Hokkaido Mathematical Journal Vol. 35 (2006) p. 753-766

A lower bound for the class number of P*(C) and P"(H)
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Abstract. We obtain new lower bounds on the codimension of local isometric imbed-
dings of complex and quaternion projective spaces. We show that any open set of the
complex projective space P™"(C) (resp. quaternion projective space P"(H)) cannot be
locally isometrically imbedded into the euclidean space of dimension 4n—3 (resp. 8n —4).
These estimates improve the previously known results obtained in [2] and [7].
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1. Introduction

Let M be a Riemannian manifold. As is known, M can be locally or
globally isometrically imbedded into a euclidean space of sufficiently large
dimension (see Janet [19], Cartan [14], Nash [24], Greene-Jacobowitz [16],
Gromov-Rokhlin [17]). It is a natural and interesting question to ask the
least dimension of euclidean spaces into which M can be locally or globally
isometrically imbedded. In this paper we will investigate the problem of
local isometric imbeddings of the projective spaces P"(C) and P"(H) and
give a new estimate on the least dimension of the ambient euclidean spaces.

Let z € M. Assume that there is a neighborhood U of x in M such that
U is isometrically imbedded into a euclidean space RP. If any neighborhood
of = cannot be isometrically imbedded into R”~!, then the codimension
D—dim M is called the class number of M at x and is denoted by class(M ).

Let G/K be a Riemannian symmetric space. By homogeneity, the
class number of G/K is constant everywhere on G/K, which is denoted by
class(G/K). In Agaoka-Kaneda [4], [5], [7], [8], [9] and [10] we have tried to
estimate class(G/K) from below. In doing this we mainly used the following
inequality

class(G/K) > dimG/K — p(G/K),
where p(G/K) is the pseudo-nullity of G/K (see §2 below or [4]). For
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the following Riemannian symmetric spaces G/K our estimates just hit
class(G/K), i.e., class(G/K) = dimG/K — p(G/K):

a) The sphere S™ (n > 2);

b) CI: Sp(n)/U(n) (n>1) (see [4]);

¢) The symplectic group Sp(n) (n > 1) (see [5]).

As for the class numbers of the projective spaces such as the complex
projective space P"(C'), the quaternion projective space P"(H) and the
Cayley projective plane P%(Cay), the following are known:

(1) class(P"(C)) > max{n+1, [$n]} (n > 2) (see [2] and [7]);

(2) class(P"(H)) > m1n{4n —3,3n+ 1} (n > 3) (see [7]);

(3) class(P*(C)) < n? (n > 2); class(P"(H)) < 2n?—n (n > 2) (see [22]);
(4) class(P?(H)) = 6, class(P%(Cay)) = 10 (see [8] and [22]).

It should be noted that any local isometric imbedding of P?(H) (resp.
P2(Cay)) into the euclidean space R (resp. R?%) is rigid in the strongest
sense (see [9] and [10]).

In this paper we will propose a new type of estimate and by applying
it we will prove

Theorem 1 Let G/K denote the complex projective space P"(C)
(n > 3) or the quaternion projective space P"(H) (n > 3). Define an
integer ¢(G/K) by

4n -2, if G/K =P"(C) (n>3);

a(G/K) = {8n—3, if G/K =P"(H) (n=3).

Then, any open set of G/K cannot be isometrically imbedded into the
euclidean space RP with D < q(G/K) — 1. In other words,

class(P"(C)) >2n—2 (n > 3);
class(P"(H)) > 4n—3 (n > 3).

It is clearly seen that Theorem 1 improves the estimates (1) and (2)
stated above. However, we have to recognize a large gap between our esti-
mate and the upper bound stated in (3), which cannot be filled at present.

Throughout this paper we will assume the differentiability of class C*°.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [18].
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2. The Gauss equation

Let M be a Riemannian manifold and g be the Riemannian metric
of M. We denote by R the Riemannian curvature tensor of type (1,3) with
respect to g.

