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Forward limit sets of singularities for the Lozi family

Shin KIRIKI
(Received April 26, 2000; Revised March 19, 2004)

Abstract. The Lozi family is a two-parameter family of piecewise affine uniformly
hyperbolic maps on R? with strange attractors. We find an open set (0 in the parameter
space such that, for almost every parameter in O, the forward limit set of a point in the
y-axis which is a singularity in a trapping region coincides with the strange attractor.
This is an extension of the corresponding result about turning orbits in the dynamical
core of tent maps on R by Brucks and Misiurewicz.
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1. Introduction

The Lozi map is a homeomorphism on R? given by

fa,p(z, y) = (1 —alz| +y, bx)

for (z,y) € R? where a and b are real parameters. This family was in-
troduced by Lozi [12] as an piecewise affine analogue of the Hénon family,
which is now one of the central subjects of study in dynamical system the-
ory [6, 7, 15, 16, 17, 18, 19]. Misiurewicz showed that the map f, » admits
a unique strange attractor A,  if (a, b) belongs to the open set M defined
by the inequalities:

O<b<l, a>b+1, 2a+b<4,

aV2>b+2, b< (a?—1)/(2a+1). (1)

This strange attractor (the Lozi attractor) has “almost” hyperbolic struc-
ture, that is, there is a uniform hyperbolic structure out of the y-axis where
the Lozi maps are not differentiable, see [13]. However, by the influence
of the singularities in the y-axis, the dynamics of the Lozi maps are quite
delicate (8, 9, 10, 11].

To state our main result, we describe trapping region and singularity
set of the Lozi maps, as follows. For any (a, b) € M, fq 5 has a saddle fixed
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point pgp» = (1/(1 +a —b), b/(1 + a — b)) which is contained in the first
quadrant. The unstable set W*(pq,5) of p, » contains the line segment that
connects p, p and the point z, 5 = ((2+ a+ va? + 4b)/(2 + 2a — 2b), 0) on
the z-axis. The triangle Ty, , with vertices zg 5, fa,5(24,6) and fg’ »(%a,p) s &
trapping region of fg p, that is, fo 5(Tab) C T4, By [13], the Lozi attractor
is given by

Aayp = () i 5(Ta,b),

i>0

which coinsides with the closure of W*¥(p, ). We denote by ), » the seg-
ment of the y-axis in T}, ;. In this paper, we consider the forward orbits of
the singularities in Y, », and show that their w-limit sets coincide with A,
for almost every (a, b) in some parameter region. The main result is

Main Theorem There exists an open set O C M whose closure con-
tains (2, 0) such that, for Lebesugue almost every ((a, b), z) € {((a, b), 2) |
(a,b) € O,z € Y}, the w-limit set w(z, fo,p) coincides with the Lozi
attractor Mg p.

When b = 0, the Lozi maps are equivalent to the tent maps tq(z) =
1 — alz|. It has a turning point = 0 whose forward orbit can not escape
from its dynamical core A(t,) = [t2(0), ¢,(0)] for 1 < a < 2. Brucks and
others [3] found a Gs-dense subset of a € [v/2, 2] such that the forward
orbit of z = 0 is dense in A(t,). Brucks and Misiurewicz showed in [4] that
almost every a € [v/2, 2] satisfies w(0, t;) = A(ty). The main theorem of
this paper is an extension of this result to the 2-dimensional context. In the
1-dimensional case, Brucks and Buczolich [1] showed that the complement
of such parameters is o-porous, and Bruin [5] showed that, for almost every
parameter value, the turning orbit is typical for an absolutely continuous
invariant probability measure. (See also [2].) However, the corresponding
results for the Lozi family are not known.

2. Proof of Main Theorem

Let f4,5 be the Lozi family, and M the parameter set defined by (1).
Let O C M be a small open set which is specified concretely in the following
sections. At this stage, it is enough to keep in mind that it is small and
(2, 0) € cl(O), where cl(-) is the closure of the corresponding set. Let us
fix a point (ag, bo) € O arbitrarily in the argument belows. Let I C R be a
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neighborhood of ag such that I x {bg} C O. For any a € I, we abbreviate
fa, by to fa. For each a € I, f, has a saddle fixed point

B 1 by
Pa = l+a—=5by’ 14+a—5by/ "

