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A lower bound for the class number of P n(C) and P n(H)
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Abstract. We obtain new lower bounds on the codimension of local isometric imbed-

dings of complex and quaternion projective spaces. We show that any open set of the

complex projective space P n(C) (resp. quaternion projective space P n(H)) cannot be

locally isometrically imbedded into the euclidean space of dimension 4n−3 (resp. 8n−4).

These estimates improve the previously known results obtained in [2] and [7].
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1. Introduction

Let M be a Riemannian manifold. As is known, M can be locally or
globally isometrically imbedded into a euclidean space of sufficiently large
dimension (see Janet [19], Cartan [14], Nash [24], Greene-Jacobowitz [16],
Gromov-Rokhlin [17]). It is a natural and interesting question to ask the
least dimension of euclidean spaces into which M can be locally or globally
isometrically imbedded. In this paper we will investigate the problem of
local isometric imbeddings of the projective spaces Pn(C) and Pn(H) and
give a new estimate on the least dimension of the ambient euclidean spaces.

Let x ∈ M . Assume that there is a neighborhood U of x in M such that
U is isometrically imbedded into a euclidean space RD. If any neighborhood
of x cannot be isometrically imbedded into RD−1, then the codimension
D−dimM is called the class number of M at x and is denoted by class(M)x.

Let G/K be a Riemannian symmetric space. By homogeneity, the
class number of G/K is constant everywhere on G/K, which is denoted by
class(G/K). In Agaoka-Kaneda [4], [5], [7], [8], [9] and [10] we have tried to
estimate class(G/K) from below. In doing this we mainly used the following
inequality

class(G/K) ≥ dimG/K − p(G/K),

where p(G/K) is the pseudo-nullity of G/K (see §2 below or [4]). For
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the following Riemannian symmetric spaces G/K our estimates just hit
class(G/K), i.e., class(G/K) = dim G/K − p(G/K):
a) The sphere Sn (n ≥ 2);
b) CI: Sp(n)/U(n) (n ≥ 1) (see [4]);
c) The symplectic group Sp(n) (n ≥ 1) (see [5]).

As for the class numbers of the projective spaces such as the complex
projective space Pn(C), the quaternion projective space Pn(H) and the
Cayley projective plane P 2(Cay), the following are known:
(1) class(Pn(C)) ≥ max

{
n + 1,

[
6
5n

]}
(n ≥ 2) (see [2] and [7]);

(2) class(Pn(H)) ≥ min{4n− 3, 3n + 1} (n ≥ 3) (see [7]);
(3) class(Pn(C)) ≤ n2 (n ≥ 2); class(Pn(H)) ≤ 2n2−n (n ≥ 2) (see [22]);
(4) class(P 2(H)) = 6; class(P 2(Cay)) = 10 (see [8] and [22]).
It should be noted that any local isometric imbedding of P 2(H) (resp.
P 2(Cay)) into the euclidean space R14 (resp. R26) is rigid in the strongest
sense (see [9] and [10]).

In this paper we will propose a new type of estimate and by applying
it we will prove

Theorem 1 Let G/K denote the complex projective space Pn(C)
(n ≥ 3) or the quaternion projective space Pn(H) (n ≥ 3). Define an
integer q(G/K) by

q(G/K) =

{
4n− 2, if G/K = Pn(C) (n ≥ 3);

8n− 3, if G/K = Pn(H) (n ≥ 3).

Then, any open set of G/K cannot be isometrically imbedded into the
euclidean space RD with D ≤ q(G/K)− 1. In other words,

class(Pn(C)) ≥ 2n− 2 (n ≥ 3);

class(Pn(H)) ≥ 4n− 3 (n ≥ 3).

It is clearly seen that Theorem 1 improves the estimates (1) and (2)
stated above. However, we have to recognize a large gap between our esti-
mate and the upper bound stated in (3), which cannot be filled at present.

Throughout this paper we will assume the differentiability of class C∞.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [18].
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2. The Gauss equation

Let M be a Riemannian manifold and g be the Riemannian metric
of M . We denote by R the Riemannian curvature tensor of type (1, 3) with
respect to g.