For each © € M we denote by T, (M) (resp. T (M)) the tangent (resp.
cotangent) vector space of M at = € M. Let r be a non-negative integer. We
define a quadratic equation with respect to an unknown ¥ € S2T*(M)® R"
by

—g(R(X.Y)Z,W) = (¥(X, 2), B(Y.W)) — (L(X, W), E(Y. 2)),
(2.1)

where X, Y, Z, W € T,(M) and ( , ) is the standard inner product of R".
We call (2.1) the Gauss equation in codimension r at x. It is well-known
that for a sufficiently large r the Gauss equation (2.1) in codimension r
admits a solution (see Berger [12], Berger-Bryant-Griffiths [13]). On the
other hand, in general, for a small r (2.1) does not admit any solution. By
Crank(M ), we denote the least value of r with which (2.1) admits a solution
and call it the curvature rank of M at x. It should be noted that Crank(M),
is a curvature invariant, i.e., it can be determined only by the curvature R
of M at z.

As is well-known, if there is an isometric immersion f of M into RP,
then the second fundamental form of f at x satisfies the Gauss equation in
codimension r = D — dim M. Therefore, we have

Lemma 2 class(M), > Crank(M), holds for any x € M.

In the following, we assume that ¥ € S?T*(M) ® R" is a solution of
the Gauss equation in codimension r. Let X € T,(M). We define a linear
mapping ¥x: T, (M) — R" by x(Y) = ¥(X,Y) (Y € T,(M)). The
kernel of this map ¥x is denoted by Ker(¥y). Then we can easily show
the following

Lemma 3 Let X € T,(M). Then R(Ker(¥x),Ker(¥x))X = 0.

For the proof, see [4]. By this lemma we can get the following estimate
for Crank(M),: Let X € T,(M). By d(X) we denote the maximum value
of the dimensions of those subspaces V' C T, (M) such that R(V,V)X = 0.
Then by Lemma 3 it is easily seen that d(X) > dimKer(¥x) > dim M —r.
Set py(x) = min{d(X)|X € T,(M)}. Then py(z) > dimM — r, ie.,
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r > dim M — pp(x). The number pps(x) thus defined is also a curvature
invariant, which is called the pseudo-nullity of M at x. By the above dis-
cussion we have

Lemma 4 Crank(M),; > dim M — py(z).

In the case where M is a Riemannian homogeneous space G/ K, the class
number, the curvature rank and the pseudo-nullity of G/K are constant

everywhere on G/K, which are denoted by class(G/K), Crank(G/K) and
p(G/K), respectively. Combining Lemma 4 with Lemma 2, we obtain

Proposition 5 Let G/K be a Riemannian homogeneous space. Then:
class(G/K) > dimG/K — p(G/K).

This is a fundamental tool in our works [5] and [7] to estimate the class
numbers of Riemannian symmetric spaces from below.
Now, we show a new type of estimate:

Theorem 6 Let ¥ € S?T (M) ® R" be a solution of the Gauss equation
in codimension r. Assume that there are tangent vectors X, Y € T,(M)
and a subspace U of T,(M) satisfying
(1) ¥(X,Y)=0;
(2) U>Ker(¥x) and R(U,Y)X =0.
Then the following inequality holds:

r>dim M + dimU — dimKer(¥x) — dim Ker(¥y). (2.2)

Proof. Let Z be an arbitrary element of T,,(M). Then by the Gauss equa-
tion (2.1) it follows that

= (¥x(U),®y(Z)) 0.
Hence, we have (¥x(U),®y(Z)) = 0. This implies that the image of
T, (M) via the map Wy is included in the orthogonal complement of ¥ x (U).
Since dimW¥x (U) = dimU — dimKer(¥x), we have dim ¥y (T, (M)) <
r —dimU + dim Ker(¥x). Moreover, since dim Wy (7,(M)) = dim M —
dim Ker(¥y ), we immediately obtain the inequality (2.2). O

As is easily seen, the right side of the inequality (2.2) heavily depends



A lower bound for the class number of P*(C) and P"™(H) 757

on tangent vectors X, Y and W. Accordingly, only by (2.2) we cannot
obtain an estimate for Crank(M),. In the following sections, by applying
Theorem 6 to the complex and quaternion projective spaces we will show
Theorem 1.