The stable and unstable set of p, are denoted by W?*(p,) and W*(p,),
respectively. As illustrated in the Fig. 1, W#(p,) contains the line segment
S, connecting p, and the point

w — [0 2by — a — v/a? + 4b
e ’ 2(1+a—b0)

on the y-axis. Also, W*(p,) contains the line segment U, that connects p,
and the point

. 2+ a+ va? + 4b 0
¢ 2(1+a—by)

on the z-axis. Since the expanding eigenvalue of (D f,)p, is negative, we get
W (pa) = | fatha)-
i>0

Since (a, bp) € O, we can check that

(wa)y < (fg(za))y’ (fa_l(wa))y > (fa(za))y

where (. ), is the y-coordinate of the corresponding point. Therefore, S, and
f2(U,) intersect transversely, and f;1(S,) and f,(U,) intersect transversely
for every a € I, as in Fig. 1. The triangle T, with vertexes z,, fo(2,) and
f2(2,) is a trapping region. The Lozi attractor is given by

Aa = ﬂ f;(Ta)'
i>0

Let us fix a point z € ), where Y, = {y-axis} NT,. For a € [ and ¢ > 0,
we put

pia) = fal2).

Set U = |J,e; Ua, and consider its cover H which consists of all open balls
whose radii and central coordinates are both rational, and whose intersec-
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U,
X
ZLZ
Sa
Fig. 1.
tion with I is non-empty. See Fig. 2. For H € ‘H, we define
Igy={ael|U,NH#2},
and
Ag={a€lg|pi(a) g H for Vi>0}.
I
Iy
X PN —a
Ay 2

Fig. 2.

The next lemma is essential in the proof of the main theorem. We
denote by u the 1-dimensional Lebesgue measure on [.
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Lemma 1 For any H € H, u(Ag) = 0.

The proof of Lemma 1 is given based on the following claims: for almost
every a € Iy and every neighborhood U of the point a, there exist integer
v > 0 and closed interval J C U including the point a such that
(A) ., (J) intersects with £71(S,), one of the endpoints of v, (J) belongs to

the y-axis, and 1/2 < Length(p,(J)) < 4, as in Fig. 3, (see Theorem
6), where Length(J) is the length of J;
(B) for any a1, as € J,
diy (a1)/de] _,
|dy(az)/dal
(see Proposition 4),

whose proofs will be presented in the following sections.

Proof of Lemma 1. Suppose that there exists an open set H € H such that
w(Ag) > 0. Take a Lebesgue density point o of Agy. By the inclination
lemma [14] and the piecewise hyperbolic structure of Lozi maps, for any line
segment | C H intersecting with the unstable segments U/, transversally,
there exists an integer k& > 0 such that f,*(I) becomes a V-shaped segment
which is piecewise Cl-close to f;*(S.), as shown in Fig. 3.

Since f k(1) is compact, and H is an open set, there is a ¢ > 0 such
that

Noc(f35() £ (H),

where Nao(f7%(1)) is a 2c-neighborhood of f;*(1). If a neighborhood U of
o is sufficiently small, then for any a € U

Ne(f5 @) € f75(H). (2)
By claim (A) above, there exists a segment L C J C U such that

0u(L) C ()N () £7¥H) # 2.
a€J

From (2),
Length(p, (L)) > ¢ >0, (3)

where Length( - ) is the length of a given arc.
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o, (J)

Fig. 3.

By claim (B) above, we have
(

Length(p, (L)/u(L) _ [ru(ay)
Length(o, (J))/u(J)  |m(az)]
where 7,(a;) = do,(a;)/da. For every a € L, we have ¢,(a) € ¢, (L), and

oyrx(a) € H. Therefore, such a parameter value a is not contained in Ag.
Thus,

< 2,

ML) pINAE) (I N AR)

p(J) p(J) p(d) 7
and hence

Length(p, (L)) _, w0 An)

2 Length(ypy(J)) p(d)

Since the diameter of the trapping region is smaller than 4, we have
Length(p,(J)) < 4. Therefore, using (3), we obtain
w(J N Ag) <l Length(p, (L)) c

) 2 <i-z
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However, since « is a Lebesugue density point of Ay, we have

A
MINAg) ¢
1(J) 8
for every interval J C U, if U is sufficiently small. This is a contradiction.

d

Proof of Main Theorem. For any H € H, from the above Lemma 1, we
have u(Ag) = 0. Since H is countable,

That is, for almost every a € Iy, there exists ¢ > 0 such that p;(a) =
fi(z) € H where z € ),. Since this holds for each element of H, we get

Uy Cw(z, fa)-
Thus, since W*(pa) = U;>0 fi(U,), we obtain
cl(W*(pa)) C w(z, fa)-

Remember that, at the beginning of this section, (ao, bo) is an arbitrary
point in @. For almost every point (a, bg) of the horizontal parameter

segment in O, the above claim is true. Hence, the main theorem is proved.
O

3. Estimations of parameter dependence

In this section, we first define the open set O C M of parameters in
the main theorem. After that we set an open interval I and a constant bg
such that I x {bp} C O. The goal of this section is to show the Proposition
4 which is used in the proof of Lemma 1.

