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On blocking semiovals with an 8-secant
in projective planes of order 9

Nobuo NAKAGAWA and Chihiro SUETAKE
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Abstract. Let S be a blocking semioval in an arbitrary projective plane II of order 9
which meets some line in 8 points. According to Dover in [2], 20 < |S| < 24. In [8] one
of the authors showed that if IT is desarguesian, then 22 < |S| < 24. In this note all
blocking semiovals with this property in all non-desarguesian projective planes of order 9
are completely determined. In any non-desarguesian plane II it is shown that 21 < |S] <
24 and for each i € {21, 22, 23, 24} there exist blocking semiovals of size ¢ which meet
some line in 8 points. Therefore, the Dover’s bound is not sharp.

Key words: blocking semioval, projective plane, ternary function, finite field, collineation
group.

1. Introduction

Let I = (P, L) be a projective plane. A blocking set in II is a set B
of points such that for every line [ € £,1 N B # ¢ but [ is not entirely
contained in B. A semioval in 1l is a set M of points such that for every
point P € M there exists a unique line [ € £ such that {N M = {P}. The
idea of a semioval was introduced in [1] and [9]. A blocking semioval in II
is a set S of points which is both a semioval and a blocking set.

Let II be a projective plane of order ¢ > 3, and let S be a blocking
semioval in II. Dover [3] showed that if S has a (¢ — k)-secant, 1 < k < ¢ —
1, then |S| > ((3k +4)/(k + 2))g — k. We consider whether this bound is
sharp or not, when k£ = 1. From the above Dover’s result and Dover [2], it
follows that if S has a (¢ — 1)-secant, then (7/3)¢ —1 < |S| < 3¢ — 3 and
the upperbound is met if and only if S is a vertexless triangle. Hence we
assume that |S| < 3¢ — 3 in the followings.

Let IT = (P, L) be a projective plane of order 9, and let S be a blocking
semioval with 8-secant in II which is not a vertexless triangle. Let x; denote
the number of lines of II which meet S in exactly ¢ points. Then xyp = 0
and 1 = |S| by the definition of S. By Dover [2], zg = 0. Set X(S5) =
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(z1, x2, ..., xg). If II is a non-desarguesian plane, then IT is the Hughes
plane, the nearfield plane or the dual nearfield plane by Lam, Kolesova and
Thiel [6]. We show that if II is a non-desarguesian plane, 21 < |S| < 23
and for each 7 € {21, 22, 23} there exist blocking semiovals of size i with
xg # 0 using a computer. Since the size of any blocking semioval with
xg # 0 which is not a vertexless triangle in PG(2, 9) is 22 or 23, this shows
that the Dover’s lower bound is not sharp. We remark that there are many
X (S)’s in a non-desargueian plane II as compared with X (5)’s in PG(2, 9).

2. Blocking semiovals with xg # 0

Let IT = (P, L) be a projectve plane of order q. We coordinate II using
Kallaher’s method [5, Chapter 2]. Choose four points U, V, W, I, no three
of which are collinear. Let Q = GF'(q) as a set. Then, there exists a one-to-
one correspondence a between @ and the points in W1 — (UV N W) such
that 0 = W, and 1o = I. Using the set @, II is coordinated as follows:
(1) Toapoint P € WI—(UVNWI) assign the coordinates ((b, b)), where

ba = P.
(2) If P¢ WI, and P ¢ UV, then assign to P the coordinates ((a, b)),
where PV NWI = ((a, a)), and PUNWI = ((b, b)).
(3) If Pe UV and P # V, then assign to P the coordinate ((m)), where
WPNIV = ((1, m)).
(4) To V assign the coordinate ((00)), where oo is a symbol not in Q.
Thus P = {((z, y)) |z, y € Q} U{((a)) | a € QU {oc}}. The line [ through
the points ((m)) and ((0, k)) is assigned the coordinates [[m, k]]. The line
g through the points ((c0)) and ((k, 0)) is assigned the coordinates [[oco, K]].
The line h through the points ((c0)) and ((0)) is assigned the coordinate
[[oc]]. Thus £ = {[[m, k]| | m € Q U{oc}, k € Q} U {[[oc]]}.

A ternary function F is defined on @ as follows: If a, m, k € @, then
F(a, m, k) is the second coordinate of the point ((a, 0))V N ((m))((0, k)).
Thus [[oo]] = {((z))[z € QU {oo}}, [[oo, K] = {((k, y)) [y € QY U{((c0))}
and [[m, k]] = {((z, v)) |z € Q, y = F(z, m, k)} U{((m))} for m, k € Q.

Now let II be a projective plane of order 9 and let S be a blocking
semioval in II with xg # 0 which is not a vertexless triangle. Set |S| = 17+
n. Then, by the Dover’s bound 20 < |S| < 23 and 3 < n < 6. Since zg # 0,
we may assume that UV is the 8-secant of S. Then S D {((z))|x € Q* =

@ — {0}}. Since the remaining lines [[c0, a]] = {((a, y)) | y € Q} U{((c0))}
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through ((0c0)) must also intersect S, there exists a mapping f: Q > x —

f(z) € Q such that {((z, f(z))) |z € Q} CS. Thus

S={((z, f(x))) |z € QIU{((y) |y € Q"}
U{((a;, b)) | 1 <i<n} (%)

for some a;, b; € Q(1 < i < n), where (a;, b;) # (aj, bj), 1 <i# j <nand

Theorem 2.1 ([8, Theorem 2.4]) Let S be a point set of I1 of size 17+ n

satisfying the condition (x). Then S is a blocking semioval if and only if

the following hold.

(1) For any a € Q*, there exists a unique element b € Q such that f(x) #
F(z, a, b) for all z € Q and F(a;, a, b) #b; for alli € {1,2, ..., n}.

(2) b1, ba, ..., by are pairwise distinct.

