
Hokkaido Mathematical Journal Vol. 35 (2006) p. 321–364

Navier-Stokes equations in a rotating frame in R3

with initial data nondecreasing at infinity
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Abstract. Three-dimensional rotating Navier-Stokes equations are considered with a

constant Coriolis parameter Ω and initial data nondecreasing at infinity. In contrast to the

non-rotating case (Ω = 0), it is shown for the problem with rotation (Ω 6= 0) that Green’s

function corresponding to the linear problem (Stokes + Coriolis combined operator) does

not belong to L1(R3). Moreover, the corresponding integral operator is unbounded in the

space L∞σ (R3) of solenoidal vector fields in R3 and the linear (Stokes+Coriolis) combined

operator does not generate a semigroup in L∞σ (R3). Local in time unique solvability of the

rotating Navier-Stokes equations is proven for initial velocity fields in the space L∞σ, a(R3)

which consists of L∞ solenoidal vector fields satisfying vertical averaging property such

that their baroclinic component belongs to a homogeneous Besov space Ḃ0
∞, 1 which is

smaller than L∞ but still contains various periodic and almost periodic functions. This

restriction of initial data to L∞σ, a(R3) which is a subspace of L∞σ (R3) is essential for the

combined linear operator (Stokes + Coriolis) to generate a semigroup. Using the rotation

transformation, we also obtain local in time solvability of the classical 3D Navier-Stokes

equations in R3 with initial velocity and vorticity of the form V(0) = Ṽ0(y)+(Ω/2)e3×y,

curlV(0) = curl Ṽ0(y) + Ωe3 where Ṽ0(y) ∈ L∞σ, a(R3).

Key words: rotating Navier-Stokes equations, nondecreasing initial data, homogeneous

Besov spaces, Riesz operators.

1. Introduction

In this paper we study initial value problem for the three-dimensional
rotating Navier-Stokes equations in R3 with initial data nondecreasing at
infinity:

∂tU + (U · ∇)U + Ωe3 ×U + ν curl2 U = −∇p, ∇ ·U = 0, (1.1)

U(t, x)|t=0 = U0(x) (1.2)

where x = (x1, x2, x3), U(t, x) = (U1, U2, U3) is the velocity field and p

is the pressure. In Eqs. (1.1) e3 denotes the vertical unit vector and Ω is
a constant Coriolis parameter; the term Ωe3 ×U restricted to divergence
free vector fields is called the Coriolis operator. The initial velocity field
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U0(x) depends on three variables x1, x2 and x3. We consider initial data in
spaces of solenoidal vector fields L∞σ (R3) nondecreasing at infinity (L∞(R3)
restricted to the divergence free subspace). The consideration of solutions
not decaying at infinity is essential in the development of rigorous mathe-
matical theory of 3D rotating turbulence (homogeneous statistical solutions
[10]). In this paper we prove local in time unique solvability of the rotating
Navier-Stokes equations in R3 under the condition that the initial velocity
U0 ∈ L∞σ, a(R3), which is a subspace of L∞σ (R3) having vertical averaging
property. We take initial data in the space

L∞σ, a(R3) = {u ∈ L∞(R3) : u− u ∈ Ḃ0
∞, 1}

where Ḃ0
∞, 1 is a Besov space which contains various periodic and almost

periodic functions (see Appendix B). Here u denotes the vertical average
of u. We use Ḃ0

∞, 1 since the Riesz operator is bounded in Ḃ0
∞, 1 but not

in L∞. The space L∞σ, a(R3) is a subspace of L∞σ (R3) which consists of
bounded vector fields satisfying vertical averaging property. It is shown
that the linear combined operator (Stokes+Coriolis) generates a bounded
semigroup on L∞σ, a(R3) for each Ω ∈ R.

