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A removable singularity theorem of J-holomorphic mappings

for strongly pseudo-convex manifolds
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Abstract. We investigate a removable singularity theorem and other some basic

properties of a J-holomorphic mapping for strongly pseudo-convex manifolds, which

are necessary for constructing the moduli space of J-holomorphic mappings.
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1. Introduction

The theory of J-holomorphic curves is one of the most developing sub-
jects in the study of symplectic geometry ever since its inception in Gromov’s
paper [6]. The first step in this theory is based on the construction of the
moduli space and many geometric analyses of J-holomorphic curves. The
crucial fact about J-holomorphic curves in symplectic geometry is that for
A is a homology class of H2(M ;Z) the moduli space M(A, J) of simple J-
holomorphic curves is a compact finite dimensional smooth manifold if J is
generic. This theory has a close relation with a lot of geometrical subjects
including Floer homology and Seiberg-Witten invariant.

Although many fruitful results have been obtained by this theory, these
results are applicable only in even-dimensional geometry. Strongly pseudo-
convex manifolds also admit many symplectic-like features, for example, an
almost complex strucutre J and a non-degenerate pseudo-Hermitian struc-
ture L. It is also well known that these structures give relevant properties
to J-holomorphic mappings for strongly pseudo-convex manifolds [11].

On a symplectic manifold, we use two key properties of J-holomorphic
curves to prove that the moduli space M(A, J) is a finite dimensional com-
pact smooth manifold. These properties are the strong ellipticity of the
equation which defines J-holomorphy and the removablity of singularity of
J-holomorphic curves. In this paper, we consider J-holomorphic mappings
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from a 3-dimensional Sasakian manifold into a strongly pseudo-convex man-
ifold and show a removable singularity property of them.

Removable singularity type theorems have been widely studied when the
domain of mappings is a two dimensional disc. In this case the conformal
invariance of the energy of J-holomorphic curves plays an important role.
For example, we can consider the set of J-holomorphic curves with uniformly
bounded energy as the set of L2

1-bounded harmonic mappings, which are
solutions of an elliptic partial differential equation.

A difficulty in study of strongly pseudo-convex CR geometry often comes
from the control of the smoothness of the structures with respect to its
characteristic direction. Since it is natural in strongly pseudo-convex CR
geometry to consider a J-holomorphic mapping as a map whose domain is
also an odd dimensional manifold, we have to modify the original harmonic
theory for two-dimensional discs. Moreover, since the homothetic change
of a contact structure does not imply the conformal change of the natural
metric, the conformality of energy does not make sense in our case. To
avoid these difficulties, in this paper, we will mainly consider the case of
J-holomorphic mappings from regular Sasakian manifolds.

Let Σ3 be a compact 3-dimensional Sasakian manifold. Then, for each
point p ∈ Σ there exists a neighborhood of p of the form D2 × S1 ⊂ Σ
when Σ is assumed to be regular, that is its characteristic vector field is
regular, where D2 is a 2-dimensional unit disc. In this neighborhood the
orbits generated by the characteristic vector field ξΣ are circles S1 of the
second factor. Since the volume of D2×S1 ⊂ Σ is finite, the energy of every
J-holomorphic mapping is also finite (see Section 3 for more details).

In these settings, we will see that a J-holomorphic mapping which has
an isolated orbit singularity can be extended continuously.

Theorem Let u : (D2 − {(0, 0)}) × S1 −→ M2n+1 be a smooth J-
holomorphic mapping into a strongly pseudo-convex manifold. Then u can
be continuously extended as u : D2 × S1 −→ M2n+1, when the volume for
D2 × S1 is finite.

The author would like to thank Professors Kimio Miyajima and Mit-
suhiro Itoh for their pertinent comments and for encouraging steadily the
author.
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2. Preliminaries

We first recall basic notions of a strongly pseudo-convex manifold
M2n+1.

