Hokkaido Mathematical Journal Vol. 35 (2006) p. 587-599

Some sequence spaces which include ¢y and c
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Abstract. It is first shown that a certain class of regular factorable matrices is equiv-
alent to C, the Cesdro matrix of order one. As a corollary it is shown that the matrix A
of [1] is equivalent to C. Then most of the results of [1] and [3] are extended to regular
factorable matrices.
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1. Introduction

Let A be an infinite matrix, ¢y and ¢ denote, respectively, the space of
null sequences and the space of convergent sequences. Define

cr— {x ; {%ka} e c},
o, = {a:: {zk: anka:k} € co}.

Let X and Y be sequence spaces. The notation A € (X :Y) will mean
that A: X — Y.

In a recent paper [1] it was shown that c4 and ¢y, are isomorphic
to ¢ and c¢g, respectively, for a certain matrix A. The a-, 8-, and 7-duals
of ¢4 and ¢y, were computed, and necessary and sufficient conditions were
obtained for a matrix D € (c4 : £p) and € (ca : ¢).

Corollary 2.2 of this paper shows that the matrix A of [1] is equivalent
to C, the Cesaro matrix of order one.

Then most of the results of [1] and [3] are extended to the larger class
of regular factorable matrices.

A discussion of some sequence spaces which include ¢ and ¢y appears
in [3].

A lower triangular matrix is called factorable if one can write each
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Gnk = Gnbr, where a, depends only on n and by depends only on k, 0 <
k < n. A triangle is a lower triangluar matrix with no zeros on the principal
diagonal.

A matrix A is called regular if A is limit preserving over c. Define
th = D p_o@nk- One of the conditions of regularity is that lim¢, = 1.
A matrix B is said to be stronger than a matrix A if ca C cg. If A and
B are triangles, then ¢4 C cp iff BA™! is regular. The symbol e means the
sequence of all 1’s, and e(*) denotes the coordinate sequence with a 1 in the
k-th position and all other terms zero. Let {w,} denote any sequence. The
notation wy, =< O(1) means that w, = O(1) and that 1/w, = O(1).

2. Matrices equivalent to (C, 1)

Theorem 2.1 Let A be a reqular factorable triangle with nonnegative en-
tries satisfying

(n+ 1)apb, < O(1) (2.1)
and {b,} monotone. Then ca = cc.

Proof. For k < n,
n
1y 1 —1 1
(AC )nkz = g OnjCip, = OnkCry +an7k+1ck+17k
Jj=k

= anby(k + 1) + anbpr1(—1)(k + 1)
= (k+1)an(by — bg11)-
(AC’_l)Tm = (n+ 1)ayby.
Thus, if we define B = AC~!, then
(k + 1)an(bk — bk+1), 0<k<n,
bk = & (n+ 1)ayby, k=n,
0, k> n.
Case I. {b,} nonincreasing. Then

n—1

S barl = (0 + Vanby +an Y (k+1)(b — bgr)
k=0 k=0
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= (n+ 1)apb, +ap

n—1 n—1
S (k+ Db — > (k+ 1)bk+1]

k=0 k=0
n—1
= (n+4 Danby, + an [bo —nby + Y _[(k+ 1)bg — kbk]}
k=0
n—1
= apb, + a,bo + an, Zbk =apby +t, — 1.
k=0

Therefore || B|| < oo, and the limit of the row sums is one. Also B has
zero column limits. Therefore B is regular.
Case II. {b,} is nondecreasing. Then

n n—1
Z |bnk| = (TL + 1)anbn + an Z(k + 1)(bk+1 - bk)
k=0 k=0
n—1 n—1
= (n+ Danby + an | Y _(k+ Dbppr — Y _(k+ )by
k=0 k=0
n—1
= (n+ Danby + annbn — anbo + an Y (kb — (k + 1)by)
k=0

n—1
=0(1) +0(1) —an » b < O(1),
k=0

and again ||B|| < co and the limit of the row sums of B exists. With ¢ :=
{tn}, t = Be = AC!(e) = Ae, so the limit of the row sums of B is one.
Also B has zero column limits. Therefore B is regular.
To show that B! is regular, it will be sufficient to show that || B~ < <.
A direct calculation verifies that, for a factorable triangle,

) k; - n’
anbn
-1 _ 1
g =y ———, k=n-—1,
an—lbn
0, otherwise.