The above initial value problem (1.1)-(1.2) for the 3D rotating Navier-
Stokes Equations is equivalent, via rotation transformation with respect
to the vertical axis e3, to the initial value problem for the classical (non-
rotating) 3D Navier-Stokes Equations with initial data of the type V(0) =
Ṽ0(y) + (Ω/2)e3 × y:

∂tV + (V · ∇)V + ν curl2 V = −∇q, ∇ ·V = 0, (1.3)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω
2
e3 × y (1.4)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and q is
the pressure. Since curl

(
(Ω/2)e3 × y

)
= Ωe3, the vorticity vector at initial

time t = 0 is curlV(0, y) = curl Ṽ0(y) + Ωe3. This connection between
initial value problems for the 3D Navier-Stokes Equations is made precise
in the last section of the paper. Using the rotation transformation, our
results for initial value problem (1.1)-(1.2) imply local in time solvability of
the Navier-Stokes equations (1.3)-(1.4) in R3 under the condition that the
initial velocity is of the form V(0) = Ṽ0(y) + (Ω/2)e3 × y with Ṽ0(y) ∈
L∞σ, a(R3).
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Let J be the matrix such that Ja = e3 × a for any vector field a. Then

J =




0 −1 0
1 0 0
0 0 0


 . (1.5)

We define the Stokes operator A:

AU = ν curl2 U = −ν∆U (1.6)

on divergence free vector fields. Let P be the projection operator on di-
vergence free fields. We recall that the operator P is related to the Riesz
operators:

P = {Pij}i, j=1, 2, 3, Pij = δij +RiRj ; (1.7)

where δi, j is Kronecker’s delta and Rj are the scalar Riesz operators defined
by

Rj =
∂

∂xj
(−∆)−1/2 for j = 1, 2, 3; (1.8)

the symbol σ(Rj) of Rj equals iξj/|ξ|, where i =
√−1 (see e.g. [29]).

We transform (1.1)-(1.2) into the abstract differential equation for U

Ut + A(Ω)U + P(U · ∇)U = 0, (1.9)

where

A(Ω)U = AU + ΩSU and S = PJP (1.10)

and we have used PJU = PJPU on solenoidal vector fields. The main
difficulty that we face in our studies of local solvability for Eqs. (1.1)-(1.2),
(1.3)-(1.4) is that the Coriolis term is an unbounded operator in L∞σ (R3).
We find that it is necessary to restrict initial data on a subspace of L∞σ (R3)
on which the combined operator (Stokes+Coriolis) generates a semigroup.

It is important to note that mathematical techniques for Eqs. (1.1)-
(1.2) with initial data on compact manifolds (bounded domains and peri-
odic lattices in R3) and for initial data in Lp(R3), 1 < p < +∞ spaces of
functions that decay at infinity are very different from those for initial data
non-decaying at infinity in R3. In the former case, the Coriolis operator is a
bounded zero order pseudo-differential operator with a skew-symmetric ma-
trix symbol. Then local in time solvability for fixed Ω immediately follows
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by repeating classical arguments on local solvability of the 3D Navier-Stokes
equations. Uniform in Ω solvability does not always hold for bounded do-
mains and it requires careful consideration in each case. We note that for
initial data on periodic lattices and in bounded cylindrical domains in R3

the time interval [0, T ] for existence of strong solutions is uniform in Ω.
Moreover, regularization of solutions occurs for large Ω. Global regularity
for large Ω of solutions of the three-dimensional Navier-Stokes equations
(1.1)-(1.2), (1.3)-(1.4) with initial data U0(x) on arbitrary periodic lat-
tices and in bounded cylindrical domains in R3 was proven in [2], [3] and
[21] without any conditional assumptions on the properties of solutions at
later times. The method of proving global regularity for large fixed Ω is
based on the analysis of fast singular oscillating limits (singular limit Ω →
+∞), nonlinear averaging and cancellation of oscillations in the nonlinear
interactions for the vorticity field. It uses harmonic analysis tools of lem-
mas on restricted convolutions and Littlewood-Paley dyadic decomposition
to prove global regularity of the limit resonant three-dimensional Navier-
Stokes equations which holds without any restriction on the size of initial
data and strong convergence theorems for large Ω.

The mathematical theory of the Navier-Stokes equations in Rn (n =
2, 3) with initial data in spaces of functions non-decaying at infinity is more
difficult than those on bounded domains or with periodic boundary condi-
tions and it was developed only recently although there are earlier works
to construct mild solutions for L∞ initial data [6], [8]. Since energy is
infinite for the corresponding solutions, classical energy methods for esti-
mating norms of solutions or Galerkin approximation procedures cannot be
used and new techniques are required. For example, Giga, Inui and Matsui
[12] showed the time-local existence of strong solutions to the Navier-Stokes
equations with non-decaying initial data in L∞σ (Rn), n = 2, 3. Moreover,
they proved the uniqueness under the same conditions. There are several
related works for L∞ initial data [7], [20]. We do not intend to exhaust
references on this topic. Giga, Matsui and Sawada [14] proved the global
in time solvability of the 2D Navier-Stokes equations with initial velocity in
L∞σ (R2) without smallness nor integrability condition on initial velocity.