A (2n+1)-dimensional strongly pseudo-convex manifold M is an oriented
smooth manifold which carries a structure (P, J, θ), where P ⊂ TM is a
2n-dimensional real subbundle of TM with an almost complex structure
J : P −→ P satisfying

NJ(X, Y ) = 0 for X, Y ∈ Γ(P ),

where NJ(X, Y ) = [X, Y ] − [JX, JY ] − J([JX, Y ] + [X, JY ]) is Nijenhuis
tensor of J , and θ ∈ Γ((TM/P )∗) is a contact form whose Levi-form

L(X, Y ) = −dθ(JX, Y ) for X, Y ∈ P

is positive definite. In what follows, a strongly pseudo-convex manifold is
abbreviated as an s.p.c. manifold.

Let (M, θ, J) be an s.p.c. manifold. Consider the complexification of
TM and its

√−1 eigen-subspace S = {X − √−1JX | X ∈ P} ⊂ CTM .
It holds S ∩ S = {0} and [Γ(S),Γ(S)] ⊂ Γ(S), where S is the complex
conjugation of S.

Since M is a contact manifold, there exists a unique nonvanishing vector
field ξ which satisfies θ(ξ) = 1 and i(ξ) dθ = 0. We call this vector field
the characteristic vector field. By definition we have TM = P ⊕ Rξ, and
hereafter we consider the Levi-form as a tensor on TM by extending J on
TM as Jξ = 0. Then, we have a canonical Riemannian metric g = g(θ,J) on
M defined by

g(X, Y ) = L(X, Y ) + θ(X)θ(Y ).

Since the 1-form θ and the vector field ξ satisfy Lξθ = 0, we see that a
necessary and sufficient condition of LξJ = 0 is that ξ is Killing with respect
to the metric g = g(θ,J). We call an almost complex structure J normal or
K-contact, when Lξθ = 0. We call an s.p.c. manifold with a normal almost
complex structure Sasakian manifold.

Let (Σ3, θΣ, j) be a connected 3-dimensional Sasakian manifold and
(M, θ, J) be an s.p.c. manifold. Consider a smooth mapping u : Σ −→ M
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which obeys the conditions

1. du ◦ j = J ◦ du on PΣ, (JH-1)
2. du(ξΣ) = λξ, for a positive smooth function λ > 0 on Σ, (JH-2)
3. u∗θ = λθΣ, (JH-3)

where, PΣ = kerθΣ and ξΣ denotes the characteristic vector field on Σ.
We note that the equation (JH-1) is just an analogue of J-holomorphic

curve in symplectic geometry, which M. Gromov initially defined [6]. So, we
call such a map J-holomorphic mapping for an s.p.c. manifold M .

By the conditions (JH-1) and (JH-3), J-holomorphic mappings preserve
the holomorphic structures, i.e. we have u∗(SΣ) ⊂ S for a J-holomorphic
mapping u. This condition is often referred to CR-holomorphy of a mapping
between CR manifolds.

Remark If the function λ ∈ C∞>0(Σ) is identically 1 over Σ, then the
J-holomorphic mapping u : Σ −→ M is an isometric immersion.

Examples
i) Linear subspace sections: Let f(z1, . . . , zn+1) be a weighted homogeneous
polynomial with an isolated singular point 0 ∈ Cn+1. It is well known that
the link of the zero locus M ′ = f−1(0) has an s.p.c. structure.

Let M = S2n+1∩M ′ be the link and u : Σ −→ M be a natural inclusion
map, where Σ is the link of the zero locus of the weighted homogeneous
polynomial f0(z1, z2, z3) = f(z1, z2, z3, 0, . . . , 0), the restriction of f to a
four dimensional subspace V . So Σ is a section of M by V . Then it is
observed that u is a J-holomorphic mapping into M .

ii) Veronese mapping : Let Σ = S3 ⊂ C2 and M = S5 ⊂ C3 be the unit
spheres. Then we can see that the Veronese mapping v : S3 −→ S5

v(z1, z2) =
(
z2
1 ,
√

2z1z2, z
2
2

)
,

is a J-holomorphic mapping.
More generally, the lift of J-holomorphic curves can be considered as an

example of J-holomorphic mappings. Let Σ3 −→ Σ2 and M2n+1 −→ M2n

be negative S1-bundles over a Riemann surface and a 2n-dimensional Kähler
manifold, respectively. Let u : Σ −→ M be a holomorphic curve between
base spaces and we assume that there exists a bundle isomorphism from the
pull-back bundle u∗M to the bundle Σ which preserves connections. Then
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we can see that the bundle isomorphism induces a lift u : Σ −→ u∗M ⊂ M

over the holomorphic curve u, which is J-holomorphic in our sense.