To begin with, we assume that O satisfies (2, 0) € cl(O) and it is
sufficiently small such that, for any (a, b) € O,

foVap)NC =0, 1<Vi<10; n
sup{|z| : (z, y) € Ty} < 1.05; (5)
19 < /\a,b < 2,

where C = {(z, y) € R? : |z| < 1/2} and Ay p = (a+ Va® - 4b)/2. Let us
define Ay p = (a — Va? — 4b)/2 which satisfies 0 < Agp < 1 < Agp. If &
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point x = (z, y) is not contained in the y-axis, by [13], each cone
C¥ = {(z,y) € TxR? : |y| < Xgplz|},
C% = {(m, y) € TuR? : |y| > Azl }

is invariant by (Df, »)x and (Dfy p)x !, respectively, and it holds
[(Dfa,p)xut] > Ao plul,  [(Dfa,n)5sl < AT}l

for any u € C* and s € C°.
We abbreviate fq 5, = fq as bg > 0 is fixed small. For a fixed z € Vg 3,
and each ¢ > 0, we put

pi(a) = fi(z)
and

7 = Ti(a) = d(iiic(za)'

If the Jacobian (Df,);, 0 < j < i, make sense, we have

{ T = (0,0) (©)

Tji+1 = (Dfa)jTj +nj41 for0< 5 <4

where 7,11 = (—|z;], 0) and z; is the z-coordinate of fI(z). We say that
7;(a) is well-defiend if 7;(a) is given by (6) for all 1 < j < 1.

To estimate 7;, let us introduce a pair of reference vectors (u;, s;) as
follows. Let 49 > 2 be an integer such that (z;, y;) ¢ y-axis for each 2 <4 <
10, that is, 7; is well-defined for all 2 < ¢ < i5. As shown in the Fig. 4, we
first define

Ug = (—1.05, 0), So = Meg,
ez
where
ig—2\—1 0
e2 = (Df™%), <1> <

For each 2 < i <ip, we define

i1 = (Dfa)iwi, Sir1 = KlD—%%LST](Dfa)iSb
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So, these reference vectors satisfy
o u; €C% s;€C%and |u = |si|;
o W] 2 Agplwf and [sip1] > Ag plsil-

€

Fig. 4.
Since 1; = (—|zs-1/, 0) and (5), we have
ui| = 1.05 > |nil,
for each 3 <4 < 4g. Then, there exist &, 52 € R such that
m = &u; + &si.

Since the slope of the central line of the cones C* and C® tend to 0 and 2
as (a, b) — (2, 0) respectively, if the open set O is sufficiently small, then
we have

L1|ns| > |&wi| > |Eisil
for each 3 < i < 1ip. We get

L1|ug| > LA > |&ug] = |&]|(Df2?)2ua| > NoZ1&llual.

Therefore,
- 1.1
&l < &) < 5= (7)
)‘a, b

We can confirm that &3 > |€3] and &4 > |&]. Using the above decompositions
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by reference vectors, provided 7; is well-defined, we obtain

Ti=+ &+ &+ F&)w

(U2l (s,
|uy] |uy
L ADSe)imasial [(Dfa)ass| ¢,
Jug| |y
._|_ ....................

|(Dfa.)i—lsi—l|£i_1
||

+ 5z> S5

_l’_

We moreover assume that O is so small that, for any (a, b) € O,

fa,b(ya,b) C (0'92’ OO) X {0}

Hence,

T Y 12 3
= 10] = o~ 108 ®

By S\a,b N Oand A " 2as (a, b) — (2, 0), if the open set O is sufficiently
small, then the following condition can be held:
§2+ (&3 — |5?:|) + (60— |&l) —T(a, b) |

€2+ &3 + €3] + &u + 64 + T(a, b)

|772| |LE1| 0.92
2

Aap > 1.18 (9)

where

1.1(1+2Xg 5)
A2 p(Aap — 1.1)