Although there are several earlier works on the solvability of the Navier-
Stokes equations with initial data in Besov type spaces, it requires decay
at space infinity. The space Ḃ0

∞, 1 was first used to solve the Boussinesq
equations by Sawada and Taniuchi [27] (see Taniuchi[30] for recent improve-
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ment). Hieber-Sawada [17] and Sawada [26] constructed a unique local so-
lution for the Navier-Stokes equations (1.3) with initial data Mx+v0 where
M is a trace free matrix and v0 ∈ Ḃ0

∞, 1. This includes (1.4). However, their
existence time estimate is weaker than our estimate (4.4). This is because
they transformed (RNS) to the following integral equation;

u(t) = exp(t∆)u0 −
∫ t

0
exp

(
(t− s)∆

)

×P{div(u⊗ u)(s) + Ωe3 × u(s)}ds for t > 0

and regarded the Coriolis term as a perturbation. In this paper, we trans-
formed (RNS) into (I) (see Section 4) to estimate the Coriolis term in the
form exp(−ΩSt) as the leading term with the heat operator exp(t∆). Then,
the behavior as Ω →∞ of the operator exp(−ΩSt) can be reduced to that
of the operator of the form exp(tR3) as t→∞.

In [17] and [26], they assume that all components of the initial data
belongs to Ḃ0

∞, 1. We assume that only baroclinic component of the initial
data belongs to Ḃ0

∞, 1 to our space for initial data L∞σ, a (see Section 3).
This is another difference between our results and theirs. Although we
restrict initial data v0 in L∞σ, a, as noticed in Remark 4.1 (iii) we may take
an arbitrary element of Ḃ0

∞, 1 provided that it is divergence free.
Unfortunately, the existence time of our solution is not uniform in the

Coriolis parameter Ω ∈ R (see (4.4)) since we can not get uniform esti-
mate for the Coriolis solution operator exp(−ΩtS) for t > 0 in Ω. We are
able to prove that its operator norm in the space BMO or the Besov space
Ḃ∞, q (1 ≤ q ≤ ∞) is dominated by C(1 + Ωt)α, where the constant α is
4 or (3/2 + δ), respectively (see Proposition 2.2, Proposition 3.1). Here,
BMO is the space of functions of bounded mean oscillation (see e.g. [29])
and δ > 0 is an arbitrary constant. We are skeptical the uniform bounded-
ness of the operator norm of exp(−ΩSt) in t, Ω ∈ R but we do not have a
counterexample. The local existence with an existence time uniform in Ω is
recently proved by authors [13] by choosing a different space, the space of
Fourier images of finite Radon measures which still contains many nonde-
caying functions such as almost periodic functions. For the Euler equations
in bounded cylindrical domains Nicolaenko, Bardos, Golse and the third
author [22] proved local existence whose existence time is uniform in Ω.

The plan of the paper is as follows. In Section 2 we consider the lin-
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earized (i.e., Stokes+Coriolis) problem and calculate the symbol of the so-
lution operator. In Section 3 we give definition for initial data by splitting
it to 2D3C (2 dimensional 3 components) part and other baroclinic part (3
dimensional, 3 components with zero vertical average). The characteriza-
tion is natural from an observation of the symbol calculus in Section 2. In
Section 4 we give main theorems and the proofs. In Section 5 we restate
the main theorems for the equations (1.3)-(1.4) in the rotating frame. In
Appendix A we calculate the kernel of the the linearized solution operator
whose symbol is given in Section 2. It turns out the operator is not bounded
in L∞. In Appendix B and C we show key estimates for the Coriolis solution
operator. These estimates are crucial for the proof of our theorems. In Ap-
pendix D we show bilinear estimate which is used in nonlinear estimate in
Section 4. We also give fractional power estimate for readers’ convenience.