The geometrical meaning of the positive function λ ∈ C∞(Σ) defined
in the condition (JH-2) is, roughly speaking, how the image u(Σ) is covered
by u. In the above, we have stated the definition in a weak form. However
we may exploit a stronger condition than (JH-2). Namely, with an easy
consideration, we can show that the function λ must be a constant.

Proposition 2.1 For every mapping u : Σ −→ M satisfying (JH-2) and
(JH-3), the function λ defined above is constant.

Proof. For X ∈ PΣ we have Xλ = 0, since

0 = dθ(du(ξΣ), duX) = u∗dθ(ξΣ, X)

= (dλ ∧ θΣ + λdθΣ)(ξΣ, X) = Xλ.

Therefore, from the strong pseudo-convexity of Σ we deduce ξΣλ = 0, and
hence dλ = 0. ¤

3. Energy and harmonicity

Let u : Σ −→ M be a smooth mapping. We define the energy functional
E(u) of u by

E(u) =
1
2

∫

Σ

TrgΣ(u∗g) dvΣ.

Here, g = g(θ,J) is the canonical metric on M , and gΣ = g(θΣ,j), dvΣ =
dv(θΣ,j) are the canonical metric and the volume form defined by (θΣ, j) on
Σ. The integrand is called the energy density and has an expression

TrgΣ(u∗g) = |du(e)|2(θ,J) + |du(je)|2(θ,J) + |du(ξΣ)|2(θ,J),

where e ∈ PΣ is a horizontal unit vector.
By definition of the energy functional, we have E(u) = 1

2 (2λ +
λ2)vol(θΣ,j) for any J-holomorphic mapping u. In particular, if we use a
Sasakian structure of Σ having finite volume vol(θΣ,j) < ∞, then the energy
E(u) of J-holomorphic mapping u is also finite. On the other hand, the
volume of the image u(Σ) of Σ by the mapping u is defined by V (u) =
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∫
Σ

detg(θΣ,j)(u
∗g(θ,J))1/2 dv(θΣ,j), and we have V (u) = λ2vol(θΣ,j) for any

J-holomorphic mapping.

Remark Although in the case of symplectic geometry we have “energy-
area equality” which asserts that the energy of a symplectic J-holomorphic
curve is equal to the area, in our case we do not expect to get a similar
identity. On the other hand, we can observe an analogy with symplectic
geometry using terms of harmonicity with respect to the energy functional
E of J-holomorphic mappings for an s.p.c. manifold.

We call a smooth mapping harmonic when it is a critical point of the
energy functional E (c.f. [11]).

Lemma For an arbitrary connections D, DM on Σ and M , and its induced
connection Du by u, respectively, we have,

Du
X(duY )−Du

Y (duX)− du([X, Y ]) = T (duX, duY ),

Du
X(JduY )− J

(
Du

XduY
)

=
(
DM

duXJ
)
duY,

where T is the torsion tensor of D and X, Y ∈ X(Σ).

Proof of lemma. It is obviously noticed that the left hand side of each
of the above formula is tensor. Take local coordinates (x1, x2, x3) and
(y1, . . . , y2n+1) on Σ and M , respectively. Then, for X = ∂

∂xi , Y = ∂
∂xj

Du
X(duY ) =

∑ ∂2uk

∂xi∂xj

∂

∂yk
+

∑ ∂uk

∂xj

∂ul

∂xi
D ∂

∂yl

∂

∂yk
(3.1)

and thus

Du
X(duY )−Du

Y (duX) =
∑ ∂uk

∂xj

∂ul

∂xi
T

(
∂

∂yl
,

∂

∂yk

)
= T (duX, duY ).

