 277k for a dyadic cube
Q = [0,277)" 4+ 279k. We will forget to write the index i of the wavelet,
which is of no consequence.

Definition Let s, s’, € R, and 0 < p, ¢, {, n < co. We assume that

r>max<s’, s’+s—Z,J—n—s’> and (3.4)
L>J. (3.5)

where J is as in Theorem 2. We define

Az (EE) = { ZCQWQGS H(cq) € ay (62;7)}

with || f]

Az, (BE) =
Remark 1

(1) From Lemma B we observe that for every (cq) € a,, (eCn) the series
ZQ cQq converges in 8., and for f € qu (ECW) the representation
f= ZQ cQYq is unique. Furthermore, (f,1q) is well-defined and we
have cq = Q)" (£, 1)

(2) We can prove that the above definition is independent of the choice
of any (r, L)-smooth wavelet ¢ which satisfies (3.1) through (3.5). In-
deed, suppose that 1! and 1?2 are (r, L)-smooth wavelets satisfying (3.1)
through (3.5). Define Afoq (Ef;])(z/)l) and Azq (Eg;?)(@bQ) as the above
definition, using 9! and 1?2 in the place of ). Notice that the wavelet
expansion

Vp = Zz (b, G ) Vo
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Then, for A;q (Eg;?)(wl) > f=>pcpp (c € d;q(ezln)), we have

f=> cpp = (Aot
P Q

where A = {I(Q)™"(¥p,v%)}op. We may assume that T <s <
oo by Theorem 1 (6). From Lemma A and Theorem 2, we see
that Ac € df)q(ez;]). This shows that f € Af)q(Eg;])wQ) and so
qu (Eg;)&ﬁl) C Azq (Ef;?)(zﬁ) By the same argument, we also see
that A3, (E2)(v?) C A3, (E))(¥'). This implies that the definition of
A;q (Eg;]) is independent of the choice of .

We have homeomorphism ay, (ezln) = A;q (Eg;?) from Remark 1 (1) as

above. Hence we have

Theorem 3 Theorem 1 holds with Besov-type or Triebel-Lizorkin type

notations of the small letters ay, (62;7), pq anfi e5, replaced by the corre-

sponding ones of the capital letters Azqu (Ef;,); A;

»q and Ej . respectively.

Examples

(i) From (4) of Theorem 1 and Theorem 3 we see that AgOOO(E;q) = E;q.
Hence the above definition covers the classical class of Besov spaces
ng and Triebel-Lizorkin spaces ng.

(ii) The oscillation spaces Of;s, introduced by S. Jaffard [4], are contained
in our definition as that (’)f;sl = B;OO (B2..).

(iii) The Besov type spaces B,;" and the Triebel-Lizorkin type spaces
F3.7 introduced by D. Yang and W. Yuan [10], [11], are contained
in our definition as special cases that By,” = Bl (B,,) and F,;" =
FY (Fy,). See Theorem 5 as below.

(iv) The Triebel-Lizorkin-Morrey spaces é";qu introduced by Y. Sawano
and H. Tanaka [7], are contained in our definition as special cases, that
. (L1
is, Enpg = :O(o% “)(F]jq) if0<p<u<ooand0 < q < co. Especially
(5 =)

the Morrey space is MY = Foodo " (F) if 1 <p < u < oco.
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4. Characterizations

Let ¢ be a Schwartz function satisfying

suppqgc {5 e R":

IN

i (4.1)

IA
()
>

6(&)] >C >0 if = <[¢

IN

Tl NI
w | ot

(4.2)

Remark 2 (See [2]) Note that for a given ¢ as above there exists a
Schwartz function ¢ satisfying the same conditions as ¢ such that

S p(OdE) =1 ifE 0.

JEZL
Assume that s, s’, p, ¢, ¢, 7 are as in Section 3. We set ¢;(z) =
27 ¢(27x) and ¢g(x) = ¢(1(Q) ! (z — xg)) for dyadic cubes Q. We define
i (e6) = {1 = Seavo € Sk (ca) € ,) |
Q

with a (quasi-)norm

. s/ = 1 f . g s/
||f||Da;q(e'<n) f:212CQ¢>Q HC apq(er:n)

where the infimum is taken over all admissible representations f =

ZQ cQPQ-
By Lemma B, note that f = ZQ cQoq is convergent in S, .

Theorem 4 Fors, s € R and 0 <p, q, {, n < oo, we have
Apg (Efn) = Day, (6277>
with equivalent (quasi-)norms

/1

A§q<E2;) ~ HfHDazS)q(eZ;.,)

Proof. We may assume that % < s < oo by Theorem 1 (6). Let
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Dag, (62;7) > f =20 cqedq- Notice that the wavelet expansion

bq = Zl "(bq, vr)p.