2. Linear problem and calculation of symbols of pseudo-differ-
ential operators

In this section we solve linear problem using Fourier transform and
calculate symbols of the corresponding pseudo-differential operators in R3.
We consider the linear problem (Stokes+Coriolis):

∂tΦ− ν∆Φ + Ωe3 ×Φ = −∇π, ∇ ·Φ = 0,

Φ(t, x)|t=0 = Φ0(x). (2.1)

After applying projection P on divergence free vector fields, the above equa-
tion (2.1) can be written in operator form as follows

Φt + AΦ + ΩSΦ = 0, Φ(t)|t=0 = Φ0. (2.2)

We introduce Fourier integrals:

Fu(ξ) = û(ξ) =
1

(2π)3/2

∫

R3

e−iξ·xu(x)dx,

F−1v(x) = v̌(x) =
1

(2π)3/2

∫

R3

eix·ξv(ξ)dξ. (2.3)

Clearly, ξ · û(ξ) = 0 if u is divergence free. Recall that the operators P and
curl in Fourier representation have symbols σ(P) and σ(curl):
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σ(P) = I− 1
|ξ|2



ξ21 ξ1ξ2 ξ1ξ3
ξ2ξ1 ξ22 ξ2ξ3
ξ3ξ1 ξ3ξ2 ξ23


 ,

σ(curl) = i




0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


 . (2.4)

Here I is the 3× 3 identity matrix. In what follows, we shall freely denote
singular integral operator, say Rj in (1.8), by its symbol, say iξj/|ξ| for
simplicity.

We also define the vector Riesz operator R by introducing its symbol:

σ(R) ≡ R(ξ) =




0 −ξ3/|ξ| ξ2/|ξ|
ξ3/|ξ| 0 −ξ1/|ξ|
−ξ2/|ξ| ξ1/|ξ| 0


 . (2.5)

We note that the symbol R(ξ) is a 3×3 skew-symmetric matrix. The vector
Riesz operator R acting in the space of divergence free vector fields has the
property:

R2 = −I. (2.6)

In fact, since R(ξ)v = (1/|ξ|)ξ × v, we calculate for any solenoidal vector
field v

R(ξ)2v = R(ξ)
( 1
|ξ|ξ × v

)
=

1
|ξ|2 ξ × (ξ × v)

=
1
|ξ|2

(
(ξ · v)ξ − (ξ · ξ)v)

= − 1
|ξ|2 |ξ|

2v = −v.

Here, we used divergence free condition (ξ ·v) = 0. Because the scalar Riesz
operators Rj satisfy

∑3
j=1R

2
j = −1, it seems natural to call the operator R

the vector Riesz operator. We now calculate 3 × 3 matrix symbol S(ξ) of
the zero order pseudo-differential operator S:

σ(S) ≡ S(ξ) = P(ξ)JP(ξ). (2.7)

We make an important observation that the operator S = PJP is related
to the Riesz operators and the curl operator. One can easily show by direct
matrix multiplication that

S(ξ) ≡ P(ξ)JP(ξ) =
( ξ3
|ξ|

)
R(ξ). (2.8)
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It implies that the symbol of the operator S commutes with the symbols
of the operator curl and the Stokes operator A. The symbol S(ξ) of the
operator S is a homogeneous function of degree zero and it is expressed in
terms of the scalar Riesz operators Rj for j = 1, 2, 3 (cf. (1.8)). Eqs. (2.5)
and (2.8) imply

S = R3




0 R3 −R2

−R3 0 R1

R2 −R1 0


 . (2.9)

We recall that the Riesz operators Rj are bounded operators in Lp(R3) for
1 < p <∞ and BMO(R3). However, the Riesz operators are not bounded
in L∞(R3). We also note that the Riesz operators Rj are bounded from
L∞(R3) to BMO(R3).

Since Riesz operators are bounded in BMO(R3) and Lp(R3) (1 < p <

+∞), we have

Proposition 2.1 (1) S : BMO(R3) → BMO(R3) is a bounded opera-
tor.
(2) S : Lp(R3) → Lp(R3), 1 < p < +∞, is a bounded operator.
(3) The symbol S(ξ) : R3 → R3 of the operator S is a 3 × 3 matrix with
the following properties:

(a)
(
S(ξ)

)∗ = −S(ξ) (skew-symmetric matrix),

(b)
(
S(ξ)

)2 = − ξ23
|ξ|2 I =

( iξ3
|ξ|

)( iξ3
|ξ|

)
I i.e. S2 = R2

3I (2.10)

where iξ3/|ξ| is the symbol of the Riesz operator R3.
(4) |S(ξ)v| = |v| on the linear subspace of R3 with the property ξ · v = 0
(subspace of solenoidal vector fields). Here |v| denotes length of the vector
v ∈ R3.