Similarly, since

JduY = J

( ∑ ∂uk

∂xj

∂

∂yk

)
=

∑ ∂uk

∂xj
J

∂

∂yk
,

the identity (3.1) induces,
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Du
X(JduY )− J

(
Du

XduY
)

=
∑ ∂uk

∂xj

∂ul

∂xi

(
D ∂

∂yl
J
) ∂

∂yk
= (DduXJ)duY.

These complete the proof. ¤

Proposition 3.1 Every J-holomorphic mapping u : Σ3 −→ M2n+1 be-
tween s.p.c. manifolds is harmonic.

Proof. It is well known that the condition for a mapping u to be harmonic
is characterized as follows: Let ∇,∇M be the Levi-Civita connection on
Σ,M respectively, and ∇u be the connections of u∗TM canonically induced
from ∇M by u. We define the tension field τ(u) of u by

τ(u) =
∑

i

∇u
ei

du(ei)− du(∇ei
ei),

where {ei} is an orthonormal basis of TΣ. Note that this definition is
independent of the choice of {ei}. Then, a mapping u is harmonic if and
only if τ(u) ≡ 0.

We assume that u is J-holomorphic. First we examine the second term
of the tension field τ(u). Take a unit vector e ∈ PΣ, and hereafter, we will
use the orthonormal basis {e, je, ξΣ} of TΣ. Then by the condition (JH-1)
of the definition, we have,

du(∇jeje) = du(j∇jee) + du((∇jej)e)

= Jdu(∇eje)− du(j[e, je]) + du((∇jej)e)

= − du(∇ee) + θ(du(∇ee))ξ + du(j(∇ej)e)

− du(j[e, je]) + du((∇jej)e)

We apply to this the formulae

(∇Xj)Y = gΣ(X, Y )ξΣ − θΣ(Y )X, ∇XξΣ = −jX,

which are valid for the Levi-Civita connection on a normal s.p.c. manifold
[2]. Then, we see that the third term of the above is

du(j(∇ej)e) = gΣ(e, e) du(jξΣ)− θΣ(e) du(je),
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and hence it vanishes because jξΣ = 0 and θΣ(e) = 0. Similarly, the fifth
term vanishes. Moreover the second term also vanishes, since

θΣ(∇ee) = gΣ(∇ee, ξΣ) = −gΣ(e,∇eξΣ) = gΣ(e, je) = 0.

Therefore, we obtain, via (JH-1),

du(∇jeje) + du(∇ee) = −Jdu([e, je]).

For the first term of the tension field we will have a similar computation
by applying the formulae

(∇M
X J

)
Y = g((1 + h)X, Y )ξ − θ(Y ) (1 + h)X, ∇M

X ξ = −J(1 + h)X,

where h is a (1, 1)-tensor defined by h = 1
2LξJ on a general s.p.c. manifold

[2]. In fact we have

∇u
jedu(je) = −∇u

e du(e) + θ
(∇u

e du(e)
)
ξ − Jdu([e, je])

+ g(hJdu(e), du(e))ξ + J(∇du(e)J)du(e).

For the second term of the right hand side of the above,

θ
(∇u

e du(e)
)

= λ−1g
(∇u

e du(e), λξ
)

= λ−1eg(du(e), du(ξΣ))− λ−1g
(
du(e),∇u

e du(ξΣ)
)

= −λ−1g
(
du(e),∇u

e du(ξΣ)
)

= −g(du(e),∇du(e)ξ) = g(du(e), J(1 + h)du(e))

= g(du(e), Jhdu(e)).

On the other hand for any vector X ∈ P ,

2JhX = J(LξJ)X = JLξJX − JJLξX

= JLξJX + LξX − θ(LξX)ξ

= JLξJX − LξJJX − Lξθ(X)ξ = −2hJX.

So the second term and the fourth term together reduce to zero. We easily
see that the last term vanishes. Thus we have also
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∇u
e du(e) +∇u

jedu(je) = −Jdu([e, je]),

so that τ(u) reduces

∇u
ξΣ

du(ξΣ)− du(∇ξΣξΣ) = λ−1(ξλ)ξ.