Then we have

f=3 cqoq = (Aoc)ptp
Q P

where Ag = {l(Q) " (¢p,¥q)}op. Lemma A and Theorem 2 yield that

/1

A5 (BE,) ~ apa(ety) = TN%Nag, (7))
which implies || f| ds, (B2 < C||f||Daé Sl and so Dam(ecrz) C A;q(Eg;]).
Conversely, let Af,q( Sn) ZQ cQtq. Notice, from [1, Lemma
2.1], that

g = Zl "(Yq, pr)dp-

where ¢ as in Remark 2. Hence we have
F=Y cqig=> (Aic)pdp
Q P

where A1 = {{(Q) " (¥p,vq)}opr. Applying Lemma A and Theorem 2, we
obtain

1£1pa5, ez, < 1aellag, ezt < Cllelag, ey = 1 1Lag, ()

which implies A;’;q( ) C Daj, (eC ) and so, the proof of the theorem fol-
lows.

Remark 3

(1) We see that the definition of Dapq(e(n) is independent of the choice of
¢ € S satisfying the above conditions (4 1) and (4.2).

(2) We observe that the definition of AS (B¢ ) is independent of the choice
of r, L satisfying (3.1) through (3. 5) for the wavelets as in Section 3.
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Let s € R, 0 < ¢ < oo and ¢ satisfying (4.1) and (4.2) as above. For
f € 8. we define some sequences indexed by dyadic cubes Q:

) 1/q
Fog @ = < > 200+ quL,,(Q)> , 0<p< oo,

j=—logy U(Q)

4 1/q
frs @0 = H( > (2JS|¢j*f|)q> : 0<p< oo,
>~ 10g; I(Q) Lr(@)
n . v 1/q

oo =@ (X (7l a)") ,

j>—log, Q) L(Q)

with the usual modification for ¢ = co. We define
Tap, (e) = {f € See : Mllra, (ez,) = et @pe Hlag, < oo}‘

Then we have the following p-transform characterization in the sense of
Frazier-Jawerth [1].

Theorem 5 Fors, s €R and 0 <p, q, {, n < 0o, we have
Ay (Egy) = Tap,(et,)
with equivalent (quasi-)norms

HfHA;q(Eg;) ~ HfHTa-;;q(eg )

’
n

D p

Let ¢ be as in Remark 2. Let f € Dd;q(ea). From Remark 3 (1), we see

that f =35 copq : (cq) € d;q(ez;). Notice that

Proof. By Theorem 4, it is sufficient to prove that Tdsq(ezln) = Ddsq(ez;).

1
|¢j*f<x>\=]ZcQ¢ij<x> I Y cod; o)
Q I=j—11(Q)=2"

Jj+1

<C Y S Jeol(l+2'r —wol) "

I=j—11(Q)=2""
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for a large enough L. Then, using the argument similar to the proof of [1,
Theorem 2.2], it is not difficult to show that
fer (@0 = Ctet (@)

Thus, we have

HfHTwS es - H{f

ACHL

This implies Dag, (eCn) C Tap, (ecn)

We will prove the converse inclusion. Let T'ap, (62;]) 5> f. Then from
Lemma 2.1 in [1] we have the ¢-transform f =} cq(f)pq where cq(f) =

(Q)~"™(f,¢q). Then we have
lcQ(N)| = @5 * [(zq)| < sup f = sup [¢; * f(y)|
Q yeQ

for a dyadic cube Q with I(Q) = 277. Hence using the argument similar to
the proof of [1, Lemma 2.5], we can prove that

<
c(Feg @ = Cleg @

Thus, by Remark 3 (1), HfHDaS S <le(f)
CHfHTas Je)
This implies Tapq(eCn) C Dapq(ecrz) Hence we have Tapq(eCn) =

ey < ClL

Dag, (eCn) Furthermore, in the course of the above proof we proved

190 pag, ez, 2 MW ety 1l (ez,)-

Remark 4 Note that the definition of Tay, (Eg;?) is independent of the
choice of ¢ € S satisfying (4.1) and (4.2) as above.

We recall the definitions of smooth atoms and molecules.
Let 1,70 € Ng and L > n. We assume that r1, 7o and L satisfy

r1 > max <s’, s+ — g), (4.3)
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ro>J—n—¢s, (4.4)
L>J (4.5)
where J is as in Theorem 2.

A family of functions m = (mq) indexed by dyadic cubes @ is called a
family of smooth molecules with (ry,ry, L) if

(i) Imo(@)| < (1 +1(Q) o — zg|)~ ™ax(L:L2) for some Lo > n + 7y

(ii) [0"mg(x)| < Q) MA 4+ 1(Q) |z — zg|)~F for 0 < |y| < rq, and
(iii) / "mg(x)dz = 0 for |y| < ro.