Remark 2.1 The operator S is not a bounded operator in L∞σ (R3), how-
ever, S : L∞σ (R3) → BMO(R3).

Eq. (2.10) is useful in calculating the operator exp(S) directly using
infinite series:

exp(S) =
+∞∑

j=0

1
j!

Sj . (2.11)
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Then we can solve linear Stokes+Coriolis problem (2.1), (2.2) in BMO(R3)
and in Lp(R3), 1 < p < +∞. Since the operators commute, the solution
of (2.2) is given by

Φ(t) = exp((−A− ΩS)t)Φ0

= exp(νt∆) exp(−ΩtS)Φ0 for t > 0. (2.12)

Of course, in Eqs. (2.12), exp(νt∆) is the usual semigroup generated by
the heat kernel. Since S is a bounded operator in BMO(R3) and Lp(R3),
1 < p < +∞, the operator exp(ΩSt) is also a bounded operator in these
spaces for each Ω ∈ R and t ∈ R. It is defined by convergent series:

exp(ΩSt) =
+∞∑

j=0

1
j!

(Ωt)jSj . (2.13)

We can solve linear Stokes+Coriolis problem (2.1) using Fourier trans-
form in R3. After applying Fourier transform and projecting on divergence
free subspace, we obtain

∂tΦ(t, ξ) + ν|ξ|2Φ(t, ξ) + ΩS(ξ)Φ(t, ξ) = 0,

Φ(t, ξ)|t=0 = Φ0(ξ). (2.14)

Direct calculation using infinite series (2.13) and the property (2.10) of S
imply that

exp(ΩS(ξ)t) = cos
( ξ3
|ξ|Ωt

)
I + sin

( ξ3
|ξ|Ωt

)
R(ξ), (2.15)

where R(ξ) is defined in (2.5).
Then the solution of (2.14) is given by

Φ(t, ξ) = e−ν|ξ|2t

(
cos

( ξ3
|ξ|Ωt

)
I− sin

( ξ3
|ξ|Ωt

)
R(ξ)

)
Φ0(ξ). (2.16)

In physical space the solution is given by convolution of inverse Fourier
transform of e−ν|ξ|2t cos

(
(ξ3/|ξ|)Ωt

)
and e−ν|ξ|2t sin

(
(ξ3/|ξ|)Ωt

)
R(ξ) with

Φ0(x).
Thus, the symbol of the vector pseudo-differential operator exp

(−A(Ω)t
)

corresponding to the linear problem (Stokes Operator+ΩS) is given by

σ
(
exp(−A(Ω)t)

)
= e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

)
I
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− e−ν|ξ|2t sin
( ξ3
|ξ|Ωt

)
R(ξ), (2.17)

where R is the vector Riesz operator with the 3 × 3 matrix symbol R(ξ)
defined above; I is the 3×3 identity matrix. From the calculations outlined
in Appendix A it follows that

F−1

(
e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

))
,

F−1

(
e−ν|ξ|2t sin

( ξ3
|ξ|Ωt

)
R(ξ)

)
∈ Lq(R3), 1 < q < +∞. (2.18)

The symbol σ
(
exp(−A(Ω)t)

)
is discontinuous at ξ = 0 since the functions

e−ν|ξ|2t sin
(
(ξ3/|ξ|)Ωt

)
(ξj/|ξ|), j = 1, 2 are discontinuous at ξ = 0. There-

fore, the integral kernel given by Fourier transform of the symbol cannot
belong to L1(R3). More detailed consideration of the Fourier transform
given in the Appendix A shows that it behaves as |x|−3 for large |x| and
that it is not a bounded operator in L∞σ (R3).

We state a boundedness of the operator exp(−A(Ω)t) in BMO(R3)
which will be needed to estimate the nonlinear term in Lemma 4.3. The
boundedness follows from Proposition B.1, which shall be shown in Ap-
pendix B. In what follows we shall denote by C various constants. In par-
ticular, C = C(∗, . . . , ∗) denotes constants depending only on the quantities
in the parenthesis.

