Hokkaido Mathematical Journal Vol. 35 (2006) p. 587-599

Some sequence spaces which include c_0 and c

B.E. Rhoades

(Received December 6, 2004; Revised June 8, 2005)

Abstract. It is first shown that a certain class of regular factorable matrices is equivalent to C, the Cesáro matrix of order one. As a corollary it is shown that the matrix A of [1] is equivalent to C. Then most of the results of [1] and [3] are extended to regular factorable matrices.

Key words: α dual, β dual, Cesáro summability, γ dual, factorable matrices, ℓ_p spaces, weighted mean matrices.

1. Introduction

Let A be an infinite matrix, c_0 and c denote, respectively, the space of null sequences and the space of convergent sequences. Define

$$c_A = \left\{ x : \left\{ \sum_k a_{nk} x_k \right\} \in c \right\},$$

$$c_{0_A} = \left\{ x : \left\{ \sum_k a_{nk} x_k \right\} \in c_0 \right\}.$$

Let X and Y be sequence spaces. The notation $A \in (X : Y)$ will mean that $A: X \to Y$.

In a recent paper [1] it was shown that c_A and c_{0_A} are isomorphic to c and c_0 , respectively, for a certain matrix A. The α -, β -, and γ -duals of c_A and c_{0_A} were computed, and necessary and sufficient conditions were obtained for a matrix $D \in (c_A : \ell_p)$ and $\in (c_A : c)$.

Corollary 2.2 of this paper shows that the matrix A of [1] is equivalent to C, the Cesáro matrix of order one.

Then most of the results of [1] and [3] are extended to the larger class of regular factorable matrices.

A discussion of some sequence spaces which include c and c_0 appears in [3].

A lower triangular matrix is called factorable if one can write each

²⁰⁰⁰ Mathematics Subject Classification : Primary: 46A54; Secondary: 46A35, 46B45.

 $a_{nk} = a_n b_k$, where a_n depends only on n and b_k depends only on k, $0 \le k \le n$. A triangle is a lower triangluar matrix with no zeros on the principal diagonal.

A matrix A is called regular if A is limit preserving over c. Define $t_n = \sum_{k=0}^n a_{nk}$. One of the conditions of regularity is that $\lim t_n = 1$. A matrix B is said to be stronger than a matrix A if $c_A \subset c_B$. If A and B are triangles, then $c_A \subset c_B$ iff BA^{-1} is regular. The symbol e means the sequence of all 1's, and $e^{(k)}$ denotes the coordinate sequence with a 1 in the k-th position and all other terms zero. Let $\{w_n\}$ denote any sequence. The notation $w_n \simeq O(1)$ means that $w_n = O(1)$ and that $1/w_n = O(1)$.

2. Matrices equivalent to (C, 1)

Theorem 2.1 Let A be a regular factorable triangle with nonnegative entries satisfying

$$(n+1)a_n b_n \asymp O(1) \tag{2.1}$$

and $\{b_n\}$ monotone. Then $c_A = c_C$.

Proof. For k < n,

$$(AC^{-1})_{nk} = \sum_{j=k}^{n} a_{nj}c_{jk}^{-1} = a_{nk}c_{kk}^{-1} + a_{n,k+1}c_{k+1,k}^{-1}$$
$$= a_{n}b_{k}(k+1) + a_{n}b_{k+1}(-1)(k+1)$$
$$= (k+1)a_{n}(b_{k} - b_{k+1}).$$
$$(AC^{-1})_{nn} = (n+1)a_{n}b_{n}.$$

Thus, if we define $B = AC^{-1}$, then

$$b_{nk} = \begin{cases} (k+1)a_n(b_k - b_{k+1}), & 0 \le k < n, \\ (n+1)a_nb_n, & k = n, \\ 0, & k > n. \end{cases}$$

Case I. $\{b_n\}$ nonincreasing. Then

$$\sum_{k=0}^{n} |b_{nk}| = (n+1)a_nb_n + a_n\sum_{k=0}^{n-1} (k+1)(b_k - b_{k+1})$$

$$= (n+1)a_nb_n + a_n \left[\sum_{k=0}^{n-1} (k+1)b_k - \sum_{k=0}^{n-1} (k+1)b_{k+1} \right]$$
$$= (n+1)a_nb_n + a_n \left[b_0 - nb_n + \sum_{k=0}^{n-1} [(k+1)b_k - kb_k] \right]$$
$$= a_nb_n + a_nb_0 + a_n \sum_{k=0}^{n-1} b_k = a_nb_0 + t_n \to 1.$$

Therefore $||B|| < \infty$, and the limit of the row sums is one. Also B has zero column limits. Therefore B is regular.