Note that (ii) is void when 1 = 0 and (iii) is void when ro = 0.

A family of functions a = (aq) indexed by dyadic cubes @ is called a family
of smooth atoms with (rq,72) if

(i) suppag C 3Q for each dyadic cube @,

where c@) denotes the cube obtained by expanding the cube () with the
factor ¢ around its center,

(ii) [07aq(x)| < (@)~ for |y| <7y, and
(iii) / 2Vag(z)dx = 0 for |y| < ra.
Note that (iii) is void when ry = 0.
We define
May, (ez;,) = {f = ZchQ € S, : (mg) smooth molecules with
Q
(r1, 79, L) satisfying (4.3), (4.4) and (4.5), (cq) € a;,

(e}

with

, = _inf :
W lnrag, ezy) = pogdnf L, el (o)

where the infimum is taken over all admissible representations f =
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>0 CQMQ;

Aay, (62;7) = {f = ZcQaQ € S : (ag) smooth atoms with
Q

(r1,72) satisfying (4.3) and (4.4), (cq) € a,, (62;7)}

with

1£1Laagy o) = ,_y3nf kel

ln f= Q €QaQ “Zq(e?/n)
where the infimum is taken over all admissible representations f =
2.0 CQuQ-

Remark 5 By Lemma B we remark that f = >, cqomq or f =3, cqaq
is convergent in S._.

We have the following molecular and atomic decomposition characteri-
zation:

Theorem 6 Lets, s €R and 0<p, q, (, n < 0.
Apq (Egn) = May, (6277) = Ady, (6277)
with equivalent (quasi-)norms

/1

ag,(m2) W arag, eg,) = Ml aag, (e,

Proof. We may assume that % < s < oo by Theorem 1 (6). From Lemma

A and Theorem 2, it is easy to see that Aa,, (ezi/n) C May, (egln) C A}iq (Eg;])

Hence, by Theorem 5, in order to prove the theorem, it suffices to prove that

Tas, () C Adas,(ef,). Let ¢, ¢ as in Remark 2 and f € Ta3, (ef, ). From

[1, Lemma 2.1], we have the ¢-transform

=Y colHeq
Q

with co(f) = Q) ™(f, ¢g) satistying that ||c(f)
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by the proof of Theorem 5. Using the argument similar to the proof of [1,
Theorem 4.1], we see that there exist a family of smooth atoms {ag} and
a sequence of coefficients {cq} such that f = >, cqaq and |c| <

af)q(ezln) -
Clle(f)

Remark 6 The definition of May, (62;7) and Aay, (ezln) is independent of

the choice of (r1, 72, L) satisfying (4.3), (4.4) and (4.5) for smooth molecules
or of (r1,r2) satisfying (4.3) and (4.4) for smooth atoms.

as (e ) X Cllfllpgs (e )- Thus we get the desired result.
ParTCn PgrTCn

5. Calderon-Zygmund operators and trace theorems

Let D be the space of Schwartz test functions and D’ its dual. For an
arbitrary 71, 72 € Ny the Calderon-Zygmund operator T with an exponent
€ > 0 is a continuous linear operator D — D’ such that its kernel K off the
diagonal {(z,y) € R" x R™ : x = y} satisfies that

(i) |0/ K (z,y)| < Clz —y|~ "D for || <7y,

(i) [K(z,y)~K(z,y)| < Cly—y/ [ o —y|~ 24 i 20y —y| < [z —y],

(iii) 0] K (z,y) — 0] K(z,y)| < Cly — y/|le — y|~"FhIHif 2]y —y| <
|x — y| for 0 < |y| < r; (where this statement is void when r; = 0),

|0V K (z,y) — 0K (', y)| < Cla’ — ||z — y|~ T+

if 2|2’ — x| < |z —y| for |y| < 7,

(where the subindex 1 stands for derivatives in the first variable)
(iv) T is bounded on L?(R™).
We obtain the following theorem.

Theorem 7  For § < s < oo, s'€eRand 0 <p, q, (, n <00 and J as in
Theorem 2, the Calderon-Zygmund operator T with an exponent € > J —n
satisfying T(x7) = 0 for |y| < ry and T*(x7) = 0 for |y| < re, is bounded
on qu(Eg;?) if 71 > max (s’,s—l—s’ — %) andreg >J—n—s.