It vanishes, since λ is constant from Proposition 2.1. ¤

4. Proof of the removable singularity

To prove the removable singularity theorem, we first show a key
lemma which asserts the monotonicity of the volume density function of
J-holomorphic mappings. To show the key lemma, we will use two basic
properties of the Levi-Civita connection on a Sasakian manifold below.

Proposition 4.1 On an arbitrary compact s.p.c. manifold Σ2m+1, we
have, for any X ∈ X(Σ),

∫

Σ

2m∑

i=1

gΣ(∇eiX, ei) dvΣ = 0,

where {ei} is an orthonormal frame of PΣ.

Proof. First we notice that the integral curves of ξΣ are geodesic on a
contact metric manifold. Since ξΣ is perpendicular to PΣ, we have divX =∑2m

i=1 gΣ(∇ei
X, ei) + gΣ(∇ξΣX, ξΣ), and

gΣ(∇ξΣX, ξΣ) = ξΣθΣ(X)− gΣ(X,∇ξΣξΣ) = ξΣθΣ(X).

Since the integration of the term including ξΣ vanishes (Proposition 3.6. of
[13]), we obtain the desired formula. ¤

Proposition 4.2 On a compact Sasakian manifold Σ2m+1, we have

θΣ(∇XX) = 0.

for X ∈ Γ(PΣ).

Proof. We only show θΣ(∇jXjX) = 0.
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∇jXjX = (∇jXj)X + j∇jXX = g(jX,X)ξΣ − θΣ(X)jX + j∇jXX

= j∇jXX.

Hence, θΣ(∇jXjX) = θΣ(j∇jXX) = 0. ¤

Proposition 4.3 (monotonicity) For any J-holomorphic mapping u :
Σ2m+1 −→ M , we have for a sufficiently small r and for any point
p ∈ u(Σ) ⊂ M ,

V (r) ≥ const · r2m+1,

where V (r) = vol(B(p; r) ∩ u(Σ)).

Proof. The argument used here is an analogy of classical one obtained in
the case of harmonic maps from a unit 2-disc (c.f. [8]).

We take an isometric embedding M ⊂ RN for a sufficiently large N

and let B be the second fundamental form of this embedding. Since the
embedding is isometry, we have 〈X, Y 〉 = g(X, Y ) for X, Y ∈ TM , where
〈, 〉 is the canonical inner product of RN . On a small neighborhood of p, fix
an orthonormal frame {ei} of PΣ.

First, we consider a decomposition X = X> + X⊥ for a vector field
X ∈ X(RN ) with respect to TRN |M = TM ⊕ TM⊥. Then, by definition of
the second fundamental form B, we have

2m∑

i=1

〈∇u
ei

X, dui

〉
=

2m∑

i=1

〈∇u
ei

X⊥, dui

〉
+

2m∑

i=1

〈∇u
ei

X>, dui

〉

= −
2m∑

i=1

〈
X⊥,∇u

ei
dui

〉
+

2m∑

i=1

〈∇u
ei

X>, dui

〉

= −
2m∑

i=1

〈X, B(dui, dui)〉+
2m∑

i=1

〈∇u
ei

X>, dui

〉
.

Here, dui = du(ei), i = 1, . . . , 2m.
Since u : Σ −→ M is an immersion, we can decompose the second term

of the right hand side with respect to TuM = u∗TΣ⊕ (u∗TΣ)⊥ as

X> = tanu X + noruX, tanu X = du(X̃ + aξΣ).
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Here, X̃ ∈ PΣ, a = λ−1θ(X>)◦u ∈ C∞(Σ). By the harmonicity of u we can
calculate

2m∑

i=1

〈∇u
ei

noruX, dui

〉
= −

2m∑

i=1

〈
noruX,∇u

ei
dui

〉

= −
2m∑

i=1

〈
noruX, du(∇ei

ei)
〉

= 0.

From Proposition 4.2, we have ∇eiei ∈ PΣ and hence
sum2m

i=1du(∇ei
ei) ∈ P . Therefore,

2m∑

i=1

〈∇u
ei

duX̃, dui

〉
=

2m∑

i=1

dui g
(
duX̃, dui

)− g
(
duX̃,∇u

ei
dui

)

=
2m∑

i=1

λgΣ

(∇eiX̃, ei

)
,

2m∑

i=1

〈∇u
ei

du(aξΣ), dui

〉
= −

2m∑

i=1

g
(
du(aξΣ),∇u

ei
dui

)
= 0.