Thus, for k < n,

n
-1 -1 E -1 -1 -1
(B )nk = (CA )nk = CniQy;, = CnkQy + cn7k+1ak+1,k
i=k
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1 1 1 1
S+l (akbk) + n+1 (7akbk+1)
_ #(l _ L)
a (n+ 1)(261C bk bk+1 ’
and
1
CA Y,y = ———
( ) anbn(n +1)
n n—1
1 1 1 1
b= —————— -~
;) ’ nk| anbn(n + 1) kgo (n + 1)ak bk bk+1

Case I. {b,} nondecreasing. Then

Since limt,, = 1, inf ¢, > 0. Therefore

n n— k n—1 k
_ o(1) . > j—0bj > j—0bj
N [bt =01 + > -
k=0 ntllim = e
o) [ 112
O()—I_n—‘rl bo bn;bj
n—1 1 k k—1
Ea(E )
k=1 k=0 j=0
n—1
1
<0(1) +o(1) + X 1=0(1)
n—+1 Pt

Case II. {b,} nonincreasing. Then

n B 1 n—1 Zk'::o bj 1 1
1) _ J _
kZO |bnk| N O(l) + n+1 kZO tr (bk+1 bk;>
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n— k n—1 k
0(1) . > j—0bj >0
=0(1) + =
( ) n+1 k‘ZO bk+1 kZO bk
B O(l) n—1 b] bO n—1 1 k—1 k
=0+ = ,22_58+§:Q 2:@—22@
7=0 k=1 7=0 7=0
o)ty
< =
and ||B7Y| < oo. O

A weighted mean matrix, denoted by (N, p), is a lower triangular matrix
with entries py/P,, where {px} is a nonnegative sequence with py > 0 and

B, = ZZ:O DPk-
Corollary 2.1 Let A= (N,p) with {p,} monotone and satisfying

(n+1)pn

=< 0(1). 2.2
2l < oq) ©2)
Then (N, p) and C are equivalent.

Proof. Note that (2.2) implies (2.1). The result now follows from Theo-
rem 2.1. g

Corollary 2.1 appears in [2].

Corollary 2.2 Let A be a triangle with entries any = (1 4+ 1r%)/(n + 1),
0<k<n,0<r<1. Then A is equivalent to C.

Proof. Note that A is a factorable matrix with a,, = 1/(n+1), by = 1+7F,
and {by} is monotone decreasing.

14"
1apb, = 1 1.
(n+1)apb, = (n+ )(n—l—l) —
Therefore A satisfies (2.1), and the result follows from Theorem 2.1.

O

The matrix A of Corollary 2.2 is the matrix that appears in [1].

3. The sequence spaces ca and co,

Theorem 3.1 Let A be a factorable triangle. Then the sequence spaces ca
and co, are linearly isomorphic to c and cy, respectively.
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Proof. From Example 7, page 76 of [5], ¢4 ~ ¢. We shall now show that
A:co, — cois 1-1 and onto. Let y € ¢y. Consider Az = y. Solving for =
one obtains z = A~!y. Since A and A~! are triangles, the associativity of
multiplication holds and Az = A(A™ly) = y € ¢y. Therefore z € ¢y, and
A is onto. Since A is a triangle, it is clearly 1-1 on any domain. 0

Theorem 2.2 of [1] is the special case of Theorem 3.1 with A as in

Corollary 2.2.
For any lower triangular matrix A, and sequence z, (Az), :=
> h—o Ankk, and lim, z := lim, (Ax),, if it exists.

Theorem 3.2 Let A be a reqular factorable matrix satisfying

1]1 1
sup —|— —
n bn an an—1

Define b%) by

= 0(1). (3.1)

(-1
~—t k<n<k+1
b(k) — ak;bn ) SN s + )

n
0, otherwise.