I'(a, b) =

Lemma 2 If we take sufficiently small O with (2, 0) € cl(O) C M, there
is an integer ig > 2 such that
e if1;(a) is well-defined for a € I and i > 2, then

0.1272 < |r(a)] < 4(1 + v2)"7 L (10)
o ifry(a) is well-defined for a € I and i > i, then
0.1M2 < V2 [Ty (ri(a))| (11)

where I1, is a canonical projection from R? to the x-axis.
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Proof. From the above expression of 7; by reference vectors, we get

73] > {fz + (& —1&]) + (& — &) - i(|§n| + |§n|)} [ug|-

n=>5

By (7), we have

i ) ‘ ,
> (el + |sn|)<%

n=>5
< 2.2 < 2.2
Mg —1.1) 1.9%(1.9-11)

< 0.77,

Hence, by (8),

I7:|>{0.87 + (& — &) + (& — |&a]) — 0.77}u|
>0.1252|uy|
>0.12072,

The second inequality of (10) is obtained as follows. Since

(D fa)ill =
we get, for every i > 2,

17il <MD fa)ialllmica] + Imsl < (1 + V2)|miz1| + 4.

Va2 T 4b
LAV T ;+ <142,

Then,
Il < (1+V2) )+ 4{(1 + V22 4 1),
Since || = |ns| < 4,
m < 4{(1+ V22 + 1+ V23 -+ 1) <4(1+V2)7 L

Hence, (10) is obtained.

Denote that C%* =~{(a:, y) € TuR? : Jy| < z}, C% = {(z,9) €
TR? : |yl < —z} and C* = C¥ U C¥". Note that (Df,)xv € Int(C%)
for any nonzero v € C* if (a, b) is close to (2, 0). Since 711 = (—|z4|, 0)
and |z;| < 2 for any ¢ > 0, there exists a constant ug > 0 such that for any
u € C* with |u| > ug,

(Dfy)xu + < 02> € Int(CY).
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By (10), if (a, b) is close to (2, 0), then there exists an integer ig > 2 such
that

o Ty, -, Tiy_1 € C¥ and T, € CUt;

o |1;| > up for every ¢ > ip, as 7; is well-defined.
This implies that the norm of II,(7;(a)) is greater than |7;(a)|/v/2 for any
1 > 0. Therefore, the proof is now complete. l

If 7;(a) is well-defined, then one can get

,(a) _ dn(a) i d2<,0i(a) B dzmi d2yi
T T e T T da2 T \da? da2 )
By direct calculations, we have
d?Ti41 d?z;  dPy dz;
da2 =—sgn(z;) - a- Ja2 T v 2 - sgn(z;) - o
Pyiyr |, Py
da?  da?’

that is,
7l11(a) = (Dfa)iri(a) +2 (-sgn@%(dmi/da)) |

Lemma 3 If ;(a) is well-defined for a € I, then
[ri(a)l < 85(1+ v2)!
fori=1,...,1.

Proof. We prove it by induction. Since |7{(a)| = 0, the claim holds for
4 = 1. Suppose that it holds for 1 < j < 4. Using |(Df,);] < 1+ +/2 and
Lemma. 2, we have

dzj

752 (@I SN L)) + 2| 2

<(1+v2)-8n(1+ \/5)3 + 27|
<8(j +1)(1+ v2)"

Then the claim holds for j + 1, Therefore, the lemma is true for each j =
1, ..., 4. O
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Proposition 4 For any v > 0 there exists i1 > 1 such that if 7 is well-
defined on a closed interval J C I fori > 11, then
|7i(a1)]
|7i(az)| ~

1+

for any a1, a2 € J.

Proof. When a1 = ag, the lemma is trivial. Let a1, ag € J with a1 # as.
Using Lemma 3, we have

[7i(a1)] — [73(a2)] < sup|ri(a)] < 8i(1+ V/2)%
|a1 - a'2| a€J
If 7; is well-defined on J for ¢ > 4g, by Lemma 2 (11),
4 Ma(ei(a)] =~ e (pifaz))]
la1 — ag| ™ a1 — as]
0.1\:2
\/5 )

> inf [TT,(ri(a))| >

for some & € J. Then, we have

- 32v/2i(1 + \/i)i'

I7:(a1)] — |7i(a2)| < 8i(1 + v2)!a1 — az —
0.1A

Note that A2 > (7/5)(1 + +/2) for any a € J. Then, using Lemma 2 (10),
we get
|Ti(a1)| 32\/§’i(1 + \/i)z 1

5y i—-2
1< : —_ < 6400(1 +V2)% (=) .
|7i(az)| 0.1052  0.105;2 ( ) (7>

So, for any v > 0, we take an integer 71 > ig such that, for any i > 4,

6400(1 + \/5)%(;)1'"2 <.