3. Projective spaces P"*(C) and P"(H)

In this section we make several preparations that are needed in the
succeeding sections. Hereafter, G/K denotes one of the following projective
spaces:

(1) The complex projective spaces P"(C) = SU(n+1)/S(U(n) x U(1))
(n>2).

(2) The quaternion projective spaces P"(H) = Sp(n + 1)/Sp(n) x Sp(1)
(n>2).

Let g (resp. ) be the Lie algebra of G (resp. K) and let g = £ + m be
the canonical decomposition of g associated with the Riemannian symmetric
pair (G, K). Let (, ) be the inner product of g given by the (—1)-multiple of
the Killing form of g. We define a G-invariant Riemannian metric g of G/ K
by g(X,Y) = (X,Y) (X, Y € m), where we identify m with the tangent
space To(G/K) at the origin o = {K} € G/K. Since the curvature at o is
given by R(X,Y)Z = —[[X,Y],Z] (X, Y, Z € m) (see Helgason [18]), the

Gauss equation (2.1) in codimension r at o can be written as follows:

1)i
([[X, Y],Z],W) = <\II(X7 Z),v(Y, W)> — <\II(X, W), ®(Y, Z()>, |
3.1

where ¥ € ’m* @ R", X, Y, Z and W € m.

Let us take and fix a maximal abelian subspace a of m. Then, since
rank(G/K) = 1, we have dima = 1. We call an element \ € a a restricted
root when the subspaces £¢(\) (C £) and m(\) (C m) defined below are not
non-trivial:

t(\) ={X et|[H [H X]]=—-(\H)?X, VHEa},
m(A) ={Y em| [H, [H Y]] = —(\,H)*Y, VH € a}.
As is known, by use of a non-zero restricted root u the set of non-zero

restricted roots X' can be written as X' = {4 u, +2u}. Further, we have the
following orthogonal decompositions:

t=¢(0)+&(u) + €(21) (orthogonal direct sum),
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m=m(0) + m(u) + m(2u) (orthogonal direct sum),

where m(0) = a = Ry (see §5 of [7]).

For convenience, in the following we set & = €(|i|u), m; = m(|i|p)
(i <2) and & = m; =0 (|é| > 2) for any integer i. Then for i, j =0, 1, 2
we have a formula:

85, 85] Cligyj+ 8, [mymy] Cliyj+8 5, [&,m;] Cmip+mi .

We summarize in the following table the basic data for the spaces P"(C)
and P"(H) (see [18], [7]):

P(C) (n > 2) 2(n — 1) 1
Pr(H) (n>2) Aln — 1) 3

Asis known, each non-zero element of m is conjugate to a scalar multiple
of p under the action of the isotropy group Ad(K), because rank(P"(C)) =
rank(P"(H)) = 1. More precisely we can show the following

Proposition 7 LetY; e m; (i =0, 1, 2). Assume thatY; # 0. Then there
is an element k; € K such that Ad(k')u € RY;.

Proof. 1In the case ¢ = 0 we have only to set ky = e, where e is the identity
element of K.