3) @3z+—— f(x) € Q@—{b1, ba, ..., by} is a surjection.

(4) If f(a;) = f(x), then x = a;.

(5) Ifa €@ (a+# ai,ag, ..., ay), then there exists x € Q (x # a) such
that f(a) = f(x).

Let l(n) be the number of distinct elements in {a1, az, ..., an}.

Lemma 2.2 ([8, Lemma 2.6]) 9 <I(n)+2n
Lemma 2.3 Ifl(n) <9, then 8 > l(n) + n.

Proof. By Theorem 2.1(4), if f(a;) = f(a;), then a; = a;. By Theo-
rem 2.1(3), (4) and (5), @ = f(Q)U{b1, ba, ..., by} ={f(x) |z € Q, = #
a; 1 =1,2,...,n)}U{f(a;) | i =1,2,...,n} U{by, ba,..., by}, where
the right-hand side of the equality is a disjoint union. This yields 9 > 1 +
I(n) +n. Thus we have the lemma. O

3. The Hughes plane

In this section, we completely determine blocking semiovals with xg # 0
in the Hughes plane of order 9 ([4]). On the field Q = GF(9), define a new
multiplication o as follows:

zy if yt=1,
— 3 : 4 _
roy=< z°y if y* = -1,
0 if y=0.
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The set Q with field addition +, forms a nearfield which is not a field. Then
the Hughes plane IT = (P, L) of order 9 is defined as follows:

7) = {I:x') y7 2] ’ x? y7 z E Q? (x7 y? Z) # (07 07 0)}7
where [z, y, z] = {(x ok, yok, zok) | k € Q*}.
L={LA"|s=1 or s€Q—GF(3), 0<m <12},

0 0 -1
where A= [1 0 1 | and LA™ = {[(z, y, 2)T(A™)] | x+soy+z = 0}.
01 0

Here 7(A™) is the transpose matrix of A™.
For B € GL(3,3) B: P 3 [z, y, 2] — [(z, y, 2)TB] € P is a collineation
of II. Set Gy = {B| B € GL(3, 3)}. Then, G, = PGL(3, 3).

Let t € Q such that t> = 14-t. Then t is a generator of the multiplicative
group of the field GF(9). Then, 7: Q@ > a+bt — a—bt € Q (a, b € GF(3))
is an automorphism of the nearfield () and 7 induces a collineation 7 of II,
that is, 7|z, y, z] = [7(x), 7(y), 7(2)]. ¢: Q > a+bt — (a+b) +bt €
Q (a, b € GF(3)) is also an automorphism of Q). Let ¢ be the collineation of
IT induced by ¢. Set G2 = (7, @). Then, G2 is isomorphic to the symmetric
group of degree 3.

Theorem 3.1 ([10]) (1) Autll= GGy = Gp x Ga.

(2) AutIl has two orbits Py = {[z, vy, 2] | z,y, z € GF(3), (z,y, z) #
(0,0,0)} and P — Py on P.

(3) (AutIl)(g o 1) has four orbits {[0, 0, 1]}, Q1 = {[a, b, ] | a, b, c €
GF(3), (a,b) # (0,0)}, Qo:=[t*,1,0](Aut )y ¢ 17, 23:=[0, 1, ] (Aut D)o g 1]
on P.

(4)  (AutID)ys 1, has four orbits {[t°, 1, 0]}, Ay := {[t% 1, 0], [+*, 1, 0]},
Ag :={[t, 1, 0], [¢t7, 1, 0], [?, 1, 0]}, Az := [0, 1, t](Aut I)ps 1 ) on P —Py.

Let S be a blocking semioval in II with xg # 0. Let U, V, W, I be four
points of II, no three of which are collinear, and let S O UV — {U, V'}.
From Theorem 3.1, we may consider the following six coordinatizations by
((,)), (()) for the points and [[ , ]], [[]] for the lines in II (see Section 2).
Namely when U = [0, 0, 1], there are three cases of V. € Oy, V € Q9 or
V € Q3, and when U = [t°, 1, 0], there are three cases of V € A1, V € Ay
or V € Az as follows.
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Casel: U =[0,0,1] = ((0), V = [0,1,0] = ((c0)), W = [1,0,0] =
((0,0)), IT=11,1,1] = ((1, 1)).
Case2: U =10,0,1] = ((0), V = [£5,1,0] = ((00)), W = [0, 1, 0] =
((0,0)), I=1[1,1,1]=((1, 1)).

Case3: U =10,0,1 = ((0), V =[0,1,4 = ((c0)), W = [1,0,0] =
(0,0), I=[1,1,1] = ((1, 1)).

Case4: U = [t°,1,0] = ((0)), V = [t5 1,0] = ((e2)), W =[0,0, 1] =
((0,0)), I =1[1,1,1] =((1, 1)).

)
Case5: U = [1°,1,0] = (0), V = [t, 1,0] = ((c0)), W = [0,0, 1] =
((0,0)), I=1[1,1,1]=((1, 1)).
Case 6: U = [1°,1,0] = (0), V = [0, 1, 4] = ((c0)), W = [1,0, 0] =
(0, 0)), T=1[1,1,1] = ((1, 1))

First, we consider Case 6. We want to determine the ternary function
F:Q xQ x@Q — @ corresponding to the coodinatization of the case.
Since the line through the point [1, 0, 0] and the point [1, 1, 1] is L1 A7 =
{[z, 1, 1] | = € Q} U{][1, 0, 0]} and the line through the point [0, 1, {] and
the point [t°, 1, 0] is L;s A%, the coordinates ((x, x)) for x € @Q can be
determined for example as follows:

((07 0)) = [17 0, 0]7 ((tgv tg)) = [07 1, 1]
and ((z, z)) =[z,1,1] for ze€Q— {0, t}.