For each x ∈ M we denote by Tx(M) (resp. T ∗x (M)) the tangent (resp.
cotangent) vector space of M at x ∈ M . Let r be a non-negative integer. We
define a quadratic equation with respect to an unknown Ψ ∈ S2T ∗x (M)⊗Rr

by

−g(R(X, Y )Z, W ) =
〈
Ψ(X, Z),Ψ(Y, W )

〉− 〈
Ψ(X, W ),Ψ(Y, Z)

〉
,

(2.1)

where X, Y , Z, W ∈ Tx(M) and 〈 , 〉 is the standard inner product of Rr.
We call (2.1) the Gauss equation in codimension r at x. It is well-known
that for a sufficiently large r the Gauss equation (2.1) in codimension r

admits a solution (see Berger [12], Berger-Bryant-Griffiths [13]). On the
other hand, in general, for a small r (2.1) does not admit any solution. By
Crank(M)x we denote the least value of r with which (2.1) admits a solution
and call it the curvature rank of M at x. It should be noted that Crank(M)x

is a curvature invariant, i.e., it can be determined only by the curvature R

of M at x.
As is well-known, if there is an isometric immersion f of M into RD,

then the second fundamental form of f at x satisfies the Gauss equation in
codimension r = D − dimM . Therefore, we have

Lemma 2 class(M)x ≥ Crank(M)x holds for any x ∈ M .

In the following, we assume that Ψ ∈ S2T ∗x (M) ⊗Rr is a solution of
the Gauss equation in codimension r. Let X ∈ Tx(M). We define a linear
mapping ΨX : Tx(M) −→ Rr by ΨX(Y ) = Ψ(X, Y ) (Y ∈ Tx(M)). The
kernel of this map ΨX is denoted by Ker(ΨX). Then we can easily show
the following

Lemma 3 Let X ∈ Tx(M). Then R(Ker(ΨX),Ker(ΨX))X = 0.

For the proof, see [4]. By this lemma we can get the following estimate
for Crank(M)x: Let X ∈ Tx(M). By d(X) we denote the maximum value
of the dimensions of those subspaces V ⊂ Tx(M) such that R(V, V )X = 0.
Then by Lemma 3 it is easily seen that d(X) ≥ dimKer(ΨX) ≥ dimM−r.
Set pM (x) = min{d(X) |X ∈ Tx(M)}. Then pM (x) ≥ dimM − r, i.e.,
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r ≥ dimM − pM (x). The number pM (x) thus defined is also a curvature
invariant, which is called the pseudo-nullity of M at x. By the above dis-
cussion we have

Lemma 4 Crank(M)x ≥ dimM − pM (x).

In the case where M is a Riemannian homogeneous space G/K, the class
number, the curvature rank and the pseudo-nullity of G/K are constant
everywhere on G/K, which are denoted by class(G/K), Crank(G/K) and
p(G/K), respectively. Combining Lemma 4 with Lemma 2, we obtain

Proposition 5 Let G/K be a Riemannian homogeneous space. Then:

class(G/K) ≥ dimG/K − p(G/K).

This is a fundamental tool in our works [5] and [7] to estimate the class
numbers of Riemannian symmetric spaces from below.

Now, we show a new type of estimate:

Theorem 6 Let Ψ ∈ S2T ∗x (M)⊗Rr be a solution of the Gauss equation
in codimension r. Assume that there are tangent vectors X, Y ∈ Tx(M)
and a subspace U of Tx(M) satisfying
(1) Ψ(X, Y ) = 0;
(2) U ⊃ Ker(ΨX) and R(U , Y )X = 0.
Then the following inequality holds:

r ≥ dimM + dimU − dimKer(ΨX)− dimKer(ΨY ). (2.2)

Proof. Let Z be an arbitrary element of Tx(M). Then by the Gauss equa-
tion (2.1) it follows that

0 = −g(R(U , Y )X, Z)

=
〈
Ψ(U , X),Ψ(Y, Z)

〉− 〈
Ψ(U , Z),Ψ(Y, X)

〉

=
〈
ΨX(U),ΨY (Z)

〉− 0.