Now assume i = 1 or 2. Set X; = [,u, YZ] Then we have X; € ¢;.
Further, we have [Xi, [Xi,u]] € a, because [XZ-, [Xi,u]] € m and
[ Tl ] = [ ] £+ [ s X0 = 0. Sinee

(1, [X5, [Xi,0]]) = ([ Xa], (X, 1]) = ([, [, Xi]], X)
= —i(p, 1)* (X3, Xa),

we have [Xi [Xi ,u]] = —i%(p, 1) (X4, X;)pu. By this equality and the fact
[Xi, 1] = [[1, V3], u] = % (p, 1)?Y; we have

Ad(exp(t.X;))p = cos(ilp] | X[t)p

1
+ ———— sin(i|p|| X;|t) | Xi, pn|, Vi€ R.
e o
Define t; € R by i|u||X;|t; = 7/2. Then, by setting k; = exp(t;X;) € K, we
easily get Ad(k;tl),u € RY;. O
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4. Pseudo-abelian subspaces

Let G/K = P"(C) or P"(H). We say that a subspace V of m is pseudo-
abelian if [V, V] C t. It is easily seen that a subspace V of m is pseudo-
abelian if and only if [[V, V],,u,] = 0, because rank(G/K) = 1. We note
that the pseudo-nullity p(G/K) coincides with the maximum dimension of
pseudo-abelian subspaces in m (see [4]). In [7] we have determined the
pseudo-nullities for P*(C) and P"(H): p(P"(C)) = max{n — 1,2} (n >
2); p(P"(H)) = max{n — 1,3} (n > 2) (see Theorem 5.1 of [7]).

For later use, we here study more detailed facts about pseudo-abelian
subspaces in m for P"(C) and P"(H). We first prove

Lemma 8 Let V C m be a pseudo-abelian subspace of m. If V.Nm; # 0
for some m; (i =0, 1, 2), then V C m;.

Proof. Assume that V N'my # 0. Take a non-zero element Y € V N'm;.
Let Y = Yy + Y1 be an arbitrary element of V', where Yy € a4+ mg; Y7 € my.
Then we have [YP,YO + Yl] = [YIO,YO] + [Ylo,Yl] € ty. However, since
[YIO,YO] € £ and [Ylo,Yl] € ¢ty + t2, we have [YIO,YO] = 0. Therefore we
have Yy = 0, because rank(G/K) = 1. This proves V' C m;. The other
cases V Na 0 and VNmy # 0 are similarly dealt with. O

We say that a pseudo-abelian subspace V' is categorical if it can be
decomposed into a direct sum V=V Na+V Nm; +V Nmy. By Lemma 8
we immediately have

Proposition 9 Let V C m be a pseudo-abelian subspace of m. IfV is
categorical and V # 0, then V is contained in one of a, m; and ma.

By this proposition, we can easily estimate dimV for a categorical
pseudo-abelian subspace V in m: dimV < 1if V C a; dimV < dimms
if V.C mg. In the case V. C m; we proved in [7] dimV < n — 1 (see
Theorem 3.2 of [7]). For completeness, we review this proof and show an
additional property of V' C m;.

Let F(m;) denote the space of all linear endomorphisms of m;. Let
X € 5. We define an element X' € F(m;) by

X'(Y)=[X,Y], Yem.

(Note that [Eg, ml] C my.) Tt is easy to see that X1 is skew-symmetric with
respect to the inner product (, ). We denote by E; the subspace of E(m;)
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consisting of all XT (X € £). Set ' = Rly, + {’g (C E(my)), where 1y,
denotes the identity mapping of m;. We have proved in [7] (Theorem 3.5)
the following

Proposition 10 Let G/K = P"(C) or P"(H). Then, §' forms a sub-
algebra of E(my), i.e., §' is closed under addition and multiplication of
E(my). Further, in the case G/K = P™(C) (n > 2), ' is isomorphic to
the field C of complexr numbers and in the case G/K = P"(H) (n > 2), §
is isomorphic to the field H of quaternion numbers.

We now set f = dimg 3, ie., f =2if G/K = P*(C); f =4if G/K =
P"(H). By the definition we have dimmg = f — 1, dimm; = (n — 1) f and
dimG/K = dimm = nf. As seen in Proposition 10, m; can be regarded
as a vector space over the field 5. For an element Y; € m; we denote by
&1(Y1) the subspace of m; spanned by Y; over 7. Then we easily have

(@ (1)) =F'(V1) and dimp FT (V1) = f if Y1 # 0.

