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On the Riesz bases, frames and minimal exponential systems

in L2[−π,π]

Akihiro Nakamura
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Abstract. P. G. Casazza, O. Christensen, S. Li, and A. Lindner proved in [3]

that some families of complex exponentials were either Riesz bases or not frames in

L2[−π, π]. First, we shall advance their results in this note. Sedletskii constructed

in [9] an exponential system which is complete, minimal and not uniformly minimal

with separable spectrum in L2[−π, π]. Next, we shall construct a similar example with

nonseparable spectrum in L2[−π, π].
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1. Introduction

A sequence {xn} in a Hilbert space H is said to be complete in H if the
linear subspace span{xn} spanned by the distinct elements xn is dense in
H, i.e., span{xn} = H. The sequence {xn} is said to be minimal in H if
each element of {xn} lies outside the closed linear span of the others, i.e.,
xk /∈ span{xn}n 6=k. If we write Mk = span{xn}n 6=k for each k, this means
that

dk = dist(xk,Mk) = inf
x∈Mk

‖xk − x‖ > 0.

Also, it is said to be uniformly minimal if

dk ≥ δ‖xk‖

for each k, where δ is a positive constant independent of k. It is well known
that if {xn} is basis, it is uniformly minimal (see [11, Theorem 3.1]). Also,
{xn} is said to be ω-independent if

∑
n αnxn = 0 implies that αn = 0 for all

n. It is trivial that if {xn} is minimal, then it is ω-independent.
Next we say that {xn} is a frame for H if there exist constants A,B > 0

such that

2000 Mathematics Subject Classification : 42C15, 42C30, 42C99.



90 A. Nakamura

A‖x‖2 ≤
∞∑

n=1

|(x, xn)|2 ≤ B‖x‖2.

If we replace H with span{xn}, we say that {xn} is a frame sequence.
We say that {xn} is a Riesz basis for H if it is complete in H and there

exist constants A,B > 0 such that

A
∑

|cn|2 ≤
∥∥∥

∑
cnxn

∥∥∥
2

≤ B
∑

|cn|2

for all finite scalar sequences {cn}. If we replace H with span{xn}, we say
that {xn} is a Riesz sequence. It is well known that if {xn} is a frame and
is ω-independent, then it is a Riesz basis (see the proof of Proposition 2.1).

A sequence Λ = {λn}n∈Z of complex numbers is said to be separable if

inf
n 6=m

|λn − λm| > 0.

In this note, we consider H = L2[−π, π] and {xn} = {eiλnt}n∈Z for a se-
quence Λ = {λn}n∈Z of distinct complex numbers with supn |Im λn| < ∞.
Then, Λ is said to be a spectrum with respect to the system {eiλnt}n∈Z.
And we raise the relationships between Riesz bases (Riesz sequences) and
frames (frame sequences).

P. G. Casazza, O. Christensen, S. Li, and A. Lindner [3] obtained the
next result using the result of Balan [2].

Theorem A ([3, Proposition 16.10]) Let {λk}k∈Z be a sequence of real
numbers such that

sup
k∈Z

|λk − k| = 1
4
. (1.1)

Then either {eiλkt}k∈Z is a Riesz basis for L2[−π, π] or it is not a frame for
L2[−π, π].

We shall obtain the result which except the condition (1.1) from Theo-
rem A in Section 2.

Next, Sedletskii constructed in [9, Theorem 3] an exponential system
which is complete, minimal and not uniformly minimal with separable spec-
trum. We shall construct a similar example with nonseparable spectrum in
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Section 3.

2. Riesz bases and frames

In this section, we examine relations of Riesz bases (Riesz sequences)
and frames (frame sequences) aiming at generalizing Theorem A.

Proposition 2.1 If {eiλnt}n∈Z is ω-independent, then it is either a Riesz
sequence or not a frame sequence in L2[−π, π].

Proof. We suppose that {eiλnt}n∈Z is a frame sequence. If we refer to the
proof of Theorem 12 in Young [13, Ch.4, Section 7], we see that if a frame is
ω-independent, then it is a Riesz basis. Consequently, {eiλnt}n∈Z is a Riesz
sequence since it is ω-independent. ¤

The next result is well known.

Theorem B (Schwarz, 1943; see Alexander and Redheffer [1, p. 61, Remark
4]) If {eiλnt}n∈Z is incomplete, then it is minimal.