So the PΣ-component of
∑2m

i=1〈∇u
ei

X, dui〉 is,

2m∑

i=1

〈∇u
ei

X, dui

〉
=

2m∑

i=1

−〈X, B(dui, dui)〉+ λgΣ

(∇eiX̃, ei

)
.

On the other hand, for the du0 = du(ξΣ) component, we have

〈∇u
ξΣ

X, du0

〉
=

〈∇u
ξΣ

X⊥, du0

〉
+

〈∇u
ξΣ

X>, du0

〉

= −〈X, B(du0, du0)〉+ g
(∇u

ξΣ
X>, du0

)
,

of which the second term further is

g
(∇u

ξΣ
X>, du0

)
= du0 g

(
X>, du0

)− g
(
X>,∇u

ξΣ
du0

)

= du0 g(tanu X, du0)

= du0 g
(
du(X̃ + aξΣ), du0

)
= λ2ξΣ a.
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Thus
∫
Σ
〈∇u

ξΣ
X, du0〉 dvΣ = − ∫

Σ
〈X, B(du0, du0)〉 dvΣ.

Let x be the position vector in RN , and apply the argument above to a
vector field of the form X = f(‖x‖)x ∈ X(RN ) for a compactly supported
function f on RN . Then, for each i = 1, . . . , 2m, we have

〈∇u
ei

X, dui

〉
= f ′(‖x‖)(dui‖x‖)〈x, dui〉+ f(‖x‖)〈∇u

ei
x, dui

〉

= f ′(‖x‖) 〈x, dui〉2
‖x‖ + f(‖x‖)‖dui‖2.

So if we write Ei = dui

‖dui‖ = λ−
1
2 dui, E0 = ξ, then since 〈Ei, Ej〉 = δij ,

tanu x =
∑2m

i=0〈x, Ei〉Ei, we obtain

2mλf(‖x‖) =
2m∑

i=1

λgΣ

(∇ei
X̃, ei

)− 〈X, TrPΣB〉 −
2m∑

i=1

f ′(‖x‖) 〈x, dui〉2
‖x‖ ,

and thus

2mf(‖x‖) =
2m∑

i=1

gΣ

(∇ei
X̃, ei

)− 1
λ
〈X, TrPΣB〉 −

2m∑

i=1

f ′(‖x‖) 〈x, Ei〉2
‖x‖ ,

For the direction of ξΣ we have

f(‖x‖) = ξΣ a− λ−2〈X, B(du0, du0)〉 − f ′(‖x‖) 〈x, ξ〉2
‖x‖ .

Here, TrPΣB =
∑2m

i=1 B(dui, dui).
Now, let f be a cut-off function whose support is in B(p; r + ε) such

that f(x) = 1 and f ′(x) ≤ 1/ε for x ∈ B(p; r). Then, sum up the above for
a cut-off f over i = 0, . . . , 2m and integrate over Σ,

(2m + 1)
∫

Σ

f(‖x‖) dvΣ

= −
∫

Σ

f ′(‖x‖) ‖ tanu x‖2
‖x‖ +

〈
X,

1
λ

TrPΣB +
1
λ2

B(du0, du0)
〉

dvΣ,

so that
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(2m + 1)
∫

B(p;r+ε)

f(‖x‖) dvΣ

≤ −
∫

Σ

f ′(‖x‖) ‖ tanu x‖ dvΣ +
∫

Σ

〈f(‖x‖)x, traceuB〉 dvΣ,

and hence

(2m + 1)
∫

B(p;r+ε)

f(‖x‖) dvΣ

≤ r + ε

ε

∫

B(p;r+ε)−B(p;r)

dvΣ + (r + ε) max ‖B‖
∫

B(p;r+ε)

f(‖x‖) dvΣ,

where traceuB =
∑2m

i=0 B(Ei, Ei) = 1
λTrPΣB + 1

λ2 B(du0, du0).
This leads at the limit of ε → 0, (2m + 1)V (r) ≤ r d

dr V (r) +
rV (r) max ‖B‖, and d

dr log V (r)− (2m+1)
r + max ‖B‖ ≥ 0. Or equivalently,

d
dr

log V (r)− d
dr

log r2m+1 +
d
dr

max ‖B‖r ≥ 0.