Proof.  The proof is similar to ones of [3]. Let f € A;q (Eg;) with a wavelet
expansion f = ZQ cQ¥q = (cQ) € dpy (ezln) We suppose that the wavelet
is compactly supported with large enough smoothness by Remark 1 (2) and
Remark 3 (2). Let supp g C cQ for every dyadic cube Q.
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We claim that Tf = > 5cq(T%q) is convergent in S, and
ITf] As (52)) < CHfHA;q(Eg;)- To see this, by Theorem 6, it suffices to
prove that T is a constant multiple of smooth molecule with (rq, 2, n+€)
satisfying (4.3), (4.4) and (4.5) for a dyadic cube Q with [(Q) = 27!, The
zero moment condition follows from the assumption T*z7 = 0 for |y| < ro.
We choose a suitable large constant Cy. From [3, Corollary 2.14], when
|z — xg| < 2C27, we see that

0Ty (x)| < [|07Teq, < C Y 2 WleD]jgrgg |

la <|v]+1

< 2N < Q)M +1Q) |z —zg)) "

for any L > 0 and |y| < r;. When |z — zg| > 2Cp27!, using the condition
(ii) as above, we obtain

Ty ()| = ‘ / K(x,y)wca(y)dy‘

= ‘/ (K (z,9) _K(waxQ))¢Q(y)dy’

<c )~ K)oy

<C ly — 2| | — xq| T Vdy
ly—zq|<Co27!

< C(21|x - xQ|)—(n+r2+e) < C(l + 2l’1_ . xQ])_("+T2+€).

Moreover, using the condition (iii) as above for 0 < |y| < 7, we have
o Tvo)| < [ oK (2,) = 01K (@,20) o)y

<c |y — aql“lz — 2|~y

ly—zq|<Co2!

< 027+ | — xQ|_(”+|7‘+6)

< 02”7‘(1 + 2z — mQ|)_("+€).
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Hence we observe that T is a constant multiple of smooth molecule with
(r1, r2, n + €) satisfying (4.3), (4.4) and (4.5).

We put x = (2/,7,) € R"® where 2’ = (z1,22,...,Z,_1) € R"™L. The
trace operator is defined by Tr f(2') = f(2/,0) for f € S(R™). The trace
theorem for the function spaces is as follows.

Theorem 8 Letn > 2 and%§3<oo, sseRand 0 < p, q, (, n < .
Assume that

S,_2>(n_1)<min(11,§)_1>’

Then the trace operator Tr extends to a linear continuous surjective operator
such that

. , Ls— 1 r_1
(1) Tr B3, (BL)(RY) = By "(BCn <) (R,

’

)
(2) Tr B, (F2)(R™) = By, v (FSC_%> (R*™1) if0 < ¢ < oo,
(56, °)

(3) Tr Fs, (B2 ) (R") = Fpp * (R™1)  if 0 < p < oo,

o —
¢n
’

(4) T Fs, (Fe) (R™) = Fpy ¥ (FSC‘%)(R"*I) if 0 <p, ¢ < o0,

Proof.  The proof is similar to ones of [8]. We will only prove (1) and (2)
since the proofs of (3) and (4) are as same as the proofs of (1) and (2).

(I) Proof of (1): Let f € B;q (Bg;)(R”) By Theorem 6, we have f =
Y- €Qaq, where ag is a smooth atom with (rq, r2) satisfying (4.3) and (4.4)
in R", and ¢ € by, (bg,) (R™).

We claim that Tr f(2') = Y, cqag(’,0) is convergent in S, (R"1)
and

J_1 < C||f]

ITe sl

Bra (BZ’VI g)(Rn_l) BiQ(BE;)(R")'

Since suppag C 3(Q for any dyadic cube @, there is a positive integer N
such that
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] =

Z coag(r’,0) =

Q i

D Q@) (4 )UQ@ N QX i1(Q). i+ 1)@ (&', 0)
-N Q'

Il
WE

> éqriag i)
N Q

where Cori = crxqu@n,i+nu@y) and agri(r’) = agixi@n,+nue@)
-(2’,0). From the assumption it is straightforward to see that ag ;(z’)
is a smooth atom with (ry,0) satisfying (4.3) and (4.4) for R"~! because
r1 > max (s’,s—l—s’—%) > max (s’—%,s—%+s’—%—%), and 0 > #11,4)_
(n—1)—(s'— %) In order to show that Tr f = Zi\;_N > Cqriag,i(a')
converges in S (R"™1) it suffices to see (¢ ;) € b;;% (bz;%)(R”_l). By

similarity, we only consider the case ¢g: = ¢g,0. Then we have for a dyadic
cube Q' with I(Q') = 27! in R"7!,

. n 1/n
FENETO S D SR CORC LA .
ben ~ (@) > y(pry=a- LE(Q)
<o{x(/
JZZ:l Q’'x[0,271)
, ¢ n/¢y 1/n
( Z 27° CP/x[o,zj)\XPfx[o,zj)) dx) }
I(P1)=2-