This result is one of the intrinsic properties of complex exponential
systems. If it is not a complex exponential system, we easily have a coun-
terexample.

Example 2.1 The system

{
eit + ei2t, eit, ei2t, ei3t, . . . , eint, . . .

}

is incomplete, but not minimal in L2[−π, π].

Corollary 2.1 If {eiλnt}n∈Z is incomplete, then it is either a Riesz se-
quence or not a frame sequence in L2[−π, π].

Proof. If {eiλnt}n∈Z is incomplete, it is minimal by Theorem B. Conse-
quently, the result follows from Proposition 2.1. ¤

Now, we define the notion of excess introduced by Paley and Wiener
(see Redheffer [7, p. 2]). We say the system {eiλnt}n∈Z has excess N if it
remains complete and becomes minimal when N terms eiλnt are removed
and we define

E(Λ) = N.
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Conversely we define the excess

E(Λ) = −N

if it becomes complete and minimal when N terms

eiµ1t, . . . , eiµN t

are adjoined. By convention we define E(Λ) = ∞ if arbitrarily many terms
can be removed without losing completeness and E(Λ) = −∞ if arbitrarily
many terms can be adjoined without getting completeness. We see that
{eiλnt}n∈Z is minimal if and only if E(Λ) ≤ 0 from Theorem B. And it
is obvious that {eiλnt}n∈Z is to be complete and minimal if and only if
E(Λ) = 0.

Corollary 2.2 Let a, b be nonnegative constants and {εn}n∈Z be a complex
sequence such that

ε0 = 0, sup
n 6=0

|Re εn| < 1
4
, sup

n 6=0
|Im εn| < ∞.

If we define the sequence Λ = {λn}n∈Z as follows,

λn =





n + εn + a, n > 0,

0, n = 0,

n + εn − b, n < 0,

then {eiλnt}n∈Z is either a Riesz sequence or not a frame sequence in
L2[−π, π].

Proof. If

{
µ0 = 0

µn = n + εn, n 6= 0,

then {eiµnt}n∈Z is a Riesz basis ([13, p. 164, Corollary 2]). By [4], we have

E(Λ) ≤ E(µ) = 0.
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Hence {eiλnt}n∈Z is minimal. The conclusion follows from Proposition 2.1.
¤

We are particularly interested in the case of which {εn}n∈Z is a real
sequence and a = b = 1/4 in Corollary 2.2, i.e.,

λn =





n + 1
4 + εn, n > 0,

0, n = 0,

n− 1
4 + εn, n < 0,

(2.1)

with supn 6=0 |εn| < 1
4 . Now let α be a real number and we consider the

isometric isomorphism

φ(t) 7−→ eiαtφ(t) (2.2)

on L2[−π, π]. Besides we know the next result:

Proposition A (e.g. [6, Corollary 1.1]) We suppose that supn |Im λn| <
∞ and {eiλnt}n∈Z is a basis. If we replace finitely many points λn by the
same number of points µn 6∈ {λn}, µn 6= µm, n 6= m, then the basis property
of {eiλnt}n∈Z is not violated. Consequently the same applies to any Riesz
basis.

Using the above isomorphism and Proposition A, if we consider the next
sequence,

µn =

{
n− 1

4 + εn, n > 0,

n + 1
4 + εn, n < 0,

then we see that {eiλnt}n∈Z with the λn given by (2.1) has the same basis
properties as {eiµnt}n 6=0. Hence we see by Corollary 2.2 that {eiλnt}n∈Z and
{eiµnt}n 6=0 are either Riesz sequences or not frame sequences in L2[−π, π].
If we choose {εn}n∈Z in (2.1) such that

εn

{≤ 0, n > 0,

≥ 0, n < 0,

and infn 6=0 |εn| = 0, then we again obtain Theorem A.
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Besides Redheffer and Young [8] proved the next result for the case
εn = β/ log n (n ≥ 2).

Theorem C ([8, Theorem 3]) Let

µn =





0, n = 0,

1, n = 1,

n + 1
4 + β

log n , n ≥ 2,

−µ−n, n < 0,

then {eiµnt}n∈Z is complete in L2[−π, π] if 0 ≤ β ≤ 1/4 and not if β > 1/4.