For the coordinates ((z, z)), all coordinates ((z, v)), ((2)), [[z, y]], [[2]] and
the ternary function F' can be uniquely determined by a computer research
as follows:
k
!
m — F(1,m, k)
L [ofi e[ [-1]e [ ]]
0 0 1 2 = 2 B s R L
T 1 [ "o | ¢t | ]| 3| -1]¢?
tofl ot [ 23| =1 0| 1 |t |5
2220 | o] 1 [ 8|t | -1

—1 | =1 | 3 | 8 | 5 | &7 | t2 t 1 0
ot | =1 T |21 [t 0 | ¢
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k
1

m — F(t, m, k)

[ [of1[efe[# 1] [6]4]
0 0 1 t 2] 3 | =1 | 5 | 8 | 7
1 t 0 | ¢3 | ¢ | =1 ¢ | ¢7 1 | t°
t 1 | 2|5 | 0 | td | ¢ | —1]¢ t
2 3 t | tT | td 1 |5 | 2] -1]0
t3 2|3t —-1] 0 1 t | t7 | 8
—1 || tT > =1t | 5| 0 | 3 | ¢2 1
o t6 | t7 | t2 1 t |t 0 | t° | -1
t6 =1 1 | |7 t | 5| 0 | t2
7|l =1 5| 0 | 7 | 2 | ¢° 1 t | ¢
m — F(t*, m, k)

| | L[ e [R]85+ ]
0 0 1 to| 2| 3| 1| 5| 8|7
1 28| 1 | 3| 7 t | =1t | o0
t t" ] 0 | =1 ¢° 1 | t2 | t8 t 3
2 | =1 | 8 | 7 | ¢2 1 ¢ 1] o0 t
t3 t6 | t7 | t2 t | =1t ] o0 1 | t°
-1 ¢ t | t° 1 0 | t7 | t2 | —1]| t8
5 t | 2 | tT | -1t 0 1 | 3| t2
o || —1] ¢ ]| 0 | 8 t | o | 7| t2 1
t7 1 | ¢ | ¢ 0 | t5 | ¢ t | 7| -1
m  —  F(t3, m, k)

| JoJaiJ e[ ][ [85]4]
0 0 1 t | 2| 3| 1| td | 8|7
1 Bt | -1 1 0 | t7 | t2 t | 6
t —1 | 3 | 5 | 6 | ¢2 t | 7 1 0
2 t7 | ¢S 1 t | t° 0 | —11] ¢ | ¢
t3 t | 2| 0 | 5| t7 | ¢ 1| ¢ | -1
1| | =1 3|t |t 1 || 0 | ¢
t5 2] 0 | 0| 3| —1]¢° t | 7|1
t6 1 t | tT 0 | 8| 2| 3| -1 ¢t
t7 o |7 |2 1| 1 || 0 |t t
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0 0 1 t 2] 3 | =1 |t | 8 | 7
1 —1 |t | O] 0 [ 2| 3| 5| 7 1
t o |t |3 | -1 ¢t 1 0 | t2 | ¢°
t2 t 2| -1 ¢ 0 | t7 1 |t | t8
t3 5 | =1 6 | 7 1 t || 0 |t
-1/ ¢ | o0 1 | 6 | =1 5 | t7 | ¢ | ¢
5 1 |3 0 | 5 |7 |0 | 2| 1] ¢
16 7| 8 | ¢2 1 || o0 t |t | -1
E | = T LA I R C R = S I | 0
m  —  F(t5, m, k)

N N N 0 N Y I A
0 0| 1 N IR S B I T T -
1 O | =1 ] t2 | &7 | ¢© 1 t 0 | 3
t t3 t 0 1 [ &7 |8 | 2 | 5 | -1
t2 o | t7 |3 | 1| t |t 0 1 | t2
3 7| 0 1 | 3| 5|2 |0 | -1 ¢t
-1 1 | ¢S | ¢" | o | ¢2 t | =1 3 | ¢°
|| 1] 2 | 5| t8 7|3 t 0
t6 2 5| -1 ¢ 0 |t | 1 | ¢ | ¢
t7 t| 3| 8> =1 0 | t7T | 2|1
m —  F(t5, m, k)

C To[i[e]ef[F[i[Fr[e]r]
0 0 1 t 2] 3| =1 td | 8 | 7
1 | 3 |7 | =1 1 | tO] 0 | t
t | =1 1 | ¢ | ¢ | ¢ t 0 | t2
2l =1 e | 2o |7 ¢t | ]3] 1
t3 1 t | =1t | 2| 0 |t || ¢
-1 t |20 | B3] 1| | -1
t° t7 | 8 | ¢3 t 0 | t2 | —-1]1|¢°
t6 B3]t 8 | P | -1 1 | ¢ t 0
t7 2| 0 | t° 1 t | 7T | 3| =1 ¢8

443
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k
l
m — F(t7, m, k)

L o[t lef[e[&][-1[F ][]
0 0 1 t | 2| 3| 1| 5| 8|7
1 T 2| 5| | ¢ 0 1] ¢ | -1
t 2| 8 | t7 |t 0 | t® | 3| -1] 1
2 1|3 0 |8 | 1] ¢ t | 7|t
| R T L L = 0

V| = A R B = U I O B O T 2

Then, S is described by (*) of Section 2. The elements ay, ..., a,, b1, ...,

b, and the mapping f from @ to @ must satisfy the conditions (1), ..., (5) of
Theorem 2.1. Let [(n) be the number of distinct elements in {ay, ..., a,} as
in Lemma 2.2 and Lemma 2.3. Let Q = {a1, ..., @n, Gnt1s -5 Qopn_in)}

— (b1, s by bty - bo ).