= Oy (@rxfo2-1))-

Hence we have

L oma q/py 1/q
||6 JE N § :{ < 2l(s_;_T)pEps/_l > }
by * (b, ©) @) zl: l by < (@)
/Py 1/
<oly 2 (-3 7 R
- ~\, b2, (Q'x[0,271))

< Clle

ACHIEON
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’

This implies that & € by ” (b, ©)(R"™) and [ Trf] .1 o2
By " (Bg, ¢ )@
< Clifllgy, e @ny:

[
Next, let us show that the trace operator is onto. Let f € qu (an )
«(R™~1). By Theorem 6 and Remark 6, we have f = , corag where agr is
( y 0 €Q1aQ Q

a smooth atom with large enough (71, r2) satisfying (4.3) and (4.4) in R*~1
and ¢ € b;;;(bzn*z)(an)‘ Let ¢ € C2°(R) with supp¢ C (—3.3) and
&(0) =1 and H87<5”00 <1 for |y| < ry. We set él(t) = $(2lt), agrx[0,2-1) =

ag ® ¢ and Cé;)'x[o,zfl) = cgr. We define F' = ), Zl(@/):zfl Cé;)'x[o,zfl)
“Agrxjo,2-1)- 1t is easy to see that agryjp,2-1) is a smooth atom satisfying

(4.3) and (4.4) in R". We will prove that {c[,, 1)} € bs, (b,) (R"). We
see the following estimates: for a dyadic cube Q" with [(Q’) = 27! in R* 1,
Z 27° }CIP/X[O’ij)‘XP/x[OQ*J')

n }1/77
I(P)=2-3 Le(Qx[0,271))

e[S 2 2 Do) )}

Jj=l I(P')y=2—1

/

“bg! (@'x[0.271))

(>

gzl

S CC o1 .
be, Q)

Hence we have

q 1/q
_ l
||C’ BS (Rn = {Z Z 2 S ;)S, (Q'x[0,2- l))XQ’X[O,Qil) }
U yQn)=2-! Lr(R™)
l q 1/q
S C{ Z Z 2 SC 5/_% XQ’X[O,Q*L) }
l l(Q’):Q*l C”I (Q ) Lp(]Rn)

IN

Z 2l(s 1)C s/ 1 Q'

H@H=2- @)

q 1/q
LP(RHI)}

c{zl:

< ClJe

[

i (10, )@t
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By Theorem 6, this implies that F' € B;q (BZ;?)(R”), and Tr F' = f, which
shows that the trace operator is onto.

(IT) Proof of (2): The proof is similar to (I). We use the same notation
as in (I). In order to show that the trace operator is continuous, it suffices
to prove that for a dyadic cube Q' with [(Q') = 27" in R"~1,

c s/ _1 SCC

s’ ’ —1
ng C(Q/) fgn(Q x[0,271))

if 0 < ¢ < co. We see that

¢y 1/¢
_ (s — 1y,
=H{Z( >oupy <>|cp/|><p/)}
fee 7@ 3>l

I(P")=2—]

, 1/¢
: C{/ [ > > 2" <|CP'x[o,2f‘>|CXP/x[2<a‘+1>,2j>dx} '
Q’x[0,2

—1
270 21 (pry=2-i

L(Q")

Since {P’ x [27U+1) 277)} forms a disjoint family, we have

./ ‘ 1/C
Z Z 27 |cP,X[0,2—j)|Xp/x[2(a’+1),2j)> dx}
j=l

1/¢
dx}

<
n

’ n
2’° |CP'x[o,2—j)|Xp/X[2(j+1),2j)>
Z |CP’><[02 J)|Xp/><[2 (G+1) 2— J)) ) dw}

<C / (Z( Z 27 |CP'x[0,2—J‘)|XP/><[0,2—J')> ) }
Q'x10,271) \ 537

1(P')y=2—1]

1

y KR

<CH{ < Z 27° |CP'x[o,2j)|XP/x[o,zj))}
3>l

I(P)=2"1J

LE(@Q x[0,271)
< Ccper (@rxioa1y)-

Hence we obtain that the trace operator is continuous.
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In order to prove that the trace operator is onto, it is sufficient to show,
for a dyadic cube Q' with I(Q’) = 27! in R*7!,

/
, <Cc .
Cret (@xioaty = CC -2

foe C@)

if 0 < ¢ < oo. For this we note that
C/
Fa(Q'x[0,271))