Case II. $\{b_n\}$ is nondecreasing. Then

$$\sum_{k=0}^{n} |b_{nk}| = (n+1)a_nb_n + a_n \sum_{k=0}^{n-1} (k+1)(b_{k+1} - b_k)$$

= $(n+1)a_nb_n + a_n \left[\sum_{k=0}^{n-1} (k+1)b_{k+1} - \sum_{k=0}^{n-1} (k+1)b_k\right]$
= $(n+1)a_nb_n + a_nnb_n - a_nb_0 + a_n \sum_{k=0}^{n-1} (kb_k - (k+1)b_k)$
= $O(1) + o(1) - a_n \sum_{k=0}^{n-1} b_k \le O(1),$

and again $||B|| < \infty$ and the limit of the row sums of *B* exists. With $t := \{t_n\}, t = Be = AC^{-1}(e) = Ae$, so the limit of the row sums of *B* is one. Also *B* has zero column limits. Therefore *B* is regular.

To show that B^{-1} is regular, it will be sufficient to show that $||B^{-1}|| < \infty$. A direct calculation verifies that, for a factorable triangle,

$$a_{nk}^{-1} = \begin{cases} \frac{1}{a_n b_n}, & k = n, \\ -\frac{1}{a_{n-1} b_n}, & k = n-1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for k < n,

$$(B^{-1})_{nk} = (CA^{-1})_{nk} = \sum_{i=k}^{n} c_{ni}a_{ik}^{-1} = c_{nk}a_{kk}^{-1} + c_{n,k+1}a_{k+1,k}^{-1}$$

$$= \frac{1}{n+1} \left(\frac{1}{a_k b_k}\right) + \frac{1}{n+1} \left(-\frac{1}{a_k b_{k+1}}\right)$$
$$= \frac{1}{(n+1)a_k} \left(\frac{1}{b_k} - \frac{1}{b_{k+1}}\right),$$

and

$$(CA^{-1})_{nn} = \frac{1}{a_n b_n (n+1)}.$$

$$\sum_{k=0}^n |b_{nk}^{-1}| = \frac{1}{a_n b_n (n+1)} + \sum_{k=0}^{n-1} \frac{1}{(n+1)a_k} \left| \frac{1}{b_k} - \frac{1}{b_{k+1}} \right|.$$

Case I. $\{b_n\}$ nondecreasing. Then

$$\frac{1}{n+1} \sum_{k=0}^{n-1} \frac{1}{a_k} \left| \frac{1}{b_k} - \frac{1}{b_{k+1}} \right|$$
$$= \frac{1}{n+1} \sum_{k=0}^{n-1} \frac{1}{a_k} \left(\frac{1}{b_k} - \frac{1}{b_{k+1}} \right)$$
$$= \frac{1}{n+1} \sum_{k=0}^{n-1} \frac{\sum_{j=0}^k b_j}{t_k} \left(\frac{1}{b_k} - \frac{1}{b_{k+1}} \right).$$

Since $\lim t_n = 1$, $\inf t_k > 0$. Therefore

$$\sum_{k=0}^{n} |b_{nk}^{-1}| = O(1) + \frac{O(1)}{n+1} \left[\sum_{k=0}^{n-1} \frac{\sum_{j=0}^{k} b_j}{b_k} - \sum_{k=0}^{n-1} \frac{\sum_{j=0}^{k} b_j}{b_{k+1}} \right]$$
$$= O(1) + \frac{O(1)}{n+1} \left[\frac{b_0}{b_0} - \frac{1}{b_n} \sum_{j=0}^{n-1} b_j + \sum_{k=1}^{n-1} \frac{1}{b_k} \left(\sum_{k=0}^{k} b_j - \sum_{j=0}^{k-1} b_j \right) \right]$$
$$\le O(1) + o(1) + \frac{O(1)}{n+1} \sum_{k=1}^{n-1} 1 = O(1).$$