Then
(a) b%) is a basis for co, and, any x € cp,, has the unique representation

z = Adp®,
k

where A\, := (Ax)y.
(b) The set {e,b®)} forms a basis for ca and each x € ca has the unique
representation

z=rle+> [M— b0,
k
Proof. bk) ¢ co,, since Abk) = e(k) ¢ ¢y, Let x € c4. Define

zml — Z Aeb®)
k=0

where A\g := (Az)g. Then

m

Aa = 37 A = 3 (A el®.
k=0 k=0
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Therefore

(A-amhy = {

0, 0<s<m,
(Az);, ©>m.

Since x € cp,, Az € co. Then there exists a positive integer mg such
that m > mg implies that |(Az),| < €/2, and, for n > my,

Hx — z[m]Hc = sup [(Ax)n,| < sup |(Az)y|
0a n>m n>mo
€
< -<e
=9 €

To show uniqueness, suppose that there exists another representation
T = Z 11b®).
k
Then
(Az)0 = 37 (A68), = 57 pb®) = .
k

k

But (Ax), = A,. Therefore \,, = p,, and the respresentaton is unique.

Condition (3.1) guarantees that 2 € c. Since b*) C ¢q, {e,b®)} C ca.

Let © € ¢4 and define u = x — 0t, where t := {t,,}, £ = limgq x. Then
limgu = limygz — ¢limt, = 0, and u € ¢p,. From (a), u has a unique
representation. Thus the stated representation for x is unique . [l

Theorem 3.1 of [1] is the special case of Theorem 3.2, using the A of
Corollary 2.2, since, for that A, x, = 1/(1 +r").

4. Duality results

Let X be a sequence space, w the set of all sequences, ¢1 the space of all
absolutely convergent series, cs the space of convergent series, and bs the
space of bounded series. Then

X ={zew|Vre X, zxel;} (a-dualof X),
X8 :={zew|Vre Xzzx € cs} (f-dual of X),
X" :={zx € X|Vze€ X, zx€bs} (y-dualof X).



594 B.E. Rhoades

Theorem 4.1 Let A be a factorable matriz. The a-dual of the spaces co ,
and cy 18

dlz{zew supz

nfk
y E

KeF kK

n

< oo}. (4.1)

Proof. We shall need the following Lemma from [4].
Lemma 4.1 A€ (¢o:41) iff

sup 3| 5 | <

KeF

n |keK
Let z € w and define B by
1 n—=k
ED" k<,
bpi = arbp
0, otherwise.

Then, with y := Ax,
-1 n—k

Zndn = Zn Z ()7% = (By)n

k=n—1

Therefore zx € ¢1 whenever x € co, Ncy iff By € {1 whenever y € ¢
or c. By Lemma 4.1, the condition becomes (4.1). O

The special case of Theorem 4.1 with A as defined in Corollary 2.2 is
Theorem 4.3 of [1].

Theorem 4.2 Let A be a factorable matriz and define d;, i = 2, 3, 4, by

o= {rews S| La()| <=}, (12
:{zew { }EE } and (4.3)
{z Cw: {(— - ak1+1> z:} € cs} (4.4)

Then {coA}ﬁ =dyNds and {ca}’ = dyNdy.
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Proof. Consider

o Ok L k-1 Gk
_ Z “EYk—1 ~ Y2k
—ar—1b = axby
YnzZn — 2k Yk
_ A<7) Yk
anbn Z b/ ay,
where
1 Z
—A(—k), 0<k<n,
aj bk
bk = n , k=n,
an n
0, k> n.

Thus zx € cs whenever x € ¢, iff Ty € c whenever y € co; i.e., T must
have finite norm and column limits.

n—1
17l = Sttp[zalk NESI

Zn

< 00,

anOn

which implies dy and d3. Since the converse is trivial, {co, }* = da N d3.
The condition zz € cs whenever x € cy iff Ty € ¢ whenever y € ¢; i.e.,

T must satisfy the Silverman-Toeplitz conditions. That 7" has finite norm

implies condition ds. Since the sum of the column limits of 7' must exist we

have
zk: ;A(?}:) < 0.
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Z 1 1 z

0 k
= + <7 — )—
aobo Z ar  aps1/ b

Since the row sums of T exist, condition d4 satisfied.
Note that conditions ds and d4 imply d3. Therefore the converse is true,
and {ca}? = dy N dy. O

Theorem 4.4 of [1] is the special case of Theorem 4.2 with A as in
Corollary 2.2.