Hence, we have
〈
ΨX(U),ΨY (Z)

〉
= 0. This implies that the image of

Tx(M) via the map ΨY is included in the orthogonal complement of ΨX(U).
Since dimΨX(U) = dim U − dimKer(ΨX), we have dimΨY (Tx(M)) ≤
r − dimU + dimKer(ΨX). Moreover, since dimΨY (Tx(M)) = dimM −
dimKer(ΨY ), we immediately obtain the inequality (2.2). ¤

As is easily seen, the right side of the inequality (2.2) heavily depends
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on tangent vectors X, Y and Ψ. Accordingly, only by (2.2) we cannot
obtain an estimate for Crank(M)x. In the following sections, by applying
Theorem 6 to the complex and quaternion projective spaces we will show
Theorem 1.

3. Projective spaces P n(C) and P n(H)

In this section we make several preparations that are needed in the
succeeding sections. Hereafter, G/K denotes one of the following projective
spaces:
(1) The complex projective spaces Pn(C) = SU(n + 1)/S(U(n) × U(1))

(n ≥ 2).
(2) The quaternion projective spaces Pn(H) = Sp(n + 1)/Sp(n)× Sp(1)

(n ≥ 2).
Let g (resp. k) be the Lie algebra of G (resp. K) and let g = k + m be

the canonical decomposition of g associated with the Riemannian symmetric
pair (G,K). Let ( , ) be the inner product of g given by the (−1)-multiple of
the Killing form of g. We define a G-invariant Riemannian metric g of G/K

by g(X, Y ) = (X, Y ) (X, Y ∈ m), where we identify m with the tangent
space To(G/K) at the origin o = {K} ∈ G/K. Since the curvature at o is
given by R(X, Y )Z = −[[

X, Y
]
, Z

]
(X, Y, Z ∈ m) (see Helgason [18]), the

Gauss equation (2.1) in codimension r at o can be written as follows:
([[

X, Y
]
, Z

]
,W

)
=

〈
Ψ(X, Z),Ψ(Y, W )

〉− 〈
Ψ(X, W ),Ψ(Y, Z)

〉
,

(3.1)

where Ψ ∈ S2m∗ ⊗Rr, X, Y , Z and W ∈ m.
Let us take and fix a maximal abelian subspace a of m. Then, since

rank(G/K) = 1, we have dim a = 1. We call an element λ ∈ a a restricted
root when the subspaces k(λ) (⊂ k) and m(λ) (⊂ m) defined below are not
non-trivial:

k(λ) =
{
X ∈ k

∣∣ [
H,

[
H, X

]]
= −(λ,H)2X, ∀H ∈ a

}
,

m(λ) =
{
Y ∈ m

∣∣ [
H,

[
H, Y

]]
= −(λ,H)2Y, ∀H ∈ a

}
.

As is known, by use of a non-zero restricted root µ the set of non-zero
restricted roots Σ can be written as Σ = {±µ,±2µ}. Further, we have the
following orthogonal decompositions:

k = k(0) + k(µ) + k(2µ) (orthogonal direct sum),
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m = m(0) + m(µ) + m(2µ) (orthogonal direct sum),

where m(0) = a = Rµ (see §5 of [7]).
For convenience, in the following we set ki = k(|i|µ), mi = m(|i|µ)

(|i| ≤ 2) and ki = mi = 0 (|i| > 2) for any integer i. Then for i, j = 0, 1, 2
we have a formula:

[
ki, kj

]⊂ki+j + ki−j ,
[
mi,mj

]⊂ki+j + ki−j ,
[
ki,mj

]⊂mi+j +mi−j .