E js' ny 1/n
- H{ < Z 2" ‘CIP’X[OJ—J')‘XPIX[0,2—J‘)> }
j=>l

WP =27

LE(Qx[0,2-1)
From the proof of Theorem 1.4 in [8], it follows that for ¢ > 0,
> 2¥ep ko) < CMt< > 2jsl|CP’|prx[2<j+1>,zj)>-
I(P)=2-i I(P)=2-

Hence we denote M,(f) = M(f*)'/* for the maximal operator M. Then
from the Fefferman-Stein inequality for 0 < ¢t < min({,n) and 0 < ¢ < oo,
we obtain

/
€1z (@ x[0,271))

L, ny 1/n
S C {Z <Mt< Z 27¢ ‘CP/‘XP’X[Q_(.7+1)72—J'))) }

§>1 1(P)=2"7 Le(Q'x[0,271)
- ny 1/n
<c{Z( = #krhpoman) }
J>l N(P)y=2-J LS(Qx[0,271))

<CIY. D0 PVerlxpixp-uin o

>l 1(P)=2—1

(11 ¢ 1/C
S C{/ Z ( Z 2'](3 _C)’Cp/’XP/) dm‘l} S CC 1
Q'

J>1 Ni(Pry=2-i fee S(@)

Le(Q'x[0,271)

which completes the proof of (2).
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6. Inhomogeneous cases

Since almost all of our methods and results of the previous sections
so far easily adapt to the inhomogeneous case, except for few notational
inconveniences, we restrict ourselves to highlighting the only differences.

In Section 1 the inhomogeneous version of sequence spaces will be in-

dexed by the set of dyadic cubes @ with I(Q) < 1. We use notations a;,

/ ’
S S H NS oS S 3 1
and a, (607) replacing ay, and a, (607). Then the inhomogeneous versions

of Theorem 1 hold except the argument of (4) and (6) which is replaced by

(4)" €5y C adono(epy);

(6)" When s < 7,

s+ 2~ s+s' —2

bpp © ¢ Cbio(ef) Chpos ¢ HO<p<¢<n< oo

The inhomogeneous versions of Lemma A, Lemma B and Theorem 2
with s € R hold.

We assume that s, ', p, ¢, , n, r, L, are as in Section 3.

We will use a family of smooth wavelets {1, 1"} for the inhomogeneous
case such that {1o(x —k) (k € Z"), 2"0=D/2p() (2010 k) (i =1,...,2" —
1,5 €N, k € Z™)} forms an orthonormal basis of L?(R™), and () satisfies
(3.1), (3.2) and (3.3), and a scaling function v satisfies (3.1) and (3.2), but
does not satisfy the vanishing moment condition (3.3). We will forget to
write the index ¢ of the wavelet, which is of no consequence.

We put ¢g(z) = o(z—k) if Q = [0, 1)"+k, k € Z", Yo (z) = (2!~ ta—
k)if Q =[0,27H" + 27k, 1 € N, k € Z". We suppose that r and L satisfy
(3.4) and (3.5). We define the inhomogeneous version of the new function
spaces given by

A5,(85) = {1 = % cavio €87+ (cq) € ()
HQ)<1
with || f|

ag,(5,) = I

az,(eg,)”

From Lemma B, note that f = ZZ(Q)<1 cQ¥q is convergent in S’ for

(cq) € ay, (ezln) Then we get the inhomogeneous version of Theorem 3.
We select a function ¢¢ € S satisfying
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(i) suppgo C {€ € R™ : |¢] < 2},
(i) |¢o(€)] > C > 0if |¢] < 2.

Let ¢ € S satisfying (4.1) and (4.2) and ¢;(z) = 2" ¢(27z), j € N. We
put ¢o(r) = do(x — k) if Q = [0,1)" + k, k € Z", ¢g(x) = ¢(2'ax — k) if
Q = [0,27”” + 27”’6‘, l e N, ke Zm™. Using {¢Q}Z(Q)§1 and {gf)j}jeNo, we
define the inhomogeneous version of Day, (egln) and Tay, (egln) as in Section
4. Then we obtain the inhomogeneous analogues of Theorem 4 and Theorem
5.

In the inhomogeneous case we define a family of smooth molecules mg
with (rq1,re, L) satisfying (4.3), (4.4) and (4.5) as in Section 4 if [(Q) < 1.
If I(Q) = 1, we assume

07 mo ()| <UQ) A +UQ) N —z0) ", i <n

with (r1, L) satisfying (4.3) and (4.5), but we do not assume the vanish-
ing moment conditions if (@) = 1. For the smooth atom we also do not
assume the vanishing moment conditions if /() = 1. Then we obtain the
inhomogeneous analogue of Theorem 6.

Theorem 8 of the trace theorem with s € R also carries over to the
inhomogeneous case under some appropriate inhomogeneous modifications.