We remark that the sequence µ = {µn}n∈Z does not satisfy the con-
dition (1.1) in Theorem A for β > 0. We have proved in [6, Theorem 2.1
and Section 3] that {eiµnt}n∈Z is not a Riesz basis for 0 ≤ β ≤ 1/4 and not
a Riesz sequence for β > 1/4. Consequently, we conclude by Corollary 2.2
that {eiµnt}n∈Z is not a frame for 0 ≤ β ≤ 1/4 and not a frame sequence
for β > 1/4.

The next result is proved inductively by using Young [13, p. 156, Lemma
6].

Proposition B (see [13, p. 156, Lemma 6]) Let {fn}n∈N be a frame in a
Hilbert space H and I be a finite subset of N,

I = {n1, n2, . . . , nm}.

Then {fn}n∈N−I leaves either a frame or an incomplete set.

We have the next result from Proposition B.

Theorem 2.1 Let Λ = {λn}n∈Z be a sequence of complex numbers satis-
fying

|λn − n| ≤ L, (2.3)

where L is a positive constant and assume that E(Λ) = m ≥ 1, and let

I = {n1, n2, . . . , nm} ⊂ Z.

Then {eiλnt}n∈Z−I is a Riesz basis if and only if {eiλnt}n∈Z is a frame.



On the Riesz bases, frames and minimal exponential systems in L2[−π, π] 95

Proof. First, we remark that E(Λ) is finite under the condition (2.3) by
[7, Theorem 47]. We suppose that {eiλnt}n∈Z−I is a Riesz basis. We prove
only the case m = 1 since the arguement of the case m ≥ 2 is similar to
one of m = 1. If {eiλnt}n 6=n1 is a Riesz basis, then it is a frame with same
bounds. Hence there exist positive constants A,B such that

A‖f‖2 ≤
∑

n 6=n1

∣∣(f, eiλnt)
∣∣2 ≤ B‖f‖2

for ∀f ∈ L2[−π, π]. It is trivial that

∣∣(f, eiλn1 t)
∣∣ ≤ C‖f‖,

where C is a positive constant. Consequently we have

A‖f‖2 ≤
∑

n 6=n1

∣∣(f, eiλnt)
∣∣2 +

∣∣(f, eiλn1 t)
∣∣2

≤ (B + C2)‖f‖2.

Hence {eiλnt}n∈Z is a frame.
Conversely, we suppose that {eiλnt}n∈Z is a frame. Since E(Λ) = m,

{eiλnt}n∈Z−I is complete. Then it is a frame by Proposition B. Besides it is
also minimal, hence {eiλnt}n∈Z−I is a Riesz basis. ¤

Remark 2.1 Let {λn}n∈Z be a sequence of real numbers such that

sup
n∈Z

|λn − n| = 1
4
,

then we have E(Λ) = 0 or 1 by [7, Theorem 47]. If E(Λ) = 1, {eiλnt}n∈Z
is not a Riesz basis. Hence it is not a frame by Theorem A. Consequently,
{eiλnt}n 6=n1 for any n1 ∈ Z is not a Riesz basis by Theorem 2.1.

Finally, we give some examples.
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Example 2.2 Let

µn =

{
n− 1

4 , n > 0,

n + 1
4 , n < 0,

then the system {eiµnt}n 6=0 is complete and minimal by Levinson [5, p. 67]
(see [13, Remark, p. 105]) and it is not a basis (Young [12, Theorem 2]).
Therefore, since it is also not a Riesz basis, it is not a frame by Proposition
2.1.

The following example is also given by [3, Example 16.11].

Example 2.3 Let

λn =





n− 1
4 , n > 0,

0, n = 0,

n + 1
4 , n < 0,

then E(Λ) = 1 and {eiλnt}n 6=0 is not a Riesz basis as shown by the above
example. Consequently, {eiλnt}n∈Z is not a frame by Theorem 2.1. Inciden-
tally, using the result which the system {eiµnt}n 6=0 in Example 2.2 is not
a basis, if we follow the arguement in Singer [11, Ch.I, Section 6, Example
6.1-b)], we see that {eiλnt}n∈Z is an example which is ω-independent, but
not minimal.

3. Minimal exponential system with nonseparable spectrum

In this section, we construct an exponential system which is complete
and minimal with nonseparable spectrum, hence not uniformly minimal.