We summarize in the following table the basic data for the spaces Pn(C)
and Pn(H) (see [18], [7]):

G/K dimm1 (= dim k1) dim m2(= dim k2)

Pn(C) (n ≥ 2) 2(n− 1) 1

Pn(H) (n ≥ 2) 4(n− 1) 3

As is known, each non-zero element of m is conjugate to a scalar multiple
of µ under the action of the isotropy group Ad(K), because rank(Pn(C)) =
rank(Pn(H)) = 1. More precisely we can show the following

Proposition 7 Let Yi ∈ mi (i = 0, 1, 2). Assume that Yi 6= 0. Then there
is an element ki ∈ K such that Ad(k±1

i )µ ∈ RYi.

Proof. In the case i = 0 we have only to set k0 = e, where e is the identity
element of K.

Now assume i = 1 or 2. Set Xi =
[
µ, Yi

]
. Then we have Xi ∈ ki.

Further, we have
[
Xi,

[
Xi, µ

]] ∈ a, because
[
Xi,

[
Xi, µ

]] ∈ m and[
µ,

[
Xi,

[
Xi, µ

]]]
=

[[
µ,Xi

]
,
[
Xi, µ

]]
+

[
Xi,

[
µ,

[
Xi, µ

]]]
= 0. Since

(
µ,

[
Xi,

[
Xi, µ

]])
=

([
µ,Xi

]
,
[
Xi, µ

])
=

([
µ,

[
µ,Xi

]]
, Xi

)

= −i2(µ, µ)2(Xi, Xi),

we have
[
Xi,

[
Xi, µ

]]
= −i2(µ, µ)(Xi, Xi)µ. By this equality and the fact[

Xi, µ
]

=
[[

µ, Yi

]
, µ

]
= i2(µ, µ)2Yi we have

Ad(exp(tXi))µ = cos(i|µ||Xi|t)µ
+

1
i|µ||Xi| sin(i|µ||Xi|t)

[
Xi, µ

]
, ∀t ∈ R.

Define ti ∈ R by i|µ||Xi|ti = π/2. Then, by setting ki = exp(tiXi) ∈ K, we
easily get Ad(k±1

i )µ ∈ RYi. ¤
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4. Pseudo-abelian subspaces

Let G/K = Pn(C) or Pn(H). We say that a subspace V of m is pseudo-
abelian if

[
V, V

] ⊂ k0. It is easily seen that a subspace V of m is pseudo-
abelian if and only if

[[
V, V

]
, µ

]
= 0, because rank(G/K) = 1. We note

that the pseudo-nullity p(G/K) coincides with the maximum dimension of
pseudo-abelian subspaces in m (see [4]). In [7] we have determined the
pseudo-nullities for Pn(C) and Pn(H): p(Pn(C)) = max{n − 1, 2} (n ≥
2); p(Pn(H)) = max{n− 1, 3} (n ≥ 2) (see Theorem 5.1 of [7]).

For later use, we here study more detailed facts about pseudo-abelian
subspaces in m for Pn(C) and Pn(H). We first prove

Lemma 8 Let V ⊂ m be a pseudo-abelian subspace of m. If V ∩ mi 6= 0
for some mi (i = 0, 1, 2), then V ⊂ mi.

Proof. Assume that V ∩ m1 6= 0. Take a non-zero element Y 0
1 ∈ V ∩ m1.

Let Y = Y0 + Y1 be an arbitrary element of V , where Y0 ∈ a + m2; Y1 ∈ m1.
Then we have

[
Y 0

1 , Y0 + Y1

]
=

[
Y 0

1 , Y0

]
+

[
Y 0

1 , Y1

] ∈ k0. However, since[
Y 0

1 , Y0

] ∈ k1 and
[
Y 0

1 , Y1

] ∈ k0 + k2, we have
[
Y 0

1 , Y0

]
= 0. Therefore we

have Y0 = 0, because rank(G/K) = 1. This proves V ⊂ m1. The other
cases V ∩ a 6= 0 and V ∩m2 6= 0 are similarly dealt with. ¤

We say that a pseudo-abelian subspace V is categorical if it can be
decomposed into a direct sum V = V ∩ a + V ∩m1 + V ∩m2. By Lemma 8
we immediately have

Proposition 9 Let V ⊂ m be a pseudo-abelian subspace of m. If V is
categorical and V 6= 0, then V is contained in one of a, m1 and m2.