Suppose that |S| = 20. Then, n = 3 and [(3) = 3 by Lemma 2.2. There-
fore, by (2), ..., (5) of Theorem 2.1, @ = {ai, ..., a9} = {b1, ..., bo},
and we may assume that f(ay) = by, f(a2) = bs, f(az) = bg, flas) =
flas) = by, flag) = f(ay) = bg, f(ag) = f(ag) = byg. But there is no
(a1, ..., ag, by, ..., bg) satisfying the condition (1) of Theorem 2.1 using a
computer.

Suppose that |S| = 21. Then, n = 4 and [(4) = 1, 2, 3 or 4. Assume
that [(4) = 3. Then, Q = {a; = a2, as, a4, ..., a1p}, and we may assume
that f(a1) = bs, f(a3) = be, f(aq) = by. There are the following two cases.
The first case is f(as) = f(as) = f(a7) = f(as) = bs, f(ag) = f(a10) = bo.
Then, we get (2) or (4) in Appendix as X (S) and S, where each S is an
example. The second case is f(as) = f(ag) = f(a7) = bs, f(ag) = f(ag) =
f(a10) = byg. Then, we get (1) in Appendix as X (S) and S, or (2), (4) in
Appendix as X (S). By a similar argument, when [(4) = 4, we get (5) in
Appendix. For the other cases, we can not get new X (5)’s.

Suppose that |S| = 22. Then, n =5 and I(5) = 1, 2 or 3 by Lemma 2.3.
When [(5) = 1, (7), (8), (10) or (12) in Appendix holds. When [(5) = 2,
(9), (11) or (13) in Appendix holds except X (S) obtained already. When
[(5) = 3, new X(5)’s do not hold.

Suppose that |S| = 23. Then, n = 6 and I(6) = 1 or 2 by Lemma 2.3.
When [(6) = 1, (15), (16) or (17) in Appendix holds. When [(6) = 2, new
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X (S)’s do not hold.

Case 1 yields (8), (11), (15), (16) or (17) in Appendix as X (5).

Case 2 yields (2), (3), (6), (8), (10), (11), (12), (13), (15), (16) or (17)
in Appendix as X (.5), where for example S of (3) or (6) in Appendix holds
for X (S) of (3) or (6) in Appendix, respectively.

Case 3 yields (7), (8), (10), (11), (12), (13), (15), (16) or (17) in Ap-
pendix as X (.59).

Case 4 yields (2), (8), (11), (15), (16) or (17) in Appendix as X (5).

Case 5 yields (8), (10), (11), (13), (14), (15), (16) or (17) in Appendix
as S(X), where for example S in (14) in Appendix holds for X (5) of (14)
in Appendix. Thus we have the following theorem.

Theorem 3.2 Let S be a blocking semioval in the Hughes plane of order
9 with xg # 0 and |S| # 24. The following hold:
(1) |S| =21, 22 or 23.
(2) If|S| =21, then
X(S)=(21,43,16,6,1, 3,0, 1), (21, 44, 14,6, 3, 2,0, 1),
(21, 44, 16,0, 9, 0, 0, 1), (21, 45, 11,9, 2, 2,0, 1),
(21, 45, 12,6, 5,1,0,1) or (21,46,8,12,1,2,0,1).

(3) If|S| =22, then

X(S)=(22,33,23,6,5,1,0,1), (22,34, 20,9, 4, 1, 0, 1),
22,34, 21,6,7,0,0,1), (22, 35,17, 12, 3, 1, 0, 1),
22, 35,18, 9, 6, 0,0, 1), (22, 36, 14, 15, 2, 1, 0, 1),

22,36, 15,12, 5,0,0,1) or (22,37, 12,15,4,0,0,1).

o~ o~ o~ o~

(4) If |S| =23, then
X(S)=(23,21, 32,12,0, 1, 1, 1), (23,23, 27,15,1,0,1, 1)
or (23,24,24,18,0,0, 1, 1).
4. The nearfield plane

In this section, we completely determine blocking semiovals with xg # 0
in the nearfield plane of order 9. Let Q = GF(9) with the new multiplication
o and the field addition + be the nearfield of order 9 defined in Section 3.
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Then, the nearfield plane I = (P, L) of order 9 is defined as follows:

P={(z,y) |z, yeQtU{(a)|aec QU {oc}},
L={[m, k] |meQuU{cc}, ke Q}U{[oo]},

where [m, k] = {(z, zom+ k) |z € Q}U{(m)} for m € Q.

Theorem 4.1 ([8], Section 8) Let H be the full collineation group of II.
(1) H acts transitively on [c0].

(2) Hs) = Hy and H ) acts tansitively on [0o] — {(0), (00)}.

(3) H acts 2-transitively on {(x, y) | z, y € Q}.
(4)

4)  The translation group of I1 acts transitively on {(x, y) | z, y € Q}.

Let S be a blocking semioval with xg # 0. Let U, V, W, I be four
points of II, no three of which are collinear, and let S O UV — {U, V'}.
From Theorem 4.1, we may consider the following four coordinatizations by
((, ), (()) for the points and [[ , ]], [[]] for the lines in II (see Section 2).
Namely we will take [o0o] as the 8-secant in the last two cases of the following.

Case 1: U = (0,0) = ((0)), V = (0, 1) = ((00)), W = (1, 0) = ((0, 0)),
I=(1,1)=((1,1)).
Case 2: U = (0, 0) = ((0)), V = (00) = ((00)), W = (0) = ((0, 0)),
I=(1,1)=((1,1)).
Case 3: U = (1) = ((0)), V = (00) = ((00)), W = (0, 0) = ((0, 0)),
I=(1,0)=((1, 1)).
Case 4 U = (0) = ((0)), V = (50) = (), W = (0, 0) = ((0, 0)),
I=(1,1)=((1,1)).

Then, S is described by (x) of Section 2. The elements ay, ..., ap, b1, ...,
b, and the mapping f must satisfy the conditions (1), ..., (5) in Theo-
rem 2.1. By a similar argument as in Section 3, we have the following.