Thus d
dr log V (r)

r2m+1 emax ‖B‖r ≥ 0.
This means that for a sufficiently small r the function r 7→

V (r)
r2m+1 emax ‖B‖r is non-increasing. So, if we set r ¿ R, we get the desired
inequality by setting

const. =
(

lim
r→0

V (r)
r2m+1

)
e−max ‖B‖R. ¤

Now, we are in a position to prove Theorem.

Proof of Theorem. Let us write Σ = D2 × S1, and consider S1 as the
unit interval with the end points identified. When we deal with a regular
Sasakian 3-fold, we can take a neighborhood of this form. In this case
we can consider each S1 as an orbit of the characteristic vector field. For
the proof of Theorem, it is sufficient to prove that for any sequence an =
(xn, yn, 0) → (0, 0, 0) (n → ∞) on the plane D2 there exists a unique limit
point p0 = limn→∞ u(an) ∈ M . In fact, if this is done, we define

u(0, 0, a) = ψλa(p0),
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where {ψa | a ∈ R} is the 1-parameter transformation group generated by
ξ on M . Then this implies the required continuous extension in Theorem.
Indeed, obviously du(ξΣ) = λξ and it suffices to see the continuity at (0, 0, 0).
For any sequence (xn, yn, zn) → (0, 0, 0),

lim
t→∞

u(xn, yn, zn) = lim
n→∞

u ◦ ψΣ
zn

(xn, yn, 0)

= lim
n→∞

ψλzn
◦ u(xn, yn, 0).

This reduces to limn→∞ u(xn, yn, 0), by the continuity of ψ : R×M −→ M .

Lemma Let an = (xn, yn, 0) → (0, 0, 0) (n → ∞) be a sequence on the
plane satisfying limn→∞ u(an) = p ∈ M . Then for any positive number
δ > 0 and for each such components A ⊂ u−1(B(p; δ)) such that u(A) ∩
B(p; δ/2) 6= ∅ we have a uniform estimate of the volume of A from below as
follows:

vol(u(A)) ≥ const · δ3.

In particular, the number of components of u−1(B(p; δ)) is finite.

Proof of lemma. This follows from the monotonicity of the restricted J-
holomorphic mapping u : A −→ M (Proposition 4.3). Indeed we can take a
point p′ for which we have u(A) ∩ B(p′; δ/2) ⊂ B(p; δ), by the assumption
u(A) ∩ B(p; δ/2) 6= ∅. So we can get the result applying the monotonicity
we have seen above for u and p′ ∈ u(A).

The finiteness of the number of such components can be proved by the
finiteness of the volume of Σ. ¤

This lemma implies that there exists a connected component A of
u−1(B(p; δ)) which includes an infinite subsequence of an. That is, there
exists a component A such that the closure A intersects with the origin
(0, 0, 0) and thus we can take a (continuous) path α(t) which passes through
the each point of the subsequence of an.

Next we show that the image by u of a circle γr = {(x, y, 0) | x2 + y2 =
r2} passes through a neighborhood of p when r is sufficiently small. Fix
r and choose n such that d(0, an+1) ≤ r ≤ d(0, an). Let us denote the
intersection point on α(t) with γr × S1 = {(x, y, z) | x2 + y2 = r2} by αr.
(More explicitly, we define αr = α(tr), tr = max{t | α(t) ∈ γr × S1} and we
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now consider the correspondence n 7→ d(0, an) is nonincreasing.)
Define a curve β(t) as the projection of α(t) to the plane, β(t) = πD2 ◦

α(t). Let s(t) be the line (with unit speed) on D2 from an to βr = πD2 ◦αr.
Since the speed Trg(θΣ,j)(u

∗g(θ,J)) of u is bounded by mλ = max{λ, λ2}, the
distance

d(u(βr), u(an)) ≤
∫ βr

an

‖du(s′(t))‖ dvΣ ≤ mλd(βr, an)

is arbitraly small when n is large so that d(an, an+1) and r are sufficiently
small. We also have d(u(αr), u(an)) ≤ 2δ, since αr, an ∈ B(p; δ).