Lemma 11 Let Yy, Y{ € mi.  Then [Y1,Y{] € & if and only if

(E;(Yl),Yl’) = 0. Accordingly, a subspace V' C my is pseudo-abelian if and

only if (E(V),V)=0.

Proof. Since [Yl,Yll] € ty + £, [Yl,Yﬂ € ¥ holds if and only if

([Yl, Yl’] , Eg) = 0. Clearly, the last equality is equivalent to (E;(Yl), Y{)=0.
]

Utilizing the above lemma, we can show the following

Proposition 12 Let V be a pseudo-abelian subspace of m. Assume that

V Cmy. Then:

(1) dimg" (V) = fdimV. Accordingly, dimV <n — 1.

(2) Let& €V (€+#0). Then there is a subspace U of my satisfyingU DV,
[€,U] C b and dimU = (n —2)f + 1.

Proof. Let {Y{',...,Y{} (s = dimV) be an orthonormal basis of V. Let
i, j be integers such that 1 < i # j < s. Then, since (E;(Yf),Yf) =
(Y{, EE(Y{)) = 0 (see Lemma 11) and since ({’;)2 C &', we have
(3'(r1), 3'07)) = (RY] + ()(v1), RY{ + (1Y)
c (Y, @) () = 0.
This proves F(V) = D 1<i<s 5T (Y{) (orthogonal direct sum) and hence
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dimg F' (V) = sf. Therefore we have s < n—1, because dimm; = (n—1)f.

Next we prove (2). Since V is pseudo-abelian and £ € V, we have
(Eg(é’), V) = 0. Let U be the orthogonal complement of E;(f) in my. Then
U satisfies U D V and [f,U] C to (see Lemma 11). Moreover, since
dim@@) = f—1and dimm; = (n — 1)f, we immediately obtain the
equality dimU = (n — 2)f + 1. O

Finally, we refer to non-categorical pseudo-abelian subspaces. Let V' be
a pseudo-abelian subspace of m. Assume that V' is not categorical, i.e.,
V' cannot be represented by a direct sum of subspaces V Na, V Nmy and
V Nmy. Then it is clear that V ¢ a, V ¢ my and V ¢ ms. In view of
Lemma 8, we know that VNa=V Nm; =V Nmy = 0. Apparently, this
condition is sufficient for a pseudo-abelian subspace V' to be non-categorical.
Hence we have

Proposition 13 Let V be a pseudo-abelian subspace of m such that V # 0.
(1) Vs non-categorical if and only if VNa=V Nm =V Nmy=0.
(2) If V is non-categorical, then dimV < 2.

For the proof of (2), see Proposition 5.2 (1) of [7].

5. Proof of Theorem 1

Let G/K = P"(C) (n > 2) or P"(H) (n > 2). In the following we
assume that the Gauss equation in codimension r admits a solution ¥ &€
S?m* @ R". We first prove

Lemma 14 Let X € m (X # 0) and let k be an element of K satisfying
Ad(k)p € RX. Then Ad(k™') Ker(¥x) is a pseudo-abelian subspace of m.

Proof. By Lemma 3 we have [[Ker(\IlX),Ker(\IlX)],X] = 0. Applying
Ad(k™1) to this equality, we have [[Ad(k~!) Ker(¥x), Ad(k~!) Ker(¥y)],
p] = 0. This proves that Ad(k™') Ker(¥x) is a pseudo-abelian subspace
of m. O

Let X € m (X #0). If Ker(¥x) = 0, then we say X is of type Pjy;.
Now assume Ker(¥yx) # 0. Let £ € K be an element satisfying Ad(k)u €
RX. As is shown in Lemma 14, Ad(k~!)Ker(¥y) is a pseudo-abelian
subspace of m. If Ad(k~!)Ker(W¥x) is categorical and is contained in m;
(1 =0, 1, 2), then we say X is of type P; (i =0, 1, 2). We also say X is of
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type Pron if Ad(k~!) Ker(W y) is non-categorical, i.e., Ad(k~!) Ker(¥x)N
m; =0 (i=0,1,2).