By this proposition, we can easily estimate dim V for a categorical
pseudo-abelian subspace V in m: dim V ≤ 1 if V ⊂ a; dim V ≤ dimm2

if V ⊂ m2. In the case V ⊂ m1 we proved in [7] dimV ≤ n − 1 (see
Theorem 3.2 of [7]). For completeness, we review this proof and show an
additional property of V ⊂ m1.

Let E(m1) denote the space of all linear endomorphisms of m1. Let
X ∈ k2. We define an element X† ∈ E(m1) by

X†(Y ) =
[
X, Y

]
, Y ∈ m1.

(Note that
[
k2,m1

] ⊂ m1.) It is easy to see that X† is skew-symmetric with
respect to the inner product ( , ). We denote by k

†
2 the subspace of E(m1)
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consisting of all X† (X ∈ k2). Set F† = R1m1 + k
†
2 (⊂ E(m1)), where 1m1

denotes the identity mapping of m1. We have proved in [7] (Theorem 3.5)
the following

Proposition 10 Let G/K = Pn(C) or Pn(H). Then, F† forms a sub-
algebra of E(m1), i.e., F† is closed under addition and multiplication of
E(m1). Further, in the case G/K = Pn(C) (n ≥ 2), F† is isomorphic to
the field C of complex numbers and in the case G/K = Pn(H) (n ≥ 2), F†

is isomorphic to the field H of quaternion numbers.

We now set f = dimR F†, i.e., f = 2 if G/K = Pn(C); f = 4 if G/K =
Pn(H). By the definition we have dimm2 = f − 1, dimm1 = (n− 1)f and
dimG/K = dimm = nf . As seen in Proposition 10, m1 can be regarded
as a vector space over the field F†. For an element Y1 ∈ m1 we denote by
F†(Y1) the subspace of m1 spanned by Y1 over F†. Then we easily have
F†(F†(Y1)) = F†(Y1) and dimR F†(Y1) = f if Y1 6= 0.

Lemma 11 Let Y1, Y ′
1 ∈ m1. Then

[
Y1, Y ′

1

] ∈ k0 if and only if
(k†2(Y1), Y ′

1) = 0. Accordingly, a subspace V ⊂ m1 is pseudo-abelian if and
only if (k†2(V ), V ) = 0.

Proof. Since
[
Y1, Y

′
1

] ∈ k0 + k2,
[
Y1, Y

′
1

] ∈ k0 holds if and only if([
Y1, Y

′
1

]
, k2

)
= 0. Clearly, the last equality is equivalent to (k†2(Y1), Y ′

1) = 0.
¤

Utilizing the above lemma, we can show the following

Proposition 12 Let V be a pseudo-abelian subspace of m. Assume that
V ⊂ m1. Then:
(1) dim F†(V ) = f dimV . Accordingly, dimV ≤ n− 1.
(2) Let ξ ∈ V (ξ 6= 0). Then there is a subspace U of m1 satisfying U ⊃ V ,[

ξ, U
] ⊂ k0 and dimU = (n− 2)f + 1.

Proof. Let {Y 1
1 , . . . , Y s

1 } (s = dim V ) be an orthonormal basis of V . Let
i, j be integers such that 1 ≤ i 6= j ≤ s. Then, since (k†2(Y

i
1 ), Y j

1 ) =
(Y i

1 , k†2(Y
j
1 )) = 0 (see Lemma 11) and since (k†2)

2 ⊂ F†, we have
(
F†(Y i

1 ),F†(Y j
1 )

)
=

(
RY i

1 + k
†
2(Y

i
1 ),RY j

1 + k
†
2(Y

j
1 )

)

⊂ (
Y i

1 , (k†2)
2(Y j

1 )
)

= 0.