Proposition C (see Sedletskii [10, p. 3569]) If {eiλnt}n∈Z is complete in
L2[−π, π], then the following statements are equivalent :

( i ) {eiλnt}n∈Z is uniformly minimal.
( ii ) infk dk = infk dist(eiλkt,Mk) > 0,

where Mk = span{eiλnt}n 6=k.
(iii) There exists a sequence of coefficient functionals {fn}n∈Z ⊂ L2[−π, π]

associated to {eiλnt}n∈Z such that supn ‖fn‖ < ∞.
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Since supn |Im λn| < ∞, we have

0 < inf
n
‖eiλnt‖ ≤ sup

n
‖eiλnt‖ < ∞.

Hence, it is trivial that (i) is equivalent to (ii). The equivalence of (ii) and
(iii) follows from the Hahn-Banach theorem and the fact that the sequence
{fn}n∈Z of coefficient functionals associated to {eiλnt}n∈Z is uniquely de-
termined.

Using Proposition C, we have the next result. Sedletskii obtained a
same result in [10, p. 3569].

Proposition 3.1 If {eiλnt}n∈Z is uniformly minimal, the spectrum Λ =
{λn}n∈Z is separable.

Proof. ∥∥eiλkt − eiλnt
∥∥ =

∥∥{
ei(λk−λn)t − 1

}
eiλnt

∥∥

≤ C
∥∥ei(λk−λn)t − 1

∥∥ (3.1)

= C

∥∥∥∥
∞∑

j=1

{i(λk − λn)}j

j!
tj

∥∥∥∥

≤ C
∞∑

j=1

|λk − λn|j
j!

πj

≤ C
(
e|λk−λn|π − 1

)
.

Now, since {eiλnt}n∈Z is uniformly minimal, we have by Proposition C,

∥∥eiλkt − eiλnt
∥∥ ≥ dk ≥ δ (3.2)

for a positive constant δ. However, if

inf
n 6=k

|λk − λn| = 0,

then we obtain by (3.1)

inf
n 6=k

∥∥eiλkt − eiλnt
∥∥ = 0.

This contradicts (3.2). ¤
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Sedletskii showed in [9] that the converse of Proposition 3.1 did not
hold. He constructed the exponential system with real separable spectrum
such that it was complete and minimal, but not uniformly minimal.

Theorem D ([9, Theorem 3]) Let V be the sequence of all integers in the
intervals

Is = [2s, 2s + [log s]], s ≥ 3.

Let

Λ = (n : n < 0, n ∈ V ) ∪
(

n− 1
2

: n ∈ N\V
)

.

Then {eiλnt}n∈Λ is complete and minimal, but not uniformly minimal in
L2[−π, π].

This example can be written as follows:

λn =

{
n− 1

2 , n ∈ N\V,

n, n < 0 or n ∈ V.
(3.3)

By the way, Redheffer and Young showed that {eiµnt}n∈Z with the spec-
trum given by the following (3.4) was complete and minimal in [8, Lemma 1
and Remark]. Moreover, they showed that the coefficient functionals of the
system were uniformly bounded, consequently the system were uniformly
minimal.

Theorem E ([8, Theorem 5]) Let

µn =





n + 1
4 , n > 0,

0, n = 0,

n− 1
4 , n < 0,

(3.4)

then the sequence {fn} of coefficient functionals associated to the system
{eiµnt}n∈Z satisfies supn ‖fn‖ < ∞.

Appling the isomorphism defined by (2.2) to the system {eiµnt}n∈Z in
Theorem E, we see that the exponential system {eiγnt}n 6=0 with the following
spectrum {γn}n 6=0,
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γn =

{
n− 1

2 , n > 0,

n, n < 0,
(3.5)

is also uniformly minimal. We remark that the example of Sedletskii given
by (3.3) is gained by moving a part of the spectrum given by (3.5). Now,
the spectrum Λ = {λn} in (3.3) is separable. Hence we construct a similar
example with nonseparable spectrum. We state the known results which we
need.

Theorem F (Schwarz, 1959; see [13, p. 117, Theorem 15]) If Λ = {λn}
is a sequence of real numbers such that

∑
1/|λn| < ∞, then {eiλnt} fails to

be complete in L2[−A,A] for any positive number A.

Theorem G ([7, Theorem 47]) For −∞ < n < ∞, let Λ ≡ {λn} be a
sequence of complex numbers satisfying |λn − n| ≤ h where h is a positive
constant. Then E(Λ) satisfies

−
(

4h +
1
2

)
< E(Λ) ≤ 4h +

1
2
.