Case II. $\{b_n\}$ nonincreasing. Then

$$\sum_{k=0}^{n} |b_{nk}^{-1}| = O(1) + \frac{1}{n+1} \sum_{k=0}^{n-1} \frac{\sum_{j=0}^{k} b_j}{t_k} \left(\frac{1}{b_{k+1}} - \frac{1}{b_k}\right)$$

$$= O(1) + \frac{O(1)}{n+1} \left[\sum_{k=0}^{n-1} \frac{\sum_{j=0}^{k} b_j}{b_{k+1}} - \sum_{k=0}^{n-1} \frac{\sum_{j=0}^{k} b_j}{b_k} \right]$$

= $O(1) + \frac{O(1)}{n+1} \left[\sum_{j=0}^{n-1} \frac{b_j}{b_n} - \frac{b_0}{b_0} + \sum_{k=1}^{n-1} \frac{1}{b_k} \left(\sum_{j=0}^{k-1} b_j - \sum_{j=0}^{k} b_j \right) \right]$
 $\leq O(1) + \frac{O(1)t_n}{(n+1)a_nb_n} = O(1),$

and $||B^{-1}|| < \infty$.

A weighted mean matrix, denoted by (\overline{N}, p) , is a lower triangular matrix with entries p_k/P_n , where $\{p_k\}$ is a nonnegative sequence with $p_0 > 0$ and $P_n := \sum_{k=0}^n p_k$.

Corollary 2.1 Let $A = (\overline{N}, p)$ with $\{p_n\}$ monotone and satisfying

$$\frac{(n+1)p_n}{P_n} \asymp O(1). \tag{2.2}$$

Then (\overline{N}, p) and C are equivalent.

Proof. Note that (2.2) implies (2.1). The result now follows from Theorem 2.1. $\hfill \Box$

Corollary 2.1 appears in [2].

Corollary 2.2 Let A be a triangle with entries $a_{nk} = (1 + r^k)/(n + 1)$, $0 \le k \le n$, 0 < r < 1. Then A is equivalent to C.

Proof. Note that A is a factorable matrix with $a_n = 1/(n+1)$, $b_k = 1+r^k$, and $\{b_k\}$ is monotone decreasing.

$$(n+1)a_nb_n = (n+1)\frac{1+r^n}{(n+1)} \to 1.$$

Therefore A satisfies (2.1), and the result follows from Theorem 2.1.

The matrix A of Corollary 2.2 is the matrix that appears in [1].

3. The sequence spaces c_A and c_{0_A}

Theorem 3.1 Let A be a factorable triangle. Then the sequence spaces c_A and c_{0_A} are linearly isomorphic to c and c_0 , respectively.

591

Proof. From Example 7, page 76 of [5], $c_A \simeq c$. We shall now show that $A: c_{0_A} \to c_0$ is 1-1 and onto. Let $y \in c_0$. Consider Ax = y. Solving for x one obtains $x = A^{-1}y$. Since A and A^{-1} are triangles, the associativity of multiplication holds and $Ax = A(A^{-1}y) = y \in c_0$. Therefore $x \in c_{0_A}$ and A is onto. Since A is a triangle, it is clearly 1-1 on any domain. \Box

Theorem 2.2 of [1] is the special case of Theorem 3.1 with A as in Corollary 2.2.

For any lower triangular matrix A, and sequence x, $(Ax)_n := \sum_{k=0}^n a_{nk}x_k$, and $\lim_n x := \lim_n (Ax)_n$, if it exists.