Case 1 yields (2), (8), (12), (10), (7), (13), (11), (15), (16) or (17) in
Appendix as X (S) and S is for example

{7, 1), (1), (1, 1), (2%, 1°), (¢, 1), (t° 1%),
(_17 t3)7 <_17 0)7 (tﬁv 0)7 (t2)7 (17 0)7 (tga t5)7
(#°,17), (00)} U {(0, 2) |z € @ — {0, 1}},
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{(17 1)7 (t57 1)7 (t7a 1)7 (_13 1)a (ta 1)a (tgv 1)a
(=1,1%), (1, ), (£, ), (7, 1), (t°), (¢°, —1),

(%, 0), (1, 0), (00)} U{(0, 2) |z € Q — {0, 1}},
{(#, ), (2%, =1), (1%, 12), (¢, ¢°), (¢, 17), (", 0),
(%, 1), (=1, &%), (t7, 1), (1, 17), (¢, —1), (%, ¢7),
(2, =1), (t, %), (00)} U{(0, 2) [z € @ — {0, 1}},
{(17 t)? (_17 t6)7 (t ’ _1)7 (t67 t2)7 (t27 tS)a (t7)7
(t77 t5)7 (_17 t2)7 (t5> t3)a (17 tG)v (L 1)7 (tgv t3)7
(t°,0), (1, 0), (00)} U{(0, 2) | € Q — {0, 1}},
{(t5’ t5)7 (tga _1)7 (t67 t2)7 (tz’ t3)’ (tv t7)’ (t7a 0)7
(t57 1)7 (t)v (_17 t5)7 (t37 t5)7 (t77 t)v (t57 t7>7
(t°, %), (1%, £), (00)} U{(0, 2) | = € @ — {0, 1}},
{10, (1% 1), (7, 1), (2%, 1), (£° ¢%), (0),
(t27 t3)7 (t7’ t5)7 (_17 t2) (t5 tg) ( t)v (t3’ t2)7
(t% %), (=1, £°), (00)} U{(0, 2) | = € Q — {0, 1}},

{<17 t)7 <_17 t6)7 (t3’ _1)7 (t27 t3>7 (_17 1)7 (tv t7)7
(0)7 (_L tg)a (t6a t)a (tv t2)> (t7a _1)7 (ta t)7
(t37 t3)’ (_17 _1)7 (OO)} U {(07 :L’) | HES Q - {07 1}}7
{(17 1)7 (t5’ 1)7 (t67 1)) (t77 1)7 (_17 1)7 (ta 1)7
(t27 1)7 <t7)7 (_17 t3>7 (t67 t)? (t? tz)a (t57 t6)7
(t7, =1), (%), (1, 0), (c0)} U{(0, 2) | z € @ — {0, 1}},
{(17 1)7 (t57 1)> (tGa 1)7 (t7a l)a (_17 1)7 (t27 1)>
(tgv 1)7 (t2’ t3)7 (t57 _1)7 (t5)7 (t37 t6)7 (17 t5)7
(2, 0), (#2), (1, 0), (00)} U{(0, 2) | 2 € Q — {0, 1}} or
{(17 1)7 (t57 1)7 (tGa 1)7 (t77 1)’ (_17 1)7 (t, 1)7
(t37 1)7 (t7 tY)v (t7’ t5)’ (*17 t2)a (t57 t3)7 (tﬁa O)a
(t3,0), (%), (1, 0), (00)}U{(0, 2) | z € Q—{0, 1}}, respectively
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Case 2 yields (6), (3), (2), (8), (10), (7), (11), (9), (15), (16) or (17) in
Appendix as X (S), where S is for example

{(17 1)’ (t7 tY)v (tﬁ’ t)7 (t5)7 (17 _1)7 (ta tg)v
<t67 t5)7 (t)v (t27 0>7 (t37 0)7 (_L 0)7 (t57 0)7

(t", 0} U{(0, 2)|lz € Q*},

{(ts)’ (tﬁ)v (t7)7 (_1)’ (0)7 (1’ 1)) (_17 _1)’
(8, £9), (£, 87), (£, 1), (8% ©°), (£, £°),

", t9HYU{(0, z)|z € Q*} or

{(1, 1), (1, 2°), (1, 2%, (¢, %), (¢, £°), (1, 1),
(£, 0), (2, %), (=1, 1%), (t7, ), (¢), (¢, 1),
(t°, 1), (t° )y U{(0, 2)|z € Q"}
for X(S) of (6), (3) or (9) in Appendix, respectively.
Case 3 yields (8), (15) or (17) in Appendix as X (5).
Case 4 also yields (8), (15) or (17) in Appendix as X (S). Thus we have

the following theorem.

Theorem 4.2 Let S be a blocking semioval in the nearfield plane of order
9 with xg # 0 and |S| # 24. The following hold:

(1) |S| =21, 22 or 23.

(2) If|S| =21, then

X(S)=(21, 44,16,0,9,0,0,1) or (21,46,8,12,1,2,0,1).
(3) If|S| = 22, then

X(S)=(22,33,23,6,5,1,0, 1), (22,34, 20,9, 4, 1,0, 1),
(22, 34, 21, 6,7, 0,0, 1), (22,35, 17,12, 3,1, 0, 1),
(22, 35, 18, 9, 6, 0, 0, 1), (22, 36, 14, 15, 2, 1, 0, 1)
or (22,36, 15,12, 5,0, 0, 1).

(4) If |S| = 23, then

X(5)=(23,21,32,12,0, 1,1, 1), (23,23,27,15,1,0, 1, 1)
or (23,24, 24,18,0,0, 1, 1).
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5. The dual nearfield plane

In this section, we completely determine blocking semiovals with xg #
0 in the dual nearfield plane of order 9. Let Q@ = GF(9) with the new
multiplication o and the field addition + be the nearfield plane of order 9
defined in Section 3. Let IT = (P, £) be the nearfield plane defined using
Q in Section 4. Let t € GF(9) such that t* = 1 +¢. Then GF(9)* = ().
Set G = (AutlIl)(g ), and let T be the translation group of II. Then, T' =
{t(a, b)|a, b € Q}, where t(a, b): (z, y) — (z+a, z+b), Aut Il = GT and
T is a normal subgroup of AutII.