Theorem 4.3 Let A be a factorable matriz. Then {co,}’ = {ca}’ =
do N ds.

Proof. From the proof of Theorem 4.2, zx € bs for each z € ¢g, iff Ty
is bounded for each y € cg; i.e., T: cg — m; i.e., T has finite norm. (See,
e.g., [4].)

Also zx € bs for each x € c4 iff Ty is bounded for each y € ¢; i.e.,
T: c— m;ie., T has finite norm. (See, e.g., [4].)

The norm of T" being finite is equivalent to conditions do and ds. ]

5. Mappings with domain cg

Theorem 5.1 Let A be a reqular factorable matriz, B an infinite matriz.
Then B € (ca : £p) iff
(i) For 1 <p < o0,

P
sup k| < 00, 5.1
LN )
> k| < o0, (5.2)
k

bnk
{akbk} €cs for each n. (5.3)

(ii) For p = oo, condition (5.3) and

sup g |Gnk| < oo (5.4)
n
k

must be satisfied, where A is as defined in the proof.
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Proof.  Suppose that B € (c4 : £,). Then there exists a positive constant K
such that

|Bxlle, < Kl[zlc,, for each x € cy. (5.5)

Inequality (5.5) is also satisfied for any sequence z = >, 7 bk as
defined in Theorem 3.2. Thus, for any F € F,

p\ 1/p
qunf,,:(z S o ) < Kl

n | keF
and (5.1) is necessary, where F denotes the collection of all finite subsets
of N.

m m k —4
S b :ank[ 3 (1)’”%]
ik aj,lbj

k=0 k=0 —1
m
Yr—1 Yk
:ank(_a b +ab )
Pt k—10k 1Ok
:_Em: nkYk—1 Zykbnk
= ak-1br = arbi
ym nm
an ()
. Z b
m
= Zankylm
k=0
where
b 1
Ak<ik)—, 0<k<n
bk Qaf
ank, = { Onn b
anby’
0, k> mn.

Since B applies to c4, the necessity of conditions (5.2) and (5.3) is
trivial.

Suppose that conditions (5.1)-(5.3) h
{ca}®. Hence Az exists. Define D =
D e (c:t,).

old. Let « € c4. Then {by }ren €
A. Since (5.1) is satisfied for D,
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Note that
m m—1
bnk Yk bmmym
b = 3 (1) B B, |
kzo KTk kzo 3, ak+ - (5.6)

Since conditions (5.3) and (5.4) hold, it follows, as in the proof of The-
orem 4.2 that

{ab:gjn b ocen

Taking the limit of (5.5) as m — oo yields

oo oo
k=0 k=0

Thus

1Bz[le, = [|Dylle, < oc.

Therefore B € (ca : £p).
Part (ii) is proved in a similar manner. O

Theorem 5.2 Let A be a reqular factorable matriz. Then an infinite ma-
triz B € (ca :c) iff (5.3) and (5.4) hold,

lima,, = o, for each ke N, (5.8)
n

and

lim > g = a. (5.9)
k

Proof. Suppose that B satisfies (5.3), (5.4), (5.7), and (5.8). Let = € ca.
Then y = Ax exists and limy,, = ¢ for some number /.
From (5.7) and (5.4),

k

> ayl < S%PZ |anj| < oo.

j=0 J

Therefore {ay} € 41.
From (5.6),

D btk =Y dnkyi
k k
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Therefore

hm Bx), Z (yr — ) + L,
k

and B € (ca : c).
Conversely, suppose that B € (¢4 : ¢). Since ¢ C {, it follows from
Theorem 5.1 that (5.4) and (5.5) hold. Define {z*)} € ¢4 by

(-1 *

k<n<k+1,
akbn

o) =

0, otherwise.

Then Az®) = {a,;.} € c for each k.
Now set « = e in (5.6) to obtain

Bx = {Z dnk} €c. U
k n
The author thanks the referee for the careful reading of the manuscript.
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