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Isolated singularities of super-polyharmonic functions
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{(Received December 17, 2002)

Abstract. We consider a Riesz decomposition theorem for lower semicontinuous and
locally integrable functions w on the punctured unit ball such that (—A)™u is a nonneg-
ative measure and u satisfies certain growth condition on surface integrals.
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1. Notation and statement of results

A function » on an open set Q& C R”, where n > 2, is called poly-
harmonic of order m if (—A)™u = 0 on (2, where m is a positive integer,
(—=A)™ = (=1)"™A™ and A™ denotes the Laplace operator iterated m times.
We say that a lower semicontinuous and locally integrable function » on Q2
is super-polyharmonic of order m in {2 if every point of  is a Lebesgue
point of u and (—A)™u is a nonnegative measure on €2, that is,

/ u(z)(—A)"p(x)dx > 0 for all nonnegative ¢ € C§°(Q).
Q

We denote by H™(Q) and SH™ () the space of polyharmonic functions of
order m on {2 and the space of super-polyharmonic functions of order m on
Q.

For a multi-index A = (A1, Ag, ..., Ap) and a point z = (z1, z2, ..., Zn),
we set

A=A+ A2+ -+ Ay,
A= Aol A,

A

= xl)‘lxg’\Q . -$n>‘"

and
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Consider the Riesz kernel of order 2m defined by

R (2) |2 if n is odd or n > 2m,
m = |z|?™ " log(1/|z]) if n is even and n < 2m,

and the remainder term in the Taylor expansion of Ra.,, given by

A
Rom, (¢, ) = Rom (¢ —2) = > %(DkRgm)(—x),

[AI<L

where L is a real number; in case L < 0, set Rom, .((, ) = Ram (¢ — z).
Here note that Ra, € H™(R™\ {0}) and (=A)™ Ry = o180 with the
Dirac measure §, at x and a constant «,, # 0.

The open ball and the sphere centered at z with radius r are denoted
by B(z, r) and S(z, ). We write B(r) = B(0, r) and S(r) = S(0, r). We
also denote by B and By the unit ball B(1) and the punctured unit ball
B\ {0} respectively.

For a Borel measurable function v on R", we define the average integral
over S(r) by

1
][S(T)Uds IREIG]

where |S(r)| denotes the surface measure of S(r).
We know that u € H™(By) can be expressed as a Laurent series expan-
sion:

+Z A)D* Ry (), (1.1)

where h € H™(B), ¢()\) are constants, and the series converges absolutely
and uniformly on compact subsets of Bg; see e.g. [6, Chapter 10].

~ First we give a condition for the sum in (1.1) to have only finitely many
terms.

Theorem 1.1 Ifu € H™(By) satisfies

lim inf r* jl lu|dS =0 (1.2)
S(r)

r—0
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for a real number s, then u is of the form

u(@)=h(z)+ Y c(A\)D*Rom(z),
|A|<s+2m—n

where h € H™(B) and c(\) are constants.
In particular, in case s+ 2m —n < 0, u can be extended to a polyhar-
monic function of order m on B.

Theorem 1.2 Let s > n — 2 and suppose u € H™(Byg) satisfies

lim inf r* ][ utdS =0, (1.3)
S(r)

r—0
where vt = max{u, 0}. Then u is of the form

u(z)=h(z)+ > c(A\)D Rom(z),
[Al<s+2m—n

where h € H™(B) and c(\) are constants.

Corollary 1.1 Ifu € H™(By) is nonnegative in By, then u is of the form
u(@)=h(z)+ .  c(N)D*Rom(2),

IA[<2(m—1)
where h € H™(B) and c(A\) are constants.

Armitage kindly informed the second author that he had obtained the
present theorems. But, for reader’s convenience, we give proofs in the next
section, along the same lines as Armitage [4].

Suppose u € SH™(2Bg) and p = (—A)™w is the Riesz measure on 2By,
where 2Bg = B(2) \ {0}. Then, as in the book of Hayman-Kennedy [11]
and our paper [9], u can be represented as

wl(z) = v(z) + om /B Rom, 1¢)(¢, ) du() (1.4)

where v € H™(Bg) and L(r) is a nonincreasing positive function on (0, 1]
such that L(r) > 2m — n.

The following theorem gives a condition which ensures that L is boun-
ded.
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Theorem 1.3 Let u € SH™(2By) and p = (—A)"u. If s >n—2 and

r—0

lim r? ][ udS =0, (1.5)
S(r)
then

’LL(LL‘) = 'U(CC) + am B R2m,L(<a .’L')d,LL(C)

holds for x € By, where v € H™(Byg) and L is the integer such that s +
2m-n—-1< L <s+4+2m —n.

Theorem 1.4 Let u be as in Theorem 1.3. If in addition

lim inf r* ][ ut dS =0, (1.6)
5(r)

r—0Q

then u is of the form

w(z) = h(z) + Z c(A)D’\Rgm(m) + am/

Rom, £.(¢, ) du(C),
<L Bo

where h € H™(B), c()\) are constants and L is the integer such that s +
2m—n—-1< L <s+2m—n.

Remark 1.1 In Theorem 1.4, we can replace condition (1.6) by

lim inf r® f u~ dS =0, (1.7)
r=0 S(r)
where v~ = max{—u, 0}.

2. Proofs of Theorems 1.1 and 1.2

We know the following Almansi expansion for polyharmonic functions
(see [, Proposition 1.1.3] and [15]).

Lemma 2.1 If h € H™(B), then there exist harmonic functions ho, ...,
hpm_1 such that

m~—1
h(z) = Z |z|**hy(z) for z € B.
k=0

We write HP}' for the space of all homogeneous polynomials of degree
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k which are polyharmonic of order m.
By the orthogonality property [6, Theorem 5.3] and Almansi expansion,
we have the following result.

Lemma 2.2 If P, € HPP, Qp € HPY and k — £ # 2i with —m/ +1 <
1<m—1, then

/ P,QedS = 0. (2.1)
S(r)

Further we need the following easy fact.
Lemma 2.3 For a multi-indez \, D*Ro,, is of the form

Py(z) + Qi) log|z]
|m|n—2m—|—2|/\| ’

D/\Rgm (:L‘) =

where Py € HP& and Qy € HP[%. (The logarithmic term does not appear
unless n is even, n < 2m and |A| < 2m —n.)

Proof of Theorem 1.1. In view of (1.1), we see that
)+ 2N D Ram @),

where & € H™(B) and c(A) are constants. By Lemma 2.1, A € H™(B) has
an Almansi expansion

—

hz) =) |lzf7hi(z) (h; € H(B)).
j

3

I
=}

Using homogeneous expansion for harmonic functions (see [6]), we write

m—1 o>
2|y " Hji(z) (Hjs € HPY).
=0 =0

.

Here we set Hy(z) = > 7L |x| i k—2;(x) with H; ; =0 for ¢ < 0. Then
Hj, € HPT and

=" Hi()
)

With the aid of Lemma 2.3, we have
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S () D Ro(a) = © km,;ffngﬂiog 2|
[A|=Fk

where Py, Qi € HPY and Q; = 0 unless nis even, 2m > nand k < 2m—n.
Then we have

Py( log |z
u(z) = Z +Z i );l_nQ;m+)2kog| I'

k=0

In what follows it suffices to show that P, = Qy=0for £ > s+2m —n.
If n is even, 2m > n and k < (2m — n)/2, then, since Py(z)/|z|"~2m+2F ¢
H™(R™), we may assume that Py = 0; further, if n is even, 2m > n and
0<k—(2m—n)/2 < m—1, then, noting that

|z|p—2mt2k R |z|n—2m+2k

where hj € H™~k+Em=n)/2(R™) and P] € ’HPQ—(Qm_n)/Q, we may assume
from the beginning that Py, € HPk (@m=n)/2

Suppose, on the contrary, that P #0 for some £ such that £ > s +
2m —n. In case 2m — n is a nonnegative even integer, we may assume that
Py e HP with m/ = min{f — (2m —n)/2, m} > 1; in case 2m — n is not
a nonnegative even integer, set m’ = m.

We define

F(r) = ][ uP, dS
S(r)

and note with the aid of (1.2) that
liminf r*~¢F(r) = 0. (2.2)

r—0

On the other hand, we obtain by (2.1)

- +Zpk +@k<>1ogr:cl>P€(x)dS

|x|n-——2m+2k‘

(o]

ro- (o

0

o0
=> ][ HyPydS
k=0 7 S(r)

[e.e]
+ Z p2m—n—2k < ][ P,P,;dS +logr Qi dS)
k=0

5(r) 5(r)
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m—1 m—1 .
> ArED £ N (B + Cilogr)r?m R,
i=—m/+1 i=—m/+1

where AZ = ?C.S' Hg+2in dS, Bi = fS Pz_;_gipg dS and Oz = fS Qg_}_gipg ds.
Note here that

A=B;=C;=0 ife+2i<0.

Our assumptions imply that By # 0 and 2m —n # 2(£+1) when —m/+1 <
i<m—1and £+ 2i>0. Since s — £ < —2m + n, we see from (2.2) that

lim r=2™ R (r) = 0,

r—0
which gives a contradiction. Thus it follows that

2mn

z)log |z Pz
u(z Z mn Zr(r)z-gl-Lk|+ ) WL—EQ(’ITL—Z-TIG

k<s+2m—n

If 2m — n is a nonnegative even integer and s < 0, then we consider

G(r) = ][ R

instead of F'(r) to obtain
Q=0 fors+2m-—-n<£<2m —n.
Now the proof of Theorem 1.1 is completed. O

Proof of Theorem 1.2. In view of Lemma 2.3 and [8, Lemma 1],

][ udS = O(Ry(r)) asr — 0, (2.3)
S(r)

where Ry(r) = Ra(x) with |z| = r. Hence (1.3) implies (1.2) since s > n—2,
so that the present theorem follows from Theorem 1.1. O

Remark 2.1 In Theorem 1.2, we need the assumption that s > n — 2,
since u(z) = —Ram (z) satisfies (1.3) for all s.
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3. Removable singularities for polyharmonic functions

In this section, we give some conditions for a function u € H™(By) to
be extendable to a polyharmonic function on B.

Proposition 3.1 Ifu € H™(Byg) satisfies

lim inf * ]Z |APu|dS =0 (3.1)
S(r)

r—0
for a real number s and an integer p, 0 < p < m, then u is of the form

u(z) = v(z) + |2|*h(z) + > ¢(\) D Rop (),
I <s+2(m=p)-n

where v € HP(Byg), h € H™ P(B) and c¢()\) are constants.

For a proof, we prepare several lemmas. The following two lemmas can
easily be proved by direct calculation.

Lemma 3.1 For a positive integer p such that 1 < p < m,
Rom—p)(2) = a(m, p, ) AP Ry (z) + B(m, p, n)|w[2m7)—"

with constants a(m, p, n) and B(m, p, n) depending only on m, p and n;
B(m, p, n) = 0 unless 2(m — p) — n is a nonnegative even integer.

Lemma 3.2 If P, € HP}, then for positive integers j and k,
|| P; = e(3, 4, k) AF(|z[¥+2 p)
with c(3, j, k)™1 = 2FTHR 0(n + 20 — 2 + 2)
Lemma 3.3 Forh € H™(B) and a positive integer k, there is i’ € H™(B)
such that h(z) = A*(|z|?*h/(z)) for z € B.

Proof. By Lemma 2.1, h € H™(B) has an Almansi expansion
Wz)= ) |z[7hi(z) (h; € H'(B)).

Considering homogeneous expansions for harmonic functions (see [6]), we
write
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m—1

)= |2l¥ Y Hjz)

L)

with Hj ; € HP?, for z € B. By Lemma 3.2, we have
m—1 )
h(z) = AF <(m{2k Z || % Zc(z’, 7, k)Hj,z(zs))
7=0 i=0
Since {c(%, j, k)}2, is bounded,
m—1 s>
K= Z |z|% <Z (i, g, /{:)HN(w)> e H™(B).
§=0 i=0
The proof of the lemma is completed. O

Proof of Proposition 3.1. Since APu € H™P(By), it follows from Theo-
rem 1.1 that APy is of the form

APy = hg + > eND*Rypn—p)
[A|<s+2(m—p)—n

for some hg € H™ P(B) and constants ¢()\). By Lemma 3.1 there are
constants ¢/(\) for which

N’( > c’()\)D)‘Rgm(m)>

IAl<s+2(m—p)—n

=" (37) + Z C(/\)D/\R2(m—p) (I)7
|A<s+2(m—p)—n

where h; € H™ P(B). With the aid of Lemma 3.3 we can find h € H™ ?(B)
such that

ho(z) = h1(z) = AP(|z[*Ph(z))

for z € B. We here see that

AP (u(ac) — |z|*®h(z) — Z c’(/\)DARQm(m)> =0 (on By),

[Al<s+2(m—p)—n

so that there exists v € HP(Bg) such that
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u(z) = v(z) + |z|Ph(z) + Z ¢ (\)D*Ro ()
[A<s+2(m—p)—n

for z € By. -

Theorem 3.1 Suppose u € H™(By). Then u can be extended to a func-
tion in H™(B) if and only if there are positive integers po, p1, --., pn (N >
0) satisfying

(1) m=pg>pL>--->py>1and2py <n,

(2) 2pi—n<2piyq fori=0,1,..., N—1,

(3) liminf,_q Rg(pi_pi+l)(r)"1 \)[S('!‘) |APi+1y|dS =0 fori=0,1,..., N—1,
(4) liminf,—g Ropy (1)~ fs(r) |u| dS = 0.

Proof. By (3) for i = 0, it follows from Proposition 3.1 that u can be
written as

w(z) = vi(z) + [2|* ha (),
where v; € HPY(By) and h; € H™ P1(B). Since 2(pz —p1) —n < 0, we see
from (3) for ¢ =1 that

lim inf RQ(pl_pQ)(r)_l ][ |AP2y1]dS = 0.
r—0 S(r)
By Proposition 3.1 again, we see that

vi(z) = va(x) + [P ha(2),

where v € HP2(By) and hy € HP17P2(B). By repeating these arguments,
we find that

N
u(@) = oy (e) + 3 [2l®hi(x),
i=1

where vy € HPNV(Byp) and h; € HPi-17Pi(B) for 1 < 1 < N. Here, in view
of (4), we have

hm%quQ,,N(r)—l ][ lun| dS = 0.
r— )

(r

Theorem 1.1 shows that vy can be extended to a function in HP¥(B), and
the proof is completed. |
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In particular, in case 2m < n, we have the following result.

Theorem 3.2 Suppose 2m < n and u € H™(Byg). Then the following are
equivalent:

1) u can be extended to a function in H™(B);

2) limg—ou(x) exists and is finite,

u s bounded near the origin;

u(z) = o(Rom(z)) as z — 0;

liminf,_,q Rgm(r)_l fS(r) |u| dS = 0.

4

(
(
(
(
(5

(%]

These theorems give extensions of Al-Fadhel-Anandam-Othman [1, The-
orem 2.2, 2.5], Anandam-Damlakhi [2, Theorem 3.4] and Armitage [3].
4. Proofs of Theorems 1.3 and 1.4

We write A* Ry (z) = A*¥Rgp(r) when |z| = r. In view of Pizetti [16],
we have the following results.

Lemma 4.1 Forr >0,

3
L

a A  Rom(O)r?F if [¢] >

b
I
o

j[ Rom(C — ) dS(z) =
S(r)

3
L

ag AR Rom ()P if IC] <,

ES
Il
S

where ag = 1 and ag = 2°kin(n+2) - (n+2(k—1)) fork=1,2, ..., m—1.

Lemma 4.2 Forr >0,

A
S [ S (D Ro)(—) dS(x)
s(ry Al
|Al=7
| aptARRym(n)|¢1P* ifj =2k, 0<k<m -1,
10 otherwise.

By Lemmas 4.1 and 4.2, we have the following result.

Lemma 4.3 Let L > 2(m —1). Then

/ Rom,1.(C, x) dS(x)
S(r)
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3
iR

i (AR Rop (Q)r%* — AF Rop () (%) if [¢] > 7,
if [ <.

Here we show that the above integral defines a monotone and continuous
function of |(|.

°F
L

Lemma 4.4 For fizred r > 0, set

m—1
Con(Q) = GGy 1) = 3 2o (Qr™ = AR (T)IC

k=0

ag

Then G () is strictly monotone as a function of |C|.

Proof. For m > 1 we claim that

AG(¢) = emGm-1(C), (4.1)

where ¢y, = (2m —n)(2m — 2) if 2m # n and ¢, = 2 — n if 2m = n.
First we show this in case 2m — n # 24, where £ € N = {1, 2, ...}. Using
2k(n+2(k — 1))a;' = a;}; and ARop(z) = cmRy(m-1)(z), we see that

m~1

AGH ()= ap (AP Ry (O)r®F — A*Rop (r)(AI¢1*))
k=0

m-—2

=Cm Z alzlAkRZ(m—l) (C)Tz}c
k=0
m-1
—om > gty AT Ry 1y (r)] 2D
k=1
:cme—l(C)-

Next, suppose 2m — n = 2¢ where £ € IN. Similarly, we have

AGH(Q)=cnGm-1(¢) + (n — 4m + 2)
m—2

X Y ag (AR Iy (Or®F — AF L1y (1)[¢]%),
k=0

where Io(z) = [z|*™. Since AkIQ(m_l)(x) = by|z|2" 1R with by = 1
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and by = 28(m —2)---(m—k—=1)(2(m—=1)=n)--- (2(m — k) —n), we have

0" (A I —1) (O™ = A Iy 1) ()| C[*¥)

k=0
£—1
:Z a;lbk('gl2(m—l—k)—nr2k _ T2(m—1—k)——n]<—|2k)
k=0
:ezl (b_k B be_l—k> (C[2m=1-k)=ny2k _
oo \%k  Ge-1-k

Thus (4.1) is obtained.
Since fS(T) Rom(¢ — z)dS(z) € C¥*™1) we see from Lemma 4.3 that

IVGr({)]=0 on S(r).

Therefore, with the aid of (4.1), we can show inductively that Gp,({) is
strictly monotone as a function of |¢]. O

Remark 4.1 In fact, (—1)™amGnm({) is strictly increasing as a function

of [¢].

Lemma 4.5 Ifwu is as in Theorem 1.3, then
lim ¥R ({C r < [¢] < 1) = 0. (4.2)

Proof. We may assume that L(|{]) > 2m — 2 in (1.4). In view of (1.4),
(2.3) and Lemma 4.3, we have

]f PRCLES
= ][S(T) (am/BOR2m,L([§|)(C7 z) d#(()+”($)> dS(z)

—an | O ( / oy Pom B dsm) o)+ f ROLC
— am / Gon(C, 7) du(C) + O(Ra(r)). (4.3)
{¢: r<¢l<1}

Since s > n — 2, we have by (1.5)

r—0

i r* | G, 7) d(C) =0,
{¢: r<igi<1}
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so that Lemma 4.4 gives

lim 7"5/ Gm/(2r, r) du(¢) = 0,

r=0 S ar<il<1)

where G, (21, 7) = G (¢, 7) for |(] = 2r. Noting that
Gm(2r, 7) = 1™ "G (2, 1),

we have

lim 2T ({C: 2r < I¢) < 1}) =0,

r—

which proves (4.2). O
Corollary 4.1 Ifu is as above, then

/ IC1¢du(¢) < 00 for € > s+ 2m —n. (4.4)
Bo

From Remark 4.1 and (4.3), we obtain the following result:
Corollary 4.2 Ifu e SH™(By), then

(—1)m ]{5(7«) wdS > O(Ra(r) asr — 0.

Remark 4.2 If u is a superharmonic function on By, then one can show
this by the convexity theorem ([11, Theorem 2.12)).

Lemma 4.6 ([9, Lemma 3]) If p is a nonnegative measure on By satis-
fying (4.2) and s > n — 2, then

r—0

lim rq][ (/ |Rom, (¢, @) du(()) dS(z) =0 for every g > s,
S(r) \V/Bog

where L is the integer such that s+2m —n—-1< L <s+2m —n.

Proof. Note that L — (2m —n) > n — 2, so that L > 2(m — 1). Hence if
2m > n, then we see from [14, Lemmas 6, 8, 9] that

/B | Rom, £(C, 2) dp(Q)<M (I () + Do) + I (2),

L (z)= / ¢ P (),
{¢eBo: KKi<]al/2}
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T — 2m—n _ 2m—n1 I(l )d
2() /{CeBo:IC—w|<ICI/2}<|C| tho=el *%1—g] a%

|<|L|x|2m‘“'Llog£'du<c>;

hiz)= |
(¢eBo: [c—al2Icl/2,¢|2[l/2) ||

if 2m < n, then Is(x) might be replaced by

I(z) = / 1€ = 2™ du(0).
{¢eBo: [C—=z|<|¢|/2}

Since L + 1 > s+ 2m — n, we have by (4.2)

a ][ 11 (z) dS () =ra+2m=n=L-1 / ¢ dp()
S(r) {0<|¢|<r/2}

—samon-it 3 [ vy 400
j=1

2-3i—1r)

ST.q+2m—n—L—1 2(2_jT)L+1,LL(A(2_j_1’I’))
j=1

)
SMTq-i—Qm—n—L—l Z(z—jr) L+1—-s—2m+n
=1

(o]
—Mrds Z(Q—j)L+l—s—2m+n
J=1

=Mr?7? —0 asr—0
for ¢ > s, where A(R;) = A(R1, 2Ry) with A(R1, Ro) = {¢: R1 < [¢] <
Ro}.

Next, in order to estimate Iy when 2m > n and ¢ > s, we find from
(4.2) that

o f I(2) dS(z)<r / (P du(C) - Mo
S(r) A(2r/3,2r)

< ( / ¢=aPmlog 5L a5(0) ()

A(2r/3,20\J {z€S(r): |c—2|<|C]/2} ¢ —z]

<MratEmTry(A(2r/3, 27‘))+M7“q_n+1/ rI¢[P™ 2 dp(C)
A(2r/3,2r)
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<Mrat2m=r (A2 /3, 2r))—0  as r—0.

Since g —s — (L —s—2m+n) > ¢g—s > 0, we have by (4.2)

re ][ Is(z) dS(=x)
5(r)

S,r,q+2m—n—L/ ICILIOg
{¢: r/2<|¢I<1}

_rq+2m n— LZ/ IC]Llog 4'4' )

BoNA(29-1r)

24l gty

SMratemmnmho Sy T (27r)F log (27 (A2 )

29 <2/r

<AL S (330)F lg(354) (512
21<2/r

SM’I“q—S Z (2j>L—s—2m+nlog(2j+2)

2i<2/r
<Mpas=(Lms=2mAn) fo0(4 /r)}2 — 0 as T — 0.

Thus we obtain

limy e " (f B 16 dulc) ) ds(e) =

as required. O

Proof of Theorem 1.3. From (4.4) and the proof of Lemma 4.6, we see that
JB, Bom, (¢, ©) dp(() is defined and

u(m) - CV/m,/B RZm,L(C) 33) d“(C)

is polyharmonic in Bg in the sense of distributions, where s + 2m — n —
1 <L <s+2m —n with s > n — 2. By Weyl’s lemma, there exists a
polyharmonic function v € H™(By) such that

o(z) = u(®) - om /B Rom, 1.(C, ) du(C)

for a.e. x € By, which proves Theorem 1.3. O
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Proof of Theorem 1.4. According to Theorem 1.3, there exists a polyhar-
monic function v € H™(Byg) such that

u(z) = v(z) + Ozm/B Rom, £.(¢, x) du(¢)

for x € By, where p = (—A)™u and L is the integer such that s + 2m —
n—1< L < s+ 2m —n. Further we see from Lemma 4.6 and (1.6) that v
satisfies

lim inf £~ @m=n=1) ][ vt dS(z) = 0.
S(r)

r—0
Hence Theorem 1.2 shows that v is of the form

v(@)=h(z)+ Y c(A)D*Rym(z)=h(z)+ > c(\)D*Rom(),
[A[<L+1 [AI<L

where h € H™(B). Thus Theorem 1.4 is proved. O

5. Remarks
In this section we give several remarks on our theorems.

Remark 5.1 We say that a sequence {r;} is regular at 0 if r; — 0 and
0 < r; < crjqr1 for some constant ¢ > 0. In Theorem 1.3, we can replace
condition (1.5) by

lim 73 /f wdS = 0 (5.1)
S(r;)

j—oo
for some sequence {r;} regular at 0.
Corollary 5.1 (cf. [9, Theorem 1]) Letu € SH™(2By) and p = (—A)™u.
If s > =2 and

/ (—1)™u(@)) ol dz < oo, (5.2)

2Bg

then u is the form

u(z) = am/ Rom, 1.(¢, =) du(C) + h(z) + Z ¢(\)D? Ro ()

Bo
[AI<L

for z € By, where L is the integer such that s +2m — 1 < L < s+ 2m,
h € H™(B) and c()\) denote constants.
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Proof. In view of Corollary 4.2, (5.2) is equivalent to
/ (@) |z]* dz < oo
2Bg

with s > —2, and so we can find a sequence {r;} (regular at 0) such that
279 <r; <279+ for all j and

lim 75" ][ udS = 0.
S(rs)

oo 7
Hence our corollary follows from Remark 5.1 and Theorem 1.4. O
As a corollary to Theorem 1.2, we have the following result.

Corollary 5.2 Ifu is a function in H™(Bg) such that

lim sup u(z)|z|* <0 (5.3)

z—0

for some number s > n — 2, then u is of the form

u=h+ Z ¢(\)D* Ry,
[A|<s+2m—n

where h € H™(B) and c(X) are constants.
In particular, in case s =n — 1 and m = 1, v is of the form
u = h+ cRs,

where h € H(B) and c is a constant. This was proved by Ishikawa-Nakai-
Tada [12].

If v is superharmonic in By, then min(u, 0) is also superharmonic in
By. Hence we can prove the following simple result.

Corollary 5.3 If u is o superharmonic function on 2By satisfying
lim inf[Rg(r)]~* ][ u~dS =0, (5.4)
r—0 S(r)
then u can be extended to a superharmonic function on B.

Proof. It suffices to show that v = min(u, 0) can be extended to a super-
harmonic function on B. Since v is superharmonic on 2Bg, we find in the
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same way as Lemma 4.5 that

lim inf al/ M du(¢) s finite,
r—0 {cor<icl<y  Ra(r)

where 4 = (—A)v. This implies that u(Bg) < oo. Hence it follows from
Lemma 4.6 and Theorem 1.4 that v is of the form

v(z) = o /B Ra(¢ — ) dp(C) + h(z) + cRa(z)

for x € Bg, where h € HI(B) and c is a constant. Further Lemma 4.1 yields

lim [Ry(r)] f ( Ry(¢ —z) du(()) dS(z) = 0.

r—0 S(ry \/By
In view of (5.4), we see that ¢ = 0, so that v can be extended to a super-
harmonic function on B. O

Remark 5.2 Let u be a C?™-function on open set D. Then, in view of
HauBmann-Kounchev [10], u € SH™(D) if and only if

JCS(x,rl)UdS r? .. r%im"lz
wdS 2 ... o2l
uz) 2 A(ry, 7“2}..., Tm) fS(x,rf) .2 - ’ : (5.5)
F 5z,rm) L34S r2 L pEml
whenever z € D and 0 < 7y <79 < -+ < 1y, < dist(z, D), where
1 2o rf(m_l)
Alre, T, oo ) = 1 T'% o rg(n,H) : (5.6)
i T;Qn r,%gﬂ;_l)

Moreover, Pizetti’s formula [16] implies that

li L u(z) !
here B2 A(h, 2k, ..., mh)
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Fs@mudS B . RN
Fs@anyudS (20)* ... (2k)*mV)
 stompy @S (mh)? ... (mA)m=1)

a7 112 2% (—A) (@)}

with a positive constant a,, in Lemma 4.1.
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