Theorem 5.1 ([8], Section 8)

(1) AutIl has two orbits {[oo]}, L — {[oo]} on L.

(2) (AutIl), o) 4s transitive on {l € L |1 > (00), [ # [00, 0], [00]}.

(3) (AutIl)s, o) has two orbits T'y := {[m, k] | m € Q*, k € Q} and I'y :=
{0, k] [k eQ} on{l e L]1Z (o0)}-

Proof. Since G is transitive on [oo], (1) holds.
Since G((0), [00, 0]) = {¢ € G | ¢ is a perspectivity with the center (0)
and the axis [00, 0]} = {(z, y) — (zoa, y) | a € Q*}, (2) holds.
(AutIl)[o, o) fixes (00) and (0). Since I is a translation plane, {[0, ] |
k € Q} is an orbit of (AutIl)i, g. Since G((o0), [0,0]) = {(z,y) —
(x,yoa)|a€ Q"} and II is a translation plane, {[m, k] | m € Q*, k € Q}
is an orbit of (AutIl)y o). Thus, (3) holds. O

Let S be a blocking semioval in the dual plane II¢ of the plane IT with
g # 0 and |S| # 24. Let U, V, W, I be four points of II?, no three of
which are collinear, and let S O UV — {U, V'}. From Theorem 5.1, we may
consider the following four coodinatizations by (( , )), (()) for the points
and [[, ], []] for the lines in II¢ (see Section 2), namely four cases of V =
[OO},V:[OO, 1],V€F1 or V eTls.

Case 1: U = [oo, 0] = ((0)), V = [o0] = ((o0)), W = [0, 0] = ((0, 0)),

I = [1, 1] = ((1, 1)).

Case2: U = [OO, O] = ((0))7 V= [007 1] = ((OO))7 W= [07 0] = ((07 O))v
I=1[1,1=((1,1)).

Case 3: U = oo, 0] = ((0)), V = [0, 0] = ((00)), W = [o0] = ((0, 0)),
I=11,1=((1,1)).
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Case 4: U = o0, 0] = ((0)), V' = [1, 0] = ((00)), W = [oc] = ((0, 0)),
I=[-1,1] = ((1, 1)).

Then, S is described by (%) of Section 2. The elements a1, ..., an,b1,...,
b, and the mapping f must satisfy the conditions (1), ..., (5) in Theo-
rem 2.1. By a similar argument as in Section 3, we have the following.

Case 1 yields (3), (8), (15) or (17) in Appendix as X (S) and S is for
example

{[17 1]7 [t, t2]7 [t27 tg]v [t37 t]? [17 _1]7 [t7 t6]7
[t27 t7]7 [tgv t5]> [_17 O]a [t57 OL [t6> 0]’ [t77 O]a
[0, 0} U{[o0, 2] | z € Q"},

{[Oa 1]7 [O’ t]? [07 tQ]v [Oa _1]7 [07 t6]7 [07 0]>
[17 t3]’ [tv t3]7 [t27 t3]7 [_17 t3]7 [tS’ t7]7 [t57 t7]7
[t ], [T, £°]} U{[oo, 2] | 2 € Q7},

{[07 1]7 [07 t]? [07 tQ]ﬂ [07 tg]a [07 _1]7 [07 t5]7
[O’ 0]7 [1’ t6]7 [t’ tG]v [tQ’ t6]7 [_1’ t6]’ [t57 tﬁ}v
6, 15), (3, 7], [t7, ¢t} U {[o0, 2] | z € Q*} or

{[0’ 1]7 [O’ t]? [07 tQ]v [0’ tg]v [0? _1]7 [07 t5]v
[07 0]7 [17 t6]7 [t7 t6]7 [_17 t6]7 [t57 t6]7 [t27 tqv
[t3, 7], [t5, 7], [t", ]} U {[oo, 2] | © € Q*}, respectively.

Case 2 yields (8), (15), (16) or (17) in Appendix as X (S), where S is
for example

{1, 1, [, ¢, [¢7, ), [0, 1], [, ¢, [, £7),
[0, 00, [°, £, [¢7, #7], %, ], [£°, #7), [=1, ),
[£°, £), [£, £°], [1, 7], [oo]} U {[o0, 2] |z € @ — {0, 1}}
for X (S) of (16) in Appendix.

Case 3 yields (6), (8), (10), (11), (15), (16) or (17) in Appendix as
X(S5), where S is for example

{10, #], [0, #2], [0, #°], [0, —1], [0, ¢°], [1, 1], [-1, 1],
[t ¢7], [£%, 70, [t &), [t%, #°), [oo, 1),
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[oo, £°]} U{[z, 0] | = € Q},
{[17 1]7 [tv t]’ [t2v t2]’ [tsv ts]’ [t57 t5]7 [OO’ _1]7
[t ¢7), [t ¢7), [, ¢7), [, 2], [0, 2, [0, 2°),
1, -1}, [t, =1]} U{[z, 0] | z € Q@"} or
{[17 1]7 [t7 t]? [tﬁv t6]7 [t27 tg]’ [_17 t5]7 [OO, _”7
[t6a t7]7 [17 t2]7 [t’ t2]7 [t67 tz}v [tB? tz]v [t67 _1]7
[tv _1]’ [07 _1]} U {[aj, O] ’ T € Q*}

for X(5) of (6), (10) or (11) in Appendix, respectively.
Case 4 yields (8), (7), (13), (11), (15), (16) or (17) in Appendix as

X(S), where S is for example
{[_17 1]7 [t7> tQ]v [t6> t3]’ [Ov _1]v [t37 t5]7 [007 _1]’
[t3, 7], [t7, 7], [0, £7], [t%, %, [£3, 9], 1, ¢9),

[tgv t]? [t67 t]} U {[x7 0] ’ T € Q - {1}} or
{[%, 1], [t7, 2], [0, 1], &%, ], [¢7, 11, ¢, £°),
[£2, £7], [o0, £°], [o0, t7], [o0, 1], [o0, £°], [0,
[t. ], [t £} U {[z, 0] | 2 € @ — {1}}

for X (S) of (7) or (13) in Appendix, respectively. Thus we have the following
theorem.