Next, we denote by n(t) the number of points λn inside the disk |z| ≤ t

and we put

N(r) =
∫ r

1

n(t)
t

dt.

Levinson obtained the following result in [5].

Theorem H ([5, Theorem III]; see [13, p. 99, Theorem 3]) The set {eiλnt}
is complete in L2[−π, π] whenever

lim sup
r→∞

(
N(r)− 2r +

1
2

log r

)
> −∞.

Lemma 3.1 We define the sequnce Λ = {λn} as follows:

Λ =
{

2, 2 +
1
2
, 22, 22 +

1
22

, . . . , 2n, 2n +
1
2n

, . . .

}
.

Then {eiλnt} is minimal and Λ is nonseparable.
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Proof. Since

∞∑
n=1

1
λn

=
∞∑

n=1

1
2n

+
∞∑

n=1

1

2n +
1
2n

< ∞,

we see that {eiλnt} is minimal by Theorem B and Theorem F. Λ is nonsep-
arable obviously. ¤

Using this lemma, we obtain the next result.

Theorem 3.1 The system {eiλnt} in Lemma 3.1 can be extended to a
complete, minimal and not uniformly minimal exponential system {eiµnt}
with nonseparable spectrum in L2[−π, π].

Proof. We define the sequence µ = {µn} as follows:

µn =





2k +
1
2k

, n = 2k + 1,

n, n 6= 2k + 1,

for n = 0, 1, 2, . . . and k = 1, 2, . . . and let

µ−n = −µn, n = 1, 2, . . .

Obviously, Λ = {λn} ⊂ {µn} and we have

|µn − n| ≤ 1, ∀n.

Consequently, by Theorem G, the excess E(µ) satisfies

−4 ≤ E(µ) ≤ 4.

Let denote by n1(t) and n2(t) the number of integers in |z| ≤ t and the
number of points µn in |z| ≤ t, respectively. We put

N1(r) =
∫ r

1

n1(t)
t

dt, N2(r) =
∫ r

1

n2(t)
t

dt.

Since N1(r) ≤ N2(r), we have
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lim sup
r→∞

(
N2(r)− 2r +

1
2

log r

)
≥ lim sup

r→∞

(
N1(r)− 2r +

1
2

log r

)
> −∞.

Hence, we see that {eiµnt} is complete by Theorem H, consequently,

0 ≤ E(µ) ≤ 4.

If we delete 4 µn’s /∈ Λ from µ at most, the rest system {eiµnt} is complete
and minimal in L2[−π, π]. Since µ is nonseparable, {eiµnt} is not uniformly
minimal by Proposition 3.1. ¤
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[ 4 ] Fujii N., Nakamura A. and Redheffer R. M., On the Excess of Sets of

Complex Exponentials. Proc. Amer. Math. Soc. 127 (1999), 1815–1818.

[ 5 ] Levinson N., Gap and Density Theorems. AMS Colloquium Publications

26 (1940).

[ 6 ] Nakamura A., Basis properties and complements of complex exponential

systems. Hokkaido Math. J. 36 (2007), 195–208.

[ 7 ] Redheffer R. M., Completeness of Sets of Complex Exponentials. Adv.

Math. 24 (1977), 1–62.

[ 8 ] Redheffer R. M. and Young R. M., Completeness and Basis Properties of

Complex Exponentials. Trans. Amer. Math. Soc. 277 (1983), 93–111.

[ 9 ] Sedletskii A. M., A Construction of Complete Minimal, But Not Uniformly

Minimal, Exponential Systems with Real Separable Spectrum in Lp and C.

Mathematical Notes 58(4) (1995), 1084–1093.

[10] Sedletskii A. M., Nonharmonic Analysis. Journal of Mathematical Sciences

116(5) (2003), 3551–3619.

[11] Singer I., Bases in Banach spaces, Springer Verlag, Berlin and New York,

1970.



102 A. Nakamura

[12] Young R. M., On a Theorem of Ingham on Nonharmonic Fourier Series.

Proc. Amer. Math. Soc. 92 (1984), 549–553.

[13] Young R. M., An Introduction to Nonharmonic Fourier Series, revised first

edition, Academic Press 2001.

Department of Mathematics

Tokai University

316 Nishino Numazu

Shizuoka, 410-0395 Japan

E-mail: a-nakamu@wing.ncc.u-tokai.ac.jp