The following lemma asserts that the type of X does not depend on the
choice of k € K satisfying Ad(k)u € RX.

Lemma 15 Let X e m (X #0). Leti=0,1 or2 and let k; (j =1, 2)
be elements of K satisfying Ad(kj)u € RX. Then:

(1) Ad(k;') Ker(¥x) C m; if and only if Ad(ky ') Ker(¥x) C m;.

(2) Ad(k;') Ker(¥x)Nm; = 0 if and only if Ad(k; ') Ker(¥x)Nm; = 0.

Proof. Set k' = k{'ky € K. By the assumption we have Ad(k')u = +p.
Therefore it is easily seen that Ad(k)m; = m; for any ¢ = 0, 1, 2. Since
Ad(K') Ad(ky ) = Ad(k; 1Y), the lemma follows immediately. O

Let us denote by p; (i =0, 1, 2, non, inj) the subset of m consisting of
all elements of type P;. Then it is clear that

m\ {0} =poUp1 Upa UPpon UPin; (disjoint union). (5.1)

Proposition 16 Let X, Y em (X #0,Y #0). Assume that ¥(X,Y)=0.
Then X € p; if and only if Y € p; (i =0, 1, 2, non).

Proof. 'We note that under the assumption ¥(X,Y’) = 0 we have X ¢ p;p;
and Y ¢ pin;, because Y € Ker(¥x) and X € Ker(¥y).

First consider the case X € p; (1 =0,1,2). Let k € K be an el-
ement such that Ad(k)u € RX. Then we have Ad(k~!1)Y € m;, be-
cause Ad(k~1)Y € Ad(k~!) Ker(¥x) C m;. Take an element &’ € K sat-
isfying Ad(K*')u € RAd(k™')Y and set k” = kk' (see Proposition 7).
Then we have Ad(k”)u = Ad(k) Ad(k))u € Ad(k)RAA(k~))Y = RY and
Ad(RH)X = Ad(K~DAd(k")X € RAAK Nu = RAA(KNY C m,.
Since X € Ker(W¥y), it follows that Ad(k”~!)Ker(¥y) N m; # 0.
Hence Ad(k”~!)Ker(¥y) is categorical (see Proposition 13) and
Ad(K"1)Ker(¥y) C m; (see Proposition 9). This means Y € p;. The
converse can be proved in the same manner.

By these arguments we know that X € p,,, if and only if Y € p,,on.

U

Lemma 17 Let G/K = P"(C) (n>2) or P*(H) (n > 2). Then:

(1) po=0.
(2) Let X em (X #0). Then:
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n—1, of X €py;
dimKer(¥x) <{ f—1, if X € po; (5.2)
2, ZfX € Pron-

Proof. Suppose that pg # (). Let X € pg and let k € K be an element such
that Ad(k)u € RX. Then we have Ad(k~!)Ker(¥x) C a = Ru. Hence
we have Ker(¥x) = RAd(k)p = RX, ie., ¥(X,X)=0. Let Y € m such
that Y ¢ RX. By (3.1) we have

([[X,Y],X],Y) =(¥(X,X),¥(Y,Y)) — (¥(X,Y),¥(Y, X))
= _<‘IJX(Y)7 lI’X(Yv)>

Since G /K is of positive curvature, the left side of the above equality is > 0.
Therefore we have Wx (YY) = 0, which contradicts Y ¢ RX. Thus we have,
po = 0.