This proves F†(V ) =
∑

1≤i≤s F†(Y i
1 ) (orthogonal direct sum) and hence
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dimR F†(V ) = sf . Therefore we have s ≤ n−1, because dim m1 = (n−1)f .
Next we prove (2). Since V is pseudo-abelian and ξ ∈ V , we have

(k†2(ξ), V ) = 0. Let U be the orthogonal complement of k
†
2(ξ) in m1. Then

U satisfies U ⊃ V and
[
ξ, U

] ⊂ k0 (see Lemma 11). Moreover, since
dim k

†
2(ξ) = f − 1 and dimm1 = (n − 1)f , we immediately obtain the

equality dimU = (n− 2)f + 1. ¤

Finally, we refer to non-categorical pseudo-abelian subspaces. Let V be
a pseudo-abelian subspace of m. Assume that V is not categorical, i.e.,
V cannot be represented by a direct sum of subspaces V ∩ a, V ∩ m1 and
V ∩ m2. Then it is clear that V 6⊂ a, V 6⊂ m1 and V 6⊂ m2. In view of
Lemma 8, we know that V ∩ a = V ∩ m1 = V ∩ m2 = 0. Apparently, this
condition is sufficient for a pseudo-abelian subspace V to be non-categorical.
Hence we have

Proposition 13 Let V be a pseudo-abelian subspace of m such that V 6= 0.
(1) V is non-categorical if and only if V ∩ a = V ∩m1 = V ∩m2 = 0.
(2) If V is non-categorical, then dimV ≤ 2.

For the proof of (2), see Proposition 5.2 (1) of [7].

5. Proof of Theorem 1

Let G/K = Pn(C) (n ≥ 2) or Pn(H) (n ≥ 2). In the following we
assume that the Gauss equation in codimension r admits a solution Ψ ∈
S2m∗ ⊗Rr. We first prove

Lemma 14 Let X ∈ m (X 6= 0) and let k be an element of K satisfying
Ad(k)µ ∈ RX. Then Ad(k−1)Ker(ΨX) is a pseudo-abelian subspace of m.

Proof. By Lemma 3 we have
[[

Ker(ΨX),Ker(ΨX)
]
, X

]
= 0. Applying

Ad(k−1) to this equality, we have
[[

Ad(k−1)Ker(ΨX),Ad(k−1)Ker(ΨX)
]
,

µ
]

= 0. This proves that Ad(k−1)Ker(ΨX) is a pseudo-abelian subspace
of m. ¤

Let X ∈ m (X 6= 0). If Ker(ΨX) = 0, then we say X is of type Pinj .
Now assume Ker(ΨX) 6= 0. Let k ∈ K be an element satisfying Ad(k)µ ∈
RX. As is shown in Lemma 14, Ad(k−1)Ker(ΨX) is a pseudo-abelian
subspace of m. If Ad(k−1)Ker(ΨX) is categorical and is contained in mi

(i = 0, 1, 2), then we say X is of type Pi (i = 0, 1, 2). We also say X is of
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type Pnon if Ad(k−1)Ker(ΨX) is non-categorical, i.e., Ad(k−1)Ker(ΨX)∩
mi = 0 (i = 0, 1, 2).

The following lemma asserts that the type of X does not depend on the
choice of k ∈ K satisfying Ad(k)µ ∈ RX.

Lemma 15 Let X ∈ m (X 6= 0). Let i = 0, 1 or 2 and let kj (j = 1, 2)
be elements of K satisfying Ad(kj)µ ∈ RX. Then:
(1) Ad(k−1

1 )Ker(ΨX) ⊂ mi if and only if Ad(k−1
2 )Ker(ΨX) ⊂ mi.

(2) Ad(k−1
1 )Ker(ΨX)∩mi = 0 if and only if Ad(k−1

2 )Ker(ΨX)∩mi = 0.

Proof. Set k′ = k−1
1 k2 ∈ K. By the assumption we have Ad(k′)µ = ±µ.