Proposition 2.2 (Estimate for the Coriolis solution operator - BMO ver-
sion) There exists a constant C > 0 independent of Ω and t such that

‖ exp(−ΩtS)‖BMO→BMO ≤ C(1 + (Ωt)4) for t > 0. (2.19)

Remark 2.2 (i) The operator exp
(−A(Ω)t

)
has a sharp estimate as an

operator from Ḃ0∞, q to itself (see Proposition 3.1). Here Ḃ0∞, q(1 ≤ q ≤ ∞)
is a homogeneous Besov space whose definition will be given in Appendix
B.
(ii) The same estimate for the Coriolis solution operator as (2.19) hold as
Lp → Lp for 1 < p <∞. Actually, we have

‖ exp(−ΩtS)‖Lp→Lp ≤ C(1 + (Ωt)4), (2.20)

for t > 0. In fact, the proof of (2.20) parallels the proof of (2.19) using
the Mikhlin multiplier theorem in Lp (1 < p <∞) spaces (cf. Lemma B.2).
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The norm estimate is uniform in Ω and t for p = 2 (cf. Lemma C.2).

3. Stokes-Coriolis semigroup and splitting of initial data having
vertical averaging property

Before defining the space for initial data we note that in the equality
(2.8) there is ξ3 (i.e., ∂/∂x3 in all components). This implies that

Sf = 0 hence exp(ΩtS)f = f for t > 0 (3.1)

if the vector f is a 2D3C vector field (vector field with 3 components where
each component depends only on 2 variables x1 and x2). Hence it is natural
to take 2D3C vector field from 3D3C vector field. We introduce vertical
averaging property as one of ways to take 2D3C flow.

Definition 3.1 (vertical averaging) Let U ∈ L∞σ (R3). We say that U
admits vertical averaging if

lim
L→+∞

1
2L

∫ L

−L
U(x1, x2, x3)dx3 ≡ U(x1, x2)

exists almost everywhere. The vector field U(x1, x2) is called vertical aver-
age of U(x1, x2, x3).

Remark 3.1 (i) Clearly, all periodic and almost periodic functions (or
vector fields) admit vertical averaging.
(ii) The vector field U(x1, x2) = (U1(x1, x2), U2(x1, x2), U3(x1, x2)) has
zero horizontal divergence:

∇ ·U = ∂x1U1 + ∂x2U2 = 0. (3.2)

(iii) Supposing U ∈ Lp
σ(R3) for 1 < p < ∞, the vertical average always

exists; moreover, U ≡ 0.
(iv) If U ∈ L∞(R3) admits vertical averaging (at (x1, x2)), then we have
uniform convergence property, i.e.,

lim
L→∞

sup
|r|≤M

1
2L

∫ L

−L
U(x1, x2, x3 + r)dx3 = U(x1, x2)

for each M > 0. Indeed, we may assume that U(x1, x2) = 0 by considering
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U−U instead of U. We suppress the dependence of (x1, x2). Since
∫ L

−L
U(x3 + r)dx3 =

(∫ L+r

−L−r
−

∫ −L+r

−L−r

)
U(x3)dx3,

we observe that
∣∣∣∣

1
2L

∫ L

−L
U(x3 + r)dx3

∣∣∣∣

≤ L+ r

L

1
2(L+ r)

∣∣∣∣
∫ L+r

−L−r
U(x3)dx3

∣∣∣∣ + ‖U‖∞ 2r
2L
.

We take supremum in r ∈ [−M, M ] and send L to ∞ to get the desired
result.

Eq. (3.2) follows if we apply vertical averaging operation to the 3D
divergence free equation ∇·U = ∂x1U1 +∂x2U2 +∂x3U3 = 0 and notice that

lim
L→+∞

1
2L

∫ L

−L

∂U3

∂x3
dx3

= lim
L→+∞

1
2L

(U3(x1, x2, L)− U3(x1, x2, −L)) = 0, (3.3)

since U3 ∈ L∞(R3).
The operation of vertical averaging defined above is called ‘barotropic

projection’ and the vector field U(x1, x2) is called ‘barotropic component’
of U(x1, x2, x3). Then the ‘baroclinic component’ U⊥(x1, x2, x3) is defined
as

U⊥(x1, x2, x3) = U(x1, x2, x3)−U(x1, x2). (3.4)

Now we define the space for initial data U0.