Theorem 3.2 Let A be a regular factorable matrix satisfying

$$\sup_{n} \frac{1}{b_n} \left| \frac{1}{a_n} - \frac{1}{a_{n-1}} \right| = O(1).$$
(3.1)

Define $b^{(k)}$ by

$$b_n^{(k)} = \begin{cases} \frac{(-1)^{n-k}}{a_k b_n}, & k \le n \le k+1, \\ 0, & \text{otherwise.} \end{cases}$$

Then

(a) $b^{(k)}$ is a basis for c_{0_A} and, any $x \in c_{0_A}$, has the unique representation

$$x = \sum_{k} \lambda_k b^{(k)},$$

where $\lambda_k := (Ax)_k$.

(b) The set $\{e, b^{(k)}\}$ forms a basis for c_A and each $x \in c_A$ has the unique representation

$$x = \ell e + \sum_{k} [\lambda_k - \ell] b^{(k)}.$$

Proof. $b^{(k)} \in c_{0_A}$, since $Ab^{(k)} = e^{(k)} \in c_0$. Let $x \in c_A$. Define

$$x^{[m]} = \sum_{k=0}^{m} \lambda_k b^{(k)},$$

where $\lambda_k := (Ax)_k$. Then

$$Ax^{[m]} = \sum_{k=0}^{m} \lambda_k Ab^{(k)} = \sum_{k=0}^{m} (Ax)_k e^{(k)}.$$

Therefore

$$\{A(x-x^{[m]})\}_i = \begin{cases} 0, & 0 \le i \le m, \\ (Ax)_i, & i > m. \end{cases}$$

Since $x \in c_{0_A}$, $Ax \in c_0$. Then there exists a positive integer m_0 such that $m \ge m_0$ implies that $|(Ax)_n| \le \epsilon/2$, and, for $n \ge m_0$,

$$\begin{aligned} \left\| x - x^{[m]} \right\|_{c_{0_A}} &= \sup_{n \ge m} \left| (Ax)_m \right| \le \sup_{n \ge m_0} \left| (Ax)_n \right| \\ &\le \frac{\epsilon}{2} < \epsilon. \end{aligned}$$

To show uniqueness, suppose that there exists another representation

$$x = \sum_{k} \mu_k b^{(k)}.$$

Then

$$(Ax)_n = \sum_k \mu_k (Ab^{(k)})_n = \sum_k \mu_k b_n^{(k)} = \mu_n.$$

But $(Ax)_n = \lambda_n$. Therefore $\lambda_n = \mu_n$ and the respresentation is unique. Condition (3.1) guarantees that $x \in c$. Since $b^{(k)} \subset c_0$, $\{e, b^{(k)}\} \subset c_A$.

Let $x \in c_A$ and define $u = x - \ell t$, where $t := \{t_n\}, \ell = \lim_A x$. Then $\lim_A u = \lim_A x - \ell \lim_A t_n = 0$, and $u \in c_{0_A}$. From (a), u has a unique representation. Thus the stated representation for x is unique.

Theorem 3.1 of [1] is the special case of Theorem 3.2, using the A of Corollary 2.2, since, for that A, $x_n = 1/(1 + r^n)$.

4. Duality results

Let X be a sequence space, ω the set of all sequences, ℓ_1 the space of all absolutely convergent series, cs the space of convergent series, and bs the space of bounded series. Then

$$\begin{split} X^{\alpha} &:= \{ z \in \omega \, | \, \forall x \in X, \, \, zx \in \ell_1 \} \quad (\alpha \text{-dual of } X), \\ X^{\beta} &:= \{ z \in \omega \, | \, \forall x \in X zx \in cs \} \quad (\beta \text{-dual of } X), \\ X^{\gamma} &:= \{ zx \in X \, | \, \forall x \in X, zx \in bs \} \quad (\gamma \text{-dual of } X). \end{split}$$

Theorem 4.1 Let A be a factorable matrix. The α -dual of the spaces c_{0_A} and c_A is

$$d_1 = \left\{ z \in \omega : \sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K} \frac{(-1)^{n-k} z_n}{a_k b_n} \right| < \infty \right\}.$$

$$(4.1)$$

Proof. We shall need the following Lemma from [4].