Theorem 5.2 Let S be a blocking semioval in the dual nearfield plane of
order 9 with xs # 8 and |S| # 24. The following hold:
(1) |S| =21, 22 or 23.
(2) If|S| =21, then

X(S) = (21, 44, 16,0,9,0,0,1) or (21,46,8,12, 1,2, 0, 1).
(3) If|S| = 22, then

X(S)=(22,33,23,6,5,1,0, 1), (22,34,20,9,4,1,0,1),
(22, 35,17, 12, 3, 1, 0, 1), (22, 35, 18, 9, 6, 0, 0, 1)
or (22,36, 15,12, 5, 0, 0, 1).
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(4) If|S| = 23, then

X(5)=(23,21,32,12,0, 1,1, 1), (23,23,27,15,1,0, 1, 1)
or (23,24,24,18,0,0,1, 1).

Appendix
(1) X(S)=(21,43,16,6,1,3,0,1)

S={[t?, 1, 1], [t°, 1, 3], 1,0, ¢, [t? 1, 3], [t3, 1, —1],
%, 1, 5], [-1,1,0], [1,0, ¢, [0, 1, ¢, [-1, 1, 1], [t, 1, 1],
(1, 1,7, [t7, 1, ¢, [t3, 1, 1], [¢, 1, 9], [£2, 1, ¢3], %, 1, —1],
[1,0,1], [1, 1, £, [-1, 1, 7], [t, 1, t°]}

(2) X(S)=(21, 44, 14,6, 3, 2,0, 1)

S={[t% 1,3, [t3, 1, —1], [¢5, 1,¢%], [1, 1, %], [1, 1, 0],
[t3, 1, ¢2), [t3, 1, %], [0, 1, 7], [t, 1, ¢2], [1, 1, ¢7), [¢3, 1, ],
°, 1, £, [t°, 1, ¢7), [, 1, 1], [¢7, 1,¢%], [¢% 1, ¢%],
[t°, 1, —1], [1,0,1], [1, 1, 3], [-1, 1, ¢7], [t, 1, &)}
(3) X(S)=(21, 44, 16,0, 9,0, 0, 1)
S={[t, 1, 3], [t* 1,15, [-1, 1, ¢°], [1, 0, %], [t7, 1, —1],
[t%, 1, 1], %, 1,2, [1, 1, —=1],[1, 1, 0], [0, 1, %], [0, 1, ¢],
[t3, 1, ¢7), [£3, 1, ¢%], [¢°, 1, 1], [t°, 1, ¢], [, 1, 3], [t°, 1, ¢7)],
[t°, 1, —1], [t°, 1, 9], [t°, 1, t%], [t°, 1, t"]}
(4) X(S)=(21,45,11,9,2,2,0,1)
S={[0,1,t7], [0, 1, ], [t7, 1, 3], [t, 1, 1], [0, 1, 0],
[t°, 1, 2], [t5, 1, %, [£3, 1, 1], [1, 1, 9], [-1, 1, ¢3],
(1,0, =1], [£3,1,¢7), [£3, 1,4, [£3, 1, 1], [t 1, %], [, 1, ¢7),
[t°, 1, =1], [1,0,1], [1, 1, 3], [-1, 1, ¢7], [t, 1, £5]}
(5) X(S)= (21, 45,12,6,5,1,0,1)
S={[1,1,1], [t, 1, 1], [t*, 1, 3], [0, 1, 1], [t7, 1, 3],
[t%, 1, ], [¢3, 1, —1], [0, 1, £3], [¢3, 1, 0], [t7, 1, 0],
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[_17 ]" O]’ [t7 ]" 0]7 []‘7 O? 0]7 [t?)? 1’ 1]7 [t7? ]‘7 t6]7 [t27 ]" t3]7
[t° 1, —1], [1,0,1], [1, 1, 3], [-1, 1, 7], [t, 1, £°]}

(21, 46, 8, 12,1, 2, 0, 1)

{[1, 1, 0], [t3, 1,0], [-1, 1, 0], [1,0,0], [5 1, 0],

[t, 1,0], [t, 1,9, [t7, 1, 3], [¢", 1, %], [0, 1, —1], [0, 1, 1],
[t2, 1, 1], [t3, 1, —1], [t°, 1, 1], [£°, 1, ¢], [¢°, 1, 3], [t°, 1, 3],
[t°, 1, —1], [t°, 1, 7], [t°, 1, %], [¢°, 1, t"]}

(22, 33, 23,6, 5, 1,0, 1)

{0, 1, ¢7], [0, 1, ], [0, 1, ¢5], [0, 0, 1], [0, 1, t7],

0, 1, £, [t° 1, 0], [t", 1, 0], [1,0,¢, [1,1,t7], [t', 1, 1],
1, 1, t3], [t7, 1,4, [1,1,0], [£3, 1, 1], [t", 1, %, [t%, 1, &7,
[t° 1, =1], [1,0,1], [1, 1, 3], [-1, 1, 7], [t, 1, £°]}

(22, 34, 20, 9, 4, 1, 0, 1)