Definition 3.2 (Space for initial data) We define a subspace of L∞σ of
the form

L∞σ, a(R3) = {U ∈ L∞σ (R3); U admits vertical averaging

and U⊥ ∈ Ḃ0
∞, 1}.

The space L∞σ, a(R3) is a Banach space with the norm

‖U‖L∞σ, a
= ‖U‖L∞(R2;R3) + ‖U⊥‖Ḃ0

∞, 1
.
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Indeed, let {Uj} be a Cauchy sequence of L∞σ, a. Since ‖f‖∞ ≤ C‖f‖Ḃ0
∞, 1

,

Uj converges to some U ∈ L∞σ uniformly in R3. Since Uj exists, so does U.
Since ‖f‖∞ ≤ C‖f‖∞, we conclude that Uj → U uniformly in R2. Since
{U⊥

j } is a Cauchy sequence in Ḃ0
∞, 1, there is a limit v ∈ Ḃ0

∞, 1. However,
Uj → U, Uj → U, so v must be equal to U⊥.

Remark 3.2 The space L∞σ, a has a topological direct sum decomposition
of the form

L∞σ, a = W ⊕B0

with

W = {U ∈ L∞σ ; ∂Ui/∂x3 ≡ 0 in distributional sense R3

for i = 1, 2, 3},
B0 = {U ∈ Ḃ0

∞, 1 ∩ L∞σ ; U(x1, x2) ≡ 0 a.e. (x1, x2) ∈ R2}.
Indeed, for U ∈ L∞σ, a we observe that U ∈ W and U⊥ ∈ B0. Moreover, W∩
B0 = {0}. The closedness of W and B0 can be proved using Definition 3.2.

The advantage of the Besov space Ḃ0
∞, 1 is that the Riesz operators

and, consequently, the operator exp(−A(Ω)t) are bounded operators in this
space. Also, this space contains all locally Lipschitz periodic functions with
zero mean value and all almost periodic functions of the form

∞∑

j=1

αje
√−1λj ·x with {αj}∞j=1 ∈ l1, {λj} ⊂ R3 \ {0}.

We consider boundedness of the Coriolis solution operator. Let U ∈
L∞σ, a(R3). Then U admits vertical averaging and we have the following
representation (splitting)

U = U + U⊥, (3.5)

where U(x1, x2) is a 2D3C vector field such that U j(x1, x2) ∈ L∞(R2) for
j = 1, 2, 3. Hence we have

exp
(−A(Ω)t

)
U = exp(νt∆)U + exp

(−A(Ω)t
)
U⊥ (3.6)

since (3.1) implies

exp(−ΩtS)U = U. (3.7)
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Then the first term in RHS of (3.6) can be estimated in L∞ by ‖U‖L∞ be-
cause of ‖Gνt‖L1 = 1. However, when Ω 6= 0, the second term still contains
the Coriolis solution operator exp(−ΩtS) in exp(−A(Ω)t). Moreover, the
derivative estimate for the heat kernel which shall appear as Lemma 4.1
does not apply the terms (3.6) since there is no derivative in them. In
order to estimate the second term of RHS in (3.6) we need the following
boundedness in Ḃ0

∞, 1. The space Ḃ0
∞, 1 is smaller than L∞. We claim the

boundedness in Ḃ0∞, q with 1 ≤ q ≤ ∞.

Proposition 3.1 (Estimate for the Coriolis solution operator - Besov ver-
sion) Let 1 ≤ q ≤ ∞. For each δ > 0 there exists a constant C = C(δ) > 0
independent of q, Ω, t and f such that

‖ exp(−ΩtS)‖Ḃ0∞, q→Ḃ0∞, q
≤ C(1 + Ωt)3/2+δ for t > 0. (3.8)

The above proposition is an immediate consequence of Theorem C.1
whose proof is postponed until Appendix C. The estimate (3.8) in Besov
spaces is applicable for both linear (q = 1) and nonlinear (q = ∞) estimates
(see Lemma 4.2 and Lemma 4.4, respectively) by virtue of the embedding
Ḃ∞, 1 ↪→ L∞ ↪→ Ḃ0∞,∞, while Proposition 2.2 (BMO-version) is useful only
for nonlinear estimate due to L∞ ↪→ BMO.

In the remainder of this section we shall prove that exp(−A(Ω)t) is a
bounded semigroup in L∞σ, a for each Ω ∈ R. Since we have