In the inhomogeneous case we have the following characterization of
local polynomial approximation (cf. S. Jaffard [5]).

Theorem 9
(i) Let s, s €e Randlet1 < p < oo, 0 < ¢ < o0 in the B-type case
orl1 <p< oo, 1<q< oo in the F-type case. We assume s’ > 0,
s+s' =L >0ands+s —2¢N If fe A5 (Ef,), then

sup 1(Q)~° inf -P
l(Q)Ig)l (Q) deg P<s+s'—2 ”f ’

Eg(@) <

P

where the infimum is taken over all polynomials P of degree < s+s'7%

and E;;(Q) denotes either Besov spaces or Triebel-Lizorkin spaces on

(i) Conwversely, lets, s' € R and 0 < p, ¢ < o0 and r > max(s', J—n—s')
with J as in Theorem 2. We assume that f € A% (E;;) and for each
c>1,
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sup  1(Q)7" inf [|f =P

1(Q)<c1 deg P<r

B3l (eQ) < X

where the infimum is taken over all polynomials P of degree < r.
Then we have f € A (E;;)

Proof. We may assume that the smooth wavelets are compactly supported
because of independence of wavelet basis choice by Remark 1 (2). Therefore,
we assume that there exists ¢ > 1 such that supp g C c@ for any dyadic
cube Q.

(i) Let f € AS (Bf);) and the wavelet expansion f = 3.~ ) g)=2-s
-cQipg with (cq) € alo (bf)/q). Let Apf(x) = f(x+h) — f(x).

We recall that for k> s’ > 0and 0 < ¢ < 00, 1 <p < o0,

/]

B q) 14
v =)+ { 3 (27 sup (188 0coquny) '}

>0 |h|<27d

where @ is a dyadic cube with {(Q) = 27! < 1, and
Q(kh) ={z e R" : [x,x + kh] C Q}.

Let r’ € Nsuch that r'—1 < s+s'—3 <7'. Let Pj(z) =32, v M(m—

al

x0)® denote the Taylor polynomial of g; = ZZ(R):Q,J- crY R of degree r'—1 at
some point zg € Q. We put P(z) = > .-, Pj(z). Notice that [0*r(z)| <
CI(R)~1°l and |cg| < CI(R)*™*~%. Hence, it follows that [0%g;(z)| <
C2i(sts =5 —lel) for |a| < 7. Therefore the series P(x) converges and it is
a polynomial of degree ' — 1. We put

f_P:Z(gj_Pj): Z (gj—Pj)+zgj—z73j5f1+f2—f3-

7>0 0<j<l >l >l
Then we claim that || f;[| 5. o) < CUQ)®, i =1,2,3. Since
1 r! ,

) =) = | e+ @ = a0 -0 @ - o)

and
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° k!
Bl - P@ = [ N0 3 50 - Pi)(a o+ e
> la|l=k
where N is the B-spline of order k, we see that
Akg -PY@<C 3T [t lDgte lehig (o)

0< | <min(k,r)

<C Z 2—1/k2—l(r’—\a|)2(k+r'—|a|)j27j(s+s/f%)
0<|a|<min(k,r’)

if |h| <27 and = € Q(kh). Therefore we have

/ . qy1/q
{Z(Z”s sup HAhfluLp(Q(th)}

I<v [h|<27v

IN

qy 1/q
C{Z(Q”s > sup “AZ(QJ_Pj)“LP(Q(kh))>}

I<v o<j<tIP=27r

ol %

I<v 0<5<l 0<|a|<min(k,r")

, ay 1/q
. 2—Vk2—l(r'—|a|)2—j(s+s —Z)Qj(r/+k—|a|)) } 2—7'll/P

< C{ Zgu(s’—k)q< Z 9—1(r'~|al)

I<v 0<|e|<min(k,r’)
qy 1/q
. Z 2j(7"—s—s/+;)2j(k—|a|)> } 9—nl/p
0<5<l
< Canl/p27(kfs’)l2l(r'—s—s'+%) Z o—l(r' —|al)gl(k—]al)
0<|a|<min(k,r’)
< CQ_IS

ifk;>s’>0andr’>s+s’—%.
On the other hand we have
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27j(s+s’f%f7"’)2—lr’
0<;5<l

<C
Lr(Q)

[ fillze(q) <

> (9 —P))

0<j<l

Lr(Q)

<C Z 2j(r’—s—s'+%)2—lr’2—ln/p < CQZ(T'—S—S'+%)2—I7’/2—ln/p
0<5<i

< 027(3+s/)l < Co-ls

if s> 0and 7' > s+ s — 2. Hence we get || fi]
We will next give estimates of fs.

fa@) =) gi(@) =" > crvr(x)