Lemma 4.1 $A \in (c_0 : \ell_1)$ iff

$$\sup_{K\in\mathcal{F}}\sum_{n}\left|\sum_{k\in K}a_{nk}\right|<\infty$$

Let $z \in \omega$ and define B by

$$b_{nk} = \begin{cases} \frac{(-1)^{n-k} z_n}{a_k b_n}, & n-1 \le k \le n, \\ 0, & \text{otherwise.} \end{cases}$$

Then, with y := Ax,

$$z_n x_n = z_n \sum_{k=n-1}^n \frac{(-1)^{n-k} y_k}{a_k b_n} = (By)_n.$$

Therefore $zx \in \ell_1$ whenever $x \in c_{0_A} \cap c_A$ iff $By \in \ell_1$ whenever $y \in c_0$ or c. By Lemma 4.1, the condition becomes (4.1).

The special case of Theorem 4.1 with A as defined in Corollary 2.2 is Theorem 4.3 of [1].

Theorem 4.2 Let A be a factorable matrix and define d_i , i = 2, 3, 4, by

$$d_2 = \left\{ z \in \omega : \sum_k \left| \frac{1}{a_k} \Delta\left(\frac{z_k}{b_k}\right) \right| < \infty \right\},\tag{4.2}$$

$$d_3 = \left\{ z \in \omega : \left\{ \frac{z_n}{a_n b_n} \right\} \in \ell_\infty \right\}, \quad and \tag{4.3}$$

$$d_4 = \left\{ z \in \omega : \left\{ \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) \frac{z_k}{b_k} \right\} \in cs \right\}.$$

$$(4.4)$$

Then $\{c_{0_A}\}^{\beta} = d_2 \cap d_3$ and $\{c_A\}^{\beta} = d_2 \cap d_4$.

Proof. Consider

$$\sum_{k=0}^{n} z_k x_k = \sum_{k=0}^{n} \left[\sum_{j=k-1}^{k} \frac{(-1)^{j-k} y_j}{a_j b_k} \right] z_k$$
$$= \sum_{k=0}^{n} \frac{z_k}{b_k} \left[-\frac{y_{k-1}}{a_{k-1}} + \frac{y_k}{a_k} \right]$$
$$= -\sum_{k=0}^{n} \frac{z_k y_{k-1}}{a_{k-1} b_k} + \sum_{k=0}^{n} \frac{y_k z_k}{a_k b_k}$$
$$= \frac{y_n z_n}{a_n b_n} + \sum_{k=0}^{n-1} \Delta \left(\frac{z_k}{b_k} \right) \frac{y_k}{a_k}$$
$$= (Ty)_n,$$

where

$$t_{nk} = \begin{cases} \frac{1}{a_k} \Delta\left(\frac{z_k}{b_k}\right), & 0 \le k < n, \\ \frac{z_n}{a_n b_n}, & k = n, \\ 0, & k > n. \end{cases}$$

Thus $zx \in cs$ whenever $x \in c_{0_A}$ iff $Ty \in c$ whenever $y \in c_0$; i.e., T must have finite norm and column limits.

$$||T||_{\infty} = \sup_{n} \left[\sum_{k=0}^{n-1} \frac{1}{a_k} \left| \Delta \left(\frac{z_k}{b_k} \right) \right| + \left| \frac{z_n}{a_n b_n} \right| \right] < \infty,$$

which implies d_2 and d_3 . Since the converse is trivial, $\{c_{0_A}\}^{\beta} = d_2 \cap d_3$.

The condition $zx \in cs$ whenever $x \in c_A$ iff $Ty \in c$ whenever $y \in c$; i.e., T must satisfy the Silverman-Toeplitz conditions. That T has finite norm implies condition d_2 . Since the sum of the column limits of T must exist we have

$$\sum_{k} \frac{1}{a_k} \Delta\left(\frac{z_k}{b_k}\right) < \infty.$$

But

$$\sum_{k} \frac{1}{a_k} \Delta\left(\frac{z_k}{b_k}\right) = \sum_{k} \frac{1}{a_k} \frac{z_k}{b_k} - \sum_{k} \frac{1}{a_k} \frac{z_{k+1}}{b_{k+1}}$$

$$= \frac{z_0}{a_0 b_0} + \sum_{k=1}^{\infty} \left(\frac{1}{a_k} - \frac{1}{a_{k+1}}\right) \frac{z_k}{b_k}.$$

Since the row sums of T exist, condition d_4 satisfied.