Thus the z-coordinate d(αr, βr) of αr is bounded above by λ−1(2δ +
mλd(0, an)). Therefore u(βr) is in a neighborhood of p, for example we can
consider as u(βr) ∈ B(p; 4δ) when mλd(0, an) < δ.

From now on, we will use an argument inducing a contradiction to
prove the theorem. To this end we assume that the plane curves α1(t) =
(x1(t), y1(t), 0) and α2(t) = (x2(t), y2(t), 0) would have different limit points;
limt→∞ u(α(t)) = p and limt→∞ u(α2(t)) = q (6= p). Take a positive number
δ > 0 such that d(p, q) > 9δ. Then, as we have mentioned above, there exists
a number R > 0 such that for any r < R the image u(γr) passes through
either near p and q. Hence, we have l(u(γr)) =

∫
S1×{0} |∂u/∂ϕ| dϕ > δ,

where l(u(γr)) means the length of the image of a circle γr.
Using a cylindrical coordinate (w = x +

√−1y = re
√−1ϕ, z) ∈ C × S1

in Σ, we define a horizontal frame field by X = ∂/∂x − θΣ(∂/∂x)ξΣ, Y =
jX = ∂/∂y − θΣ(∂/∂y)ξΣ and set e = 1

2 (X −√−1Y ) ∈ S.
First we note that ‖du‖2 = ‖du(X)‖2 + ‖du(Y )‖2 + ‖du(ξΣ)‖2 and

‖du(ξΣ)‖2 = λ2. Since the vector field du(X) is horizontal, its norm
can be calculated in the decomposition TM = P ⊕ Rξ as ‖du(∂/∂x)‖2 =
‖du(X)‖2 + ‖θ(∂/∂x)du(ξΣ)‖2. Therefore

‖du‖2 = ‖du(X)‖2 + ‖du(Y )‖2 + ‖du(ξΣ)‖2

=
∥∥∥∥

∂u

∂x

∥∥∥∥
2

+
∥∥∥∥

∂u

∂y

∥∥∥∥
2

+ λ2

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

≥ 1
r2

∥∥∥∥
∂u

∂ϕ

∥∥∥∥
2

+ λ2

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

.
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Here we used the fact ‖∂u/∂x‖2 + ‖∂u/∂y‖2 = ‖∂u/∂r‖2 + 1
r2 ‖∂u/∂ϕ‖2 ≥

1
r2 ‖∂u/∂ϕ‖2. So integrating this we have,

E(u) ≥
∫

Σ

(
1
r2

∥∥∥∥
∂u

∂ϕ

∥∥∥∥
2

+ λ2

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2})

dvΣ

=
∫ 2π

0

∫ 1

0

∫ 2π

0

1
r2

∣∣∣∣
∂u

∂ϕ

∣∣∣∣
2

rdϕdrdz

+ λ2

∫

Σ

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

dvΣ.

Using Schwarz inequality and the fact l(u(γr)) ≥ δ,

E(u) ≥
∫ 2π

0

∫ 1

0

1
2πr

( ∫ 2π

0

∣∣∣∣
∂u

∂ϕ

∣∣∣∣ dϕ

)2

drdz

+ λ2

∫

Σ

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

dvΣ

≥
∫ 2π

0

∫ 1

0

δ2

2πr
drdz + λ2

∫

Σ

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

dvΣ.

The right hand side is equal to

δ2

∫ 1

0

dr

r
+ λ2

∫

Σ

{
1−

∥∥∥∥θΣ

(
∂

∂x

)∥∥∥∥
2

−
∥∥∥∥θΣ

(
∂

∂y

)∥∥∥∥
2}

dvΣ,

whose second term is the integral of a function which does not depend on u,
and therefore it can only take a finite value. Since the first term diverges,
this is a contradiction to finiteness of the energy E as desired. ¤
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