The assertion (2) follows from Propositions 12, Proposition 13,
dimms = f — 1 and the discussions in the previous section. O

Proposition 18 Let G/K = P"(C) (n>2) or P"(H) (n > 2). Then:
(1) piny =0 ifr<nf-1

2 p=0ifr<2n-1)(f-1)

) p2=0ifr<(n-1)f;

(4) pnon:(blfrgnf_s

Proof. We first note that dimKer(¥x) > dimG/K —r = nf — r holds
for any X € m. By this fact we can easily prove (1), (3) and (4). In fact, if
r < nf —1, then it is clear that Ker(¥x) # 0 for any X € m. Hence X ¢
Pinj, Which implies p;n,; = 0. Similarly, if r < (n —1)f (resp. r < nf — 3),
then dim Ker(¥x) > f (resp. dim Ker(¥x) > 3) holds for any X € m and
hence pa = 0 (resp. pnon = 0) (see Lemma 17).

Next we prove (2). Suppose that p; # (). Let X € p;. Take k € K such
that Ad(k)u € RX and set V = Ad(k~!) Ker(¥x). Then V is a pseudo-
abelian subspace such that V' C m;. Consequently, by Lemma 17 we have
dimV <n—1.

Now let us take a non-zero element £ € V and a subspace U C my satis-
fying U DV, [£,U] C ¥ and dimU = (n—2)f+1 (see Proposition 12 (2)).
Put Y = Ad(k)¢ (¢ Ker(¥x)) and U = Ad(k)U (C m). Then we have
U(X,Y) =0 and U D Ker(¥x). Moreover, we have [[U,Y],X] =0,
because HU,Y] ) X] = Ad(k) HU, f},,u] = 0. Therefore, by Theorem 6 we
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have the following inequality:
r>nf+(n—-2)f+1—-dimKer(¥x)— dimKer(¥y).

Since X and Y € p; (see Proposition 16), it follows that dim Ker(¥x) <
n — 1 and dim Ker(¥y) < n —1 (see Lemma 17). Consequently, we have
r>2(n—1)(f —1) + 1, which proves (2). O

We are now in a position to prove Theorem 1. If there is a solution ¥ of
the Gauss equation in codimension 7, then at least one of the sets p;y;, po, p1,
p2 and Pron is not empty (see (5.1)). Therefore, in view of Lemma 17 (1) and
Proposition 18, we have r > 1+ min{nf—1,2(n—1)(f—1),(n—1)f,nf—3}.
Accordingly, we have r > 2n—2if G/K = P"(C) andr > 4n—3if G/K =
P"(H). Hence, Crank(P"(C)) > 2n — 2 and Crank(P"(H)) > 4n — 3.
This, together with Lemma 2, shows Theorem 1. ]

Remark 1 The proof of Theorem 1 stated above is effective in the case
n = 2. We thereby have Crank(P?(C)) > 2 and Crank(P?(H)) > 5.
However, for the spaces P?(C) and P?(H), we have already known the best
results: Crank(P?(C)) = 3 (see [1]) and class(P?(H)) = Crank(P?(H)) =
6 (see [8]).

As for the class number of P?(C) we have class(P%(C)) = 3 or 4
(see Lemma 2 and Introduction). It is still an open question whether
class(P?(C)) = 3 or not (cf. [20]).

Remark 2 Consider the following two cases:

(1) G/IK=P"(C)(n>3)andr=2n-—2;

(2) G/K=P'(H) (n>3)and r=4n — 3.

If there is a solution W of the Gauss equation in codimension r, then it
is shown by Lemma 17 (1) and Proposition 18 that ¥ must satisfy the
following condition:

Case (1) po=p1 =p2 =Ppin; =0, i.e., m\ {0} = Pron;

Case (2) Po = P1 = Pnon = Pinj = @, i.e., m\ {O} = po.

We conjecture that in both cases (1) and (2) there are no such solutions W.
In other words:

Crank(P"(C))>2n—-1 (n > 3);
Crank(P"(H)) > 4n—2 (n > 3).
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If this is true, then we obtain an improvement of Theorem 1:

class(P"(C)) >2n—1 (n > 3);
class(P"(H)) > 4n—2 (n > 3).
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