Note that conditions d_2 and d_4 imply d_3 . Therefore the converse is true, and $\{c_A\}^{\beta} = d_2 \cap d_4$.

Theorem 4.4 of [1] is the special case of Theorem 4.2 with A as in Corollary 2.2.

Theorem 4.3 Let A be a factorable matrix. Then $\{c_{0_A}\}^{\gamma} = \{c_A\}^{\gamma} = d_2 \cap d_3$.

Proof. From the proof of Theorem 4.2, $zx \in bs$ for each $x \in c_{0_A}$ iff Ty is bounded for each $y \in c_0$; i.e., $T: c_0 \to m$; i.e., T has finite norm. (See, e.g., [4].)

Also $zx \in bs$ for each $x \in c_A$ iff Ty is bounded for each $y \in c$; i.e., $T: c \to m$; i.e., T has finite norm. (See, e.g., [4].)

The norm of T being finite is equivalent to conditions d_2 and d_3 . \Box

5. Mappings with domain c_A

Theorem 5.1 Let A be a regular factorable matrix, B an infinite matrix. Then $B \in (c_A : \ell_p)$ iff (i) For $1 \le p < \infty$,

$$\sup_{F \in \mathcal{F}} \sum_{n} \left| \sum_{k \in \mathcal{F}} \tilde{a}_{nk} \right|^{p} < \infty,$$
(5.1)

$$\sum_{k} |\tilde{a}_{nk}| < \infty, \tag{5.2}$$

$$\left\{\frac{b_{nk}}{a_k b_k}\right\} \in cs \quad for \ each \quad n.$$
(5.3)

(ii) For $p = \infty$, condition (5.3) and

$$\sup_{n} \sum_{k} |\tilde{a}_{nk}| < \infty \tag{5.4}$$

must be satisfied, where \tilde{A} is as defined in the proof.

Proof. Suppose that $B \in (c_A : \ell_p)$. Then there exists a positive constant K such that

$$||Bx||_{\ell_p} \le K ||x||_{c_A}, \quad \text{for each} \quad x \in c_A.$$
(5.5)

Inequality (5.5) is also satisfied for any sequence $x = \sum_{k \in \mathcal{F}} b^{(k)}$ as defined in Theorem 3.2. Thus, for any $F \in \mathcal{F}$,

$$||Bx||_{\ell_p} = \left(\sum_{n} \left|\sum_{k \in \mathcal{F}} \tilde{a}_{nk} x_k\right|^p\right)^{1/p} \le K ||x||_{c_A},$$

and (5.1) is necessary, where \mathcal{F} denotes the collection of all finite subsets of \mathbb{N} .

$$\sum_{k=0}^{m} b_{nk} x_{k} = \sum_{k=0}^{m} b_{nk} \left[\sum_{j=k-1}^{k} \frac{(-1)^{k-j} y_{j}}{a_{j-1} b_{j}} \right]$$
$$= \sum_{k=0}^{m} b_{nk} \left(-\frac{y_{k-1}}{a_{k-1} b_{k}} + \frac{y_{k}}{a_{k} b_{k}} \right)$$
$$= -\sum_{k=0}^{m} \frac{b_{nk} y_{k-1}}{a_{k-1} b_{k}} + \sum_{k=0}^{m} \frac{y_{k} b_{nk}}{a_{k} b_{k}}$$
$$= \frac{y_{m} b_{nm}}{a_{m} b_{m}} + \sum_{k=0}^{m-1} \Delta_{k} \left(\frac{b_{nk}}{b_{k}} \right) \frac{y_{k}}{a_{k}}$$
$$= \sum_{k=0}^{m} \tilde{a}_{nk} y_{k},$$

where

$$\tilde{a}_{nk} = \begin{cases} \Delta_k \left(\frac{b_{nk}}{b_k}\right) \frac{1}{a_k}, & 0 \le k < n, \\ \frac{b_{nn}}{a_n b_n}, & k = n, \\ 0, & k > n. \end{cases}$$

Since B applies to c_A , the necessity of conditions (5.2) and (5.3) is trivial.