Therefore it is easily seen that Ad(k′)mi = mi for any i = 0, 1, 2. Since
Ad(k′)Ad(k−1

2 ) = Ad(k−1
1 ), the lemma follows immediately. ¤

Let us denote by pi (i = 0, 1, 2, non, inj ) the subset of m consisting of
all elements of type Pi. Then it is clear that

m \ {0} = p0 ∪ p1 ∪ p2 ∪ pnon ∪ pinj (disjoint union). (5.1)

Proposition 16 Let X, Y ∈m (X 6= 0, Y 6= 0). Assume that Ψ(X, Y ) = 0.
Then X ∈ pi if and only if Y ∈ pi (i = 0, 1, 2, non).

Proof. We note that under the assumption Ψ(X, Y ) = 0 we have X /∈ pinj

and Y /∈ pinj , because Y ∈ Ker(ΨX) and X ∈ Ker(ΨY ).
First consider the case X ∈ pi (i = 0, 1, 2). Let k ∈ K be an el-

ement such that Ad(k)µ ∈ RX. Then we have Ad(k−1)Y ∈ mi, be-
cause Ad(k−1)Y ∈ Ad(k−1)Ker(ΨX) ⊂ mi. Take an element k′ ∈ K sat-
isfying Ad(k′±1)µ ∈ R Ad(k−1)Y and set k′′ = kk′ (see Proposition 7).
Then we have Ad(k′′)µ = Ad(k)Ad(k′)µ ∈ Ad(k)R Ad(k−1)Y = RY and
Ad(k′′−1)X = Ad(k′−1)Ad(k−1)X ∈ R Ad(k′−1)µ = R Ad(k−1)Y ⊂ mi.
Since X ∈ Ker(ΨY ), it follows that Ad(k′′−1)Ker(ΨY ) ∩ mi 6= 0.
Hence Ad(k′′−1)Ker(ΨY ) is categorical (see Proposition 13) and
Ad(k′′−1)Ker(ΨY ) ⊂ mi (see Proposition 9). This means Y ∈ pi. The
converse can be proved in the same manner.

By these arguments we know that X ∈ pnon if and only if Y ∈ pnon .
¤

Lemma 17 Let G/K = Pn(C) (n ≥ 2) or Pn(H) (n ≥ 2). Then:
(1) p0 = ∅.
(2) Let X ∈ m (X 6= 0). Then:
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dimKer(ΨX) ≤





n− 1, if X ∈ p1;

f − 1, if X ∈ p2;

2, if X ∈ pnon .

(5.2)

Proof. Suppose that p0 6= ∅. Let X ∈ p0 and let k ∈ K be an element such
that Ad(k)µ ∈ RX. Then we have Ad(k−1)Ker(ΨX) ⊂ a = Rµ. Hence
we have Ker(ΨX) = R Ad(k)µ = RX, i.e., Ψ(X, X) = 0. Let Y ∈ m such
that Y /∈ RX. By (3.1) we have

([[
X, Y

]
, X

]
, Y

)
=

〈
Ψ(X, X),Ψ(Y, Y )

〉− 〈
Ψ(X, Y ),Ψ(Y, X)

〉

= −〈
ΨX(Y ),ΨX(Y )

〉
.

Since G/K is of positive curvature, the left side of the above equality is ≥ 0.
Therefore we have ΨX(Y ) = 0, which contradicts Y /∈ RX. Thus we have,
p0 = ∅.

The assertion (2) follows from Propositions 12, Proposition 13,
dimm2 = f − 1 and the discussions in the previous section. ¤

Proposition 18 Let G/K = Pn(C) (n ≥ 2) or Pn(H) (n ≥ 2). Then:
(1) pinj = ∅ if r ≤ nf − 1;
(2) p1 = ∅ if r ≤ 2(n− 1)(f − 1);
(3) p2 = ∅ if r ≤ (n− 1)f ;
(4) pnon = ∅ if r ≤ nf − 3.

Proof. We first note that dimKer(ΨX) ≥ dimG/K − r = nf − r holds
for any X ∈ m. By this fact we can easily prove (1), (3) and (4). In fact, if
r ≤ nf − 1, then it is clear that Ker(ΨX) 6= 0 for any X ∈ m. Hence X /∈
pinj , which implies pinj = ∅. Similarly, if r ≤ (n − 1)f (resp. r ≤ nf − 3),
then dimKer(ΨX) ≥ f (resp. dimKer(ΨX) ≥ 3) holds for any X ∈ m and
hence p2 = ∅ (resp. pnon = ∅) (see Lemma 17).