5>l §>1 I(R)=2-3

=Y crur(a) =alw)

>0 I(R)=2-7,RNcQ#£MD

s (@) < CUQ)".

for x € Q). Then we have

q 1/q
g < { S| X R lenbe|
i>1 M I(R)=2-7,RNcQ#0 Lr(R™)
, q 1/q
2255 D SITURIT .
g>l N I(R)y=2-7 Lr(cQ)
, q 1/q
<o 3 S| T e
1(Q)=2"1,cQNQ#D ~ > " I(R)=2—7 Lr(Q)
From the above we obtain
s/ = inf s (on S q s/ (on
ol a = 0t Nolisg oy < 0] e
, q 1/q
D DRI D ol D S TCITIN .
H(Q)=2"1,cQNQ#D ~ j>1 " I(R)=2—17 Lr(Q)
_ , a 1/q
cort Y H{S| T ena) |
1(Q)=2"1,cQNQ#£0D i>1 "M I(R)y=2—7 Lr(Q)
<C27%c <27l

a5 00 (34
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On the other hand we have

> i

§>1

<C

Z 9—i(s+s'=%)

j>1

I f2llzr (@) <

LP(Q) Lr(Q)

< 02 W st =3 )g=In/p < o-lls+s)) < cols

if s+s —%2>0and s’ >0. Hence we get ”f2||Bg;(Q) <Ol Q)".

Since for k > r’ we have Ang = (0, we may assume that k& < r’. Since

o k!
‘Aﬁpj(z)‘ < ‘/ Nk(t) g aﬁan(x+th)hadt
- lal=k

<C Z 2j\a|2—j(s+s’—%)2fl(\a|fk)’h’k

kE<|a|<r!

if x € Q(kh), we have

/ . ay 1/q
{2(2” sup HAhff%HLp(Q(kh)))}

v>1 [h|<2-Y
’ qy1/q
SC{Z<2us/Z Z 2j|a2—j(s+s—;)21(|ak)2uk2m/p>}
vl i>1 k<|a|<r!
’ ay\1/q
<ofSatn( 5 e s gters=ge) ) g
v>l k<|a|<r’ S

< Co—l(k=s") Z 27l(\a|7k)2—l<s+s'—%—\a|)2fln/p < c9-ls
k<|al<r/

ifs+s — % >’ —1and k > s’. On the other hand we have

1 f3llzr (@) < ij
>l Lr(Q)
S DD DI e

>l o <r!
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<C Z Z2fj(s+s/f%7|oz\)2—l|a\2—nl/p

la)<r’ §>1

< C Z 2—l(s+s/—%—|a\)2—l|a\2—nl/p < C2—l(s+s') < C2—ls

lal<r!

if s >0and s+s" — 3 > 1" —1. Hence we get || f3]
the F-type case the above argument also holds.

(ii) We shall treat only the case of the B-type. For the case of the
F-type, the result follows similarly. We assume that f € AY% (B;;) and

the wavelet expansion f = ;o <y cr(f)¥r with (cr(f)) € a¥ (bf,/q) for
an inhomogeneous (r, L)-smooth compactly supported wavelet 1o where

cr(f) = (R)™™(f,¥r). Let supp ¥g C c@ for any dyadic cube Q. Let
P be any polynomial of degree < r and @ a dyadic cube with I(Q) =

27! < 1. We choose g € B;;(]R”) such that ¢ = f — P on cQ. Since

cr(f) = U(R)™"(f,¥r) = U(R)""(f — P,¥r) = l(R)""(g9,%r) = cr(g) for
R C @, we have, for 0 < p < oo,

q 1/q

LP(Q)}

Cbzi,(cz):{z > [(R)™* |er(f)|xr
q 1/q
LP(Q)}

3>V (R)y=2-1
q 1/q
)} ~ gl 55, -

Lr (R

B;;(Q) S CZ(Q)S For

{Z]| T - ientole

>t i (r)=2-7

AZ| T 1w ienle

>0 (R)=2-i

Hence we see ¢,. () < [[f — Pl 5 (oq) for any polynomial P of degree < r,
prq rq

that is, Chst (@) < infgeg p<r || f — P] Bs! (cQ)" When s > 0, we have

lellas, . vg) = S22 UQ) oy (0

()<t

< sup U(Q) oy sup UQ) ey
Q)< Pra(@ ct<l(Q)<1 Pra(@)

< sup U(Q)™° inf |[f—"P]|

B 1(Q)<c—1 deg P<r

Bz;(CQ) + CSHC”agm(b;;) < Q.
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This implies f € A3 (B, ). When s < 0, it is obvious that f € A3 (B3,
because A% (B;;) C A% (B;;). This concludes the proof.
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