{[-1, 1,9, [t, 1, =1], [¢°, 1, ¢%], [£2, 1, ¢7), [£3, 1, t7),

[t 1,0], [-1, 1, —1], [t3, 1, 1], [0, 1, ¢?], [t*, 1, t9], [t, 1, %],
[t7, 1, —1], [£3, 1, ¢?], [1, 1, ¢], [£3, 1, 1], [t7, 1, %], [¢%, 1, 3],
[t° 1, —1], [1,0,1], [1, 1, 3], [-1, 1, 7], [t, 1, £°]}

(22,34, 21,6,7,0,0,1)

{[t% 1, ¢, [£3, 1, 1], [¢°, 1, 3], [t, 1, ¢9), [£3, 1, ¢7),

[1,1,0], [t, 1, £, [t", 1, %], [0, 1, %], [-1, 1, ¢3], [t, 1, 8],
1,1, 1]7 [t, 1, ¢%), [0 1, &%), [3, 1, 1], [¢7, 1, 65, [¢2, 1, 47,
[ 1]7 [17 Oa 1]7 [17 1a t2]7 [_17 17 t7}, [t, 17 tS]}

(22, 35, 17,12, 3,1, 0, 1)

{=1, 1,2, [1,0, 7, [, 1, 87, [, 1, #7], [, 1, #°],

[t° 1,0], [-1,1, =1], [t3 1, 1], [0, 1, ], [¢3, 1, t9),

[t7, 1, ¢°], [¢3, 1,¢7], [1,0,¢5], [¢3, 1,¢], [¢3, 1, 1], [t, 1, ¢9),
[, 1, 6%, [t% 1, =1], [1,0,1], [1,1,¢], [-1,1,¢7], [t, 1, £°]}
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X(S) = (22,35,18,9,6,0,0, 1)

S={[-1,1,, [t, 1, —1], [1,0, ], [t°, 1, #3], [~1, 1, #°],
[t°, 1,0], [¢3,1,1], [0, 1, £3], [t% 1,¢7], [1, 1, —1], [¢3, 1, £7],
[—1,1,¢], [¢t", 1, ¢, [1,0, 1], [£3, 1, 1], [t7, 1, t°],
[t2, 1, %], [t% 1, —1], [1,0,1], [1, 1, %], [-1, 1, ¢7], [t, 1, £°]}

X(S) = (22, 36,14, 15,2, 1, 0, 1)

S={[1,0,#], [t",1,¢7), [£° 1,3, [t3, 1, =1], [t, 1, t9],
[1,1,0], [1,1,1], [0, 1, t7], [t, 1, ¢*], [t', 1, —=1], [-1, 1, —1],
%, 1, t] [t2, 1,49, [1,1,¢7], [£3, 1, 1], [t', 1, %], [t% 1, ¢3),
[t% 1, —1], [1,0, 1], [1, 1,3, [-1, 1, ), [t. 1, t°]}

X(S) = (22, 36, 15, 12, 5, 0, 0, 1)

S={[1,1,1], [-1, 1,9, [1,0, ], [t°, 1, %], [1,0, t°],
[t3,1, %], [1,1,0], [t', 1,3, [-1, 1, 3], [ 1, 1], [1, 0, —1],
[t, 1, t], 0,1, %, [1,0,¢7], [¢3,1,1], [t7, 1, 9], [+3, 1, 3],
(%, 1, —1], [1,0,1], [1, 1,3, [-1,1,¢7), [t, 1, 5]}

X(S) = (22, 37,12, 15,4, 0, 0, 1)

S={[1,1,1], [£5 1, =1], [-1, 1, ¢], [t 1, ], [-1, 1, —1],
[t7, 1, ¢2), [£5, 1, ¢%], [t7, 1, ¢7), [¢3, 1, ¢3], [-1, 1, 1],
[t2, 1, 1], [t3, 1, ¢3], [0, 1, —1], [t, 1, 1], [0, 1, 0], [1, 1, O],
[t*, 1, 0], [£°,1,0], [-1, 1, 0], [t° 1,0], [¢t7, 1,0], [1,0, 0]}
X(S)=(23,21,32,12,0,1, 1, 1)
S={[1, 1, 1],
[t3, 1, 7],

]
[ 3]

(7,1, t3] t, 1, —1], [t°, 1, ¢?], [t3, 1, 7],

[t°, 1,0], [t, 1,1], [t% 1,7, [0, 1, —1], [t3, 1, 3],
1, 0, ], [t2,1, —1], [1, 1, ¢, [t3, 1, 1], [t7, 1, %],
. [t%, 1, =1], [1,0,1], [1,1,¢%], [-1,1,¢7), [t, 1, £}

X(S) = (23,23,27,15,1,0, 1, 1)

S={[1,1,1], [t, 1, =1], [1,0, ], [£° 1,3, [t*, 1,17,
[t37 17 t5]7 [t67 17 0]) [ta 1) 1]7 [tﬁv ]-a t2]7 [07 17 *1]3 [t37 17 t3]a
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(2,1, 6], [1, 1, 6°], [, 1, ¢9), [, 1, ¢], [¢%, 1, 1], [t7, 1,19,
[t2, 1, %], [t° 1, —1], [1,0,1], [1, 1, %], [-1, 1, ¢7], [t, 1, £°]}

X(S) = (23, 24, 24, 18, 0, 0, 1, 1)

S={[-1,1,, [t, 1, =1], [1, 0, 3], [t°, 1, 3], [t*, 1, t7],
[t3, 1, ¢°], [t° 1,0], [t 1,45, [-1,1,¢°), [0, 1, ¢7], [t, 1, 2],
[t, 1, 7], [1,1, 8], [¢£3, 1,45, [¢5,1,¢], [¢3, 1, 1], [t, 1, ¢9),
[t%, 1, 3], [t% 1, —1], [1,0,1], [1, 1, %], [-1,1,¢7], [t, 1, t°]}
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