Next we prove (2). Suppose that p1 6= ∅. Let X ∈ p1. Take k ∈ K such
that Ad(k)µ ∈ RX and set V = Ad(k−1)Ker(ΨX). Then V is a pseudo-
abelian subspace such that V ⊂ m1. Consequently, by Lemma 17 we have
dimV ≤ n− 1.

Now let us take a non-zero element ξ ∈ V and a subspace U ⊂ m1 satis-
fying U ⊃ V ,

[
ξ, U

] ⊂ k0 and dimU = (n−2)f +1 (see Proposition 12 (2)).
Put Y = Ad(k)ξ (∈ Ker(ΨX)) and U = Ad(k)U (⊂ m). Then we have
Ψ(X, Y ) = 0 and U ⊃ Ker(ΨX). Moreover, we have

[[
U , Y

]
, X

]
= 0,

because
[[

U , Y
]
, X

]
= Ad(k)

[[
U, ξ

]
, µ

]
= 0. Therefore, by Theorem 6 we
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have the following inequality:

r ≥ nf + (n− 2)f + 1− dimKer(ΨX)− dimKer(ΨY ).

Since X and Y ∈ p1 (see Proposition 16), it follows that dimKer(ΨX) ≤
n − 1 and dimKer(ΨY ) ≤ n − 1 (see Lemma 17). Consequently, we have
r ≥ 2(n− 1)(f − 1) + 1, which proves (2). ¤

We are now in a position to prove Theorem 1. If there is a solution Ψ of
the Gauss equation in codimension r, then at least one of the sets pinj , p0, p1,
p2 and pnon is not empty (see (5.1)). Therefore, in view of Lemma 17 (1) and
Proposition 18, we have r ≥ 1+min{nf−1, 2(n−1)(f−1), (n−1)f, nf−3}.
Accordingly, we have r ≥ 2n−2 if G/K = Pn(C) and r ≥ 4n−3 if G/K =
Pn(H). Hence, Crank(Pn(C)) ≥ 2n − 2 and Crank(Pn(H)) ≥ 4n − 3.
This, together with Lemma 2, shows Theorem 1. ¤

Remark 1 The proof of Theorem 1 stated above is effective in the case
n = 2. We thereby have Crank(P 2(C)) ≥ 2 and Crank(P 2(H)) ≥ 5.
However, for the spaces P 2(C) and P 2(H), we have already known the best
results: Crank(P 2(C)) = 3 (see [1]) and class(P 2(H)) = Crank(P 2(H)) =
6 (see [8]).

As for the class number of P 2(C) we have class(P 2(C)) = 3 or 4
(see Lemma 2 and Introduction). It is still an open question whether
class(P 2(C)) = 3 or not (cf. [20]).

Remark 2 Consider the following two cases:
(1) G/K = Pn(C) (n ≥ 3) and r = 2n− 2;
(2) G/K = Pn(H) (n ≥ 3) and r = 4n− 3.
If there is a solution Ψ of the Gauss equation in codimension r, then it
is shown by Lemma 17 (1) and Proposition 18 that Ψ must satisfy the
following condition:
Case (1) p0 = p1 = p2 = pinj = ∅, i.e., m \ {0} = pnon ;
Case (2) p0 = p1 = pnon = pinj = ∅, i.e., m \ {0} = p2.
We conjecture that in both cases (1) and (2) there are no such solutions Ψ.
In other words:

Crank(Pn(C)) ≥ 2n− 1 (n ≥ 3);

Crank(Pn(H)) ≥ 4n− 2 (n ≥ 3).
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If this is true, then we obtain an improvement of Theorem 1:

class(Pn(C)) ≥ 2n− 1 (n ≥ 3);

class(Pn(H)) ≥ 4n− 2 (n ≥ 3).
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