Suppose that conditions (5.1)–(5.3) hold. Let $x \in c_A$. Then $\{b_{nk}\}_{k \in \mathbb{N}} \in \{c_A\}^{\beta}$. Hence Ax exists. Define $D = \tilde{A}$. Since (5.1) is satisfied for D, $D \in (c : \ell_p)$.

Note that

$$\sum_{k=0}^{m} b_{nk} x_k = \sum_{k=0}^{m-1} \Delta_k \left(\frac{b_{nk}}{b_k}\right) \frac{y_k}{a_k} + \frac{b_{mm} y_m}{a_m b_m}.$$
(5.6)

Since conditions (5.3) and (5.4) hold, it follows, as in the proof of Theorem 4.2 that

$$\left\{\frac{b_{mm}}{a_m b_m}\right\}_m \in c_0.$$

Taking the limit of (5.5) as $m \to \infty$ yields

$$\sum_{k=0}^{\infty} b_{nk} x_k = \sum_{k=0}^{\infty} \tilde{a}_{nk} y_k.$$
(5.7)

Thus

$$||Bx||_{\ell_p} = ||Dy||_{\ell_p} < \infty.$$

Therefore
$$B \in (c_A : \ell_p)$$
.
Part (ii) is proved in a similar manner.

Theorem 5.2 Let A be a regular factorable matrix. Then an infinite matrix $B \in (c_A : c)$ iff (5.3) and (5.4) hold,

$$\lim_{n} \tilde{a}_{nk} = \alpha_k \quad \text{for each} \quad k \in \mathbb{N}, \tag{5.8}$$

and

$$\lim_{n} \sum_{k} \tilde{a}_{nk} = \alpha.$$
(5.9)

Proof. Suppose that B satisfies (5.3), (5.4), (5.7), and (5.8). Let $x \in c_A$. Then y = Ax exists and $\lim y_n = \ell$ for some number ℓ .

From (5.7) and (5.4),

$$\sum_{j=0}^{k} |\alpha_j| \le \sup_n \sum_j |\tilde{a}_{nj}| < \infty.$$

Therefore $\{\alpha_k\} \in \ell_1$. From (5.6),

$$\sum_{k} b_{nk} x_k = \sum_{k} \tilde{a}_{nk} y_k$$

$$=\sum_{k}\tilde{a}_{nk}(y_k-\ell)+\ell\sum_{k}\tilde{a}_{nk}.$$

Therefore

$$\lim_{n} (Bx)_{n} = \sum_{k} \alpha_{k} (y_{k} - \ell) + \ell \alpha,$$

and $B \in (c_A : c)$.

Conversely, suppose that $B \in (c_A : c)$. Since $c \subset \ell_{\infty}$, it follows from Theorem 5.1 that (5.4) and (5.5) hold. Define $\{x^{(k)}\} \in c_A$ by

$$x_n^{(k)} = \begin{cases} \frac{(-1)^{n-k}}{a_k b_n}, & k \le n \le k+1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $Ax^{(k)} = \{\tilde{a}_{nk}\} \in c$ for each k. Now set x = e in (5.6) to obtain

$$Bx = \left\{ \sum_{k} \tilde{a}_{nk} \right\}_{n} \in c.$$

The author thanks the referee for the careful reading of the manuscript.

References

- Aydin C. and Başar F., On the new sequence spaces which include the spaces c₀ and c. Hokkaido Math. J. **33** (2004), 383–398.
- [2] Borwein D. and Cass F.P.A., Strong Nörlund summability. Math. Z. 103 (1968), 94–111.
- [3] Şengönül M. and Başar F., Some new Cesáro sequence spaces of non-absolute type which include the spaces c₀ and c. Soochow J. Math. **31** (2005), 107–119.
- [4] Stieglitz M. and Tietz H., Matrixtransformationen von Folgenräumen Eine Ergebnisübersict. Math. Z. 154 (1977), 1–16.
- [5] Wilansky A., Functional Analysis. Blaisdell Publ. Co., New York (1964).

Department of Mathematics Indiana University Bloomington, IN 47405-7106 E-mail: rhoades@indiana.edu