O
Lemma 5 There ezists an integer io > 0 and ¢ > 1.15 such that, for any
a€l,
ITivi(a)l ¢
|7i(a)|

if Tiy1 18 well-defined for given i > is.
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Proof. By (6),
|Tir1] 2 (D fa)imi| = [mig1] > [(Dfa)imi| — 4.

Then, using Lemma 2 , we get

Tiv1l  [(Dfa)imi] 4 [(Dfa)iml 4
|7l |7i] \7i] |73 0.13572
If
|(D|f:|)m| > 1.18, (12)

then we can get an integer ig > 0 such that, for ¢ > 49,
Df )T 4 40
(Dfe)inil _ .92 >1.18 — ——
|74] Aa G
Let us show that (12) is true as follow. By the linear decomposition of 7;,
we get

> 1.15.

Inlﬁ{&z et B+t [+ S (6l + |én|)}rui|

n=>5

1'1(1+2A“)}Iu¢|,

S{& + &3+ |E3] 4+ &4+ €| + X —1.1)

and

I(Dfa)mIZ{fz (€ — IEs]) + (6o — JEal) = " (I6al + |én|>}|u¢+1|

n=>5

2{en (6~ 61) + (6~ 64D - Jr s PAelu

Then, by (9), we get

Ry g~ La+2h)
|(D|fa|)i7_i|>£2+ (€3 —|&3]) + (4 — [&4]) 1 i\gl()\a;j\l.l) g > LIS,
Tz ~ ~ . a
§2+€3+|§3|+§4+|§4|+>\§(()\a——i__1_1%

This completes the proof. a
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4. TUsefulness and maturity of parameter arcs

The concepts of usefulness and maturity for parameter intervals of tent
maps are introduced in [4]. Let us extend these concepts to the Lozi family.
For k > 1, the parameter interval [ is called k-useful if
e 7 is well-defined on I,
e there exists ap € 81 such that ¢g(ag) € {y-axis},
where 01 is the set of endpoints of I. If there exist several k’s for which [
is k-useful, we call the largest one order of I which is denoted by Ord(7),
whose finitude is ensured by Lemma 2.
Next, we extend the concept of maturity to a subinterval of a useful T
of order N. Let I C I be an open interval. We say that I is k-mature if
e there exists some k > N such that Iis k-useful,
e there exist & € [ and (0, §) € {y-axis} such that

or(@) = f5(0, y) = £(0, §)

for some m € {1, 2, ..., 9}.

A point of I which does not belong to any mature subset of I is called bad,
and a set of all bad points of I is denoted by B.

We define partitions of I inductively. Let k& > 0 be an integer such that
o (I) N {y-axis} = & where pr(I) = {pr(a) : a € I'}. Using Lemma 2, we
have the smallest integer h > 0 such that ¢gp(]) intersects transversely
at one point of the y-axis. So, by this intersection, pg+4(I) is divided into
two adjacent segments which are images of two adjacent (k+ h)-useful open
intervals of I, respectively, denoted by J; and Jo. We now get the first
partition Py = {J1, Jo} of I. If J; € Py is mature, we set p(J;) = {Ji};
otherwise, by similar steps, we can divide J; into two (k+ h')-useful, b’ > h,
arcs J;1 and Jio, and set p(J;) = {J;1, Ji2}. Then we get the second partition
P2 = U ep, (Ji). Similarly, for every n > 3, we obtain the partition P, =

UJePn_l p(J) of I.
We claim the following:

Theorem 6 For almost every a € I, there is a k-mature I C T witha € I
such that

|(x(@))| =

[NeR ]

for some @ € OI, where (.)g is the z-coordinate of the corresponding point.

That is, one of the endpoints of pr(cl(l)) keeps away from the y-azis at
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least by 1/2.

We will deduce this theorem from Proposition 8 and Proposition 9 stated
later. To prove these propositions, we prepare a lemma. Let us define the
function %, on B by

Un(@) = [ fnldu
BnJ
where J is an element of P,, that contains a and k is the order of J. We set
N = max{i1, 2},

where 47 and iz are given in Proposition 4 and Lemma 5 , respectively.
Remember that the constants v > 0 and ¢ > 1.15 are also presented in
Proposition 4 and Lemma 5, respectively.

Lemma 7 Forn > N, let J € Py, be a k-useful interval. If p(BNJ) > 0,
then

Yni1dp > 0 PYndp
BNJ BNJ

) <-10
g = mll’l{c, '2(2—_l-’)/)'}

Proof. From p(BNJ) > 0, J is not mature. Then, there is the smallest
integer m > 0 such that &gim(J) intersects Y. Thus, we get the first
partition p(J) = {Ji, Jo}. Obviously, Ord(J;) > k + m. Without loss of
generality, we may assume that

where

/ sl A= [ [ruem]di (13)
BNJ1 BNJa
By Lemma 5, we have
Wni1(a) = / rona(:)] dps > / Tl dp (14)
BNJ; NJ;

for any a € J and i = 1, 2. Also from Lemma 5, we have

Thtm] > |7l > Cl7l. - (15)

Since u(BNJ) > 0, it is impossible that both J; and Jp are mature.
First, we suppose that BN Jy = @, that is, BNJ = BNJ;. Then using (14)



Forward limit sets of singularities for the Lozi family 507

and (15) we get

Y1 (a) > /B Thmldis > ¢ / Ireldi = Cn(a)

for each a € BN J;. Hence, we get the claim of this lemma.
Next, we suppose that BN Jy # @ and BN Jz # @. Then J; and Jo are
both immature but (k + m)-useful. There exist ag € 0J and ¢ such that

wr(ao) = (0, ) € {y-axis}. Then,

Pmik(ao) = F*(0, y)=Fm o fE (0, )
=fag(pr(a0)) = fo(0, §).

Ifme{l,2,...,9}, J; is mature. This is a contradiction. Thus we have
m > 10. From (15), for any m > 10, we get

[Thsml > ¢0lmel. (16)

By the mean value theorem, there exists a(¥ € BN J; such that

| iresm@lds = [resm(a®) a8 0 5.
BNJ;

By Proposition 4 , for k +m > N, we have

Jong [Tem(@ld p(BOJy) _ [rieem(@®)] )
meJz |Thm(a)|dp p(BN J1) ‘Tk+m(a(2) |

Then, using (13) we get

p(BN )
u(BNJ1)

Since u(BNJ) = u(BNJi) + w(BN Jz), we have
Q2+ yuBnd) > uBnJ). (17)
Hence, using (14), (16) and (17), we get

<l+v

G du>p(BO J1) / T mldi

BNJy

w(BNJ) 1/
SHET) 2 d
- 2"")’ 9 BmJlTk‘-i-m’ 93

pBNJ) 9
2@+ ¢ /Bm el

BNJy
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¢1o
:2(2 +7) Jens Yndi
O
Since ¢ > 1.15, see Lemma 5, we have
¢ > 4.
In Proposition 4, v > 0 can be arbitrarily small. Then, we have
¢ >2(2+7) (18)

Proposition 8 For almost every a € I, there exist k > N and open
interval I C I with a € I such that I is k-mature.

Proof. We just show that pu(B) = 0. Let P, be a partition of I. Now
suppose p(B) > 0. Then, there exists some k-useful J € P, such that u(BnN
J) > 0. Since 7y is the tangent vector of ¢y, we have

n(a) = /B Inddu< /J ireldys = Length(pi (7)),

where Length(¢x(J)) is bounded by some constant K independent of n
because of the trapping region. Then we have for all n > N

/ n(@)dp < K - 1(B). (19)

By Lemma 7 and (18), there is ¢ > 1 such that, for all n > N,

/ Ynirdp > 0 / Yadp.

This means that | 5 ¥ndp increases exponentially for n > N, which contra-
dicts (19). Then we have u(B) = 0. O

Proposition 9 Let I C I be a k-mature interval which is_obtained for
almost every a € I in Proposition 8. Then, there exists o € 81 such that

- 1
(r(@))el > 3.
Proof. Since [ is k-mature, there exist & € I and (0, §) € Vs p such that
or@) = 1370, §)
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where m € {1, 2, ..., 9}. By (4), we have the fact that

0,9) ¢ {(@y) e ¥ Jal < 5 ).

Then,

ox(@) {(w, y) ER? : Ja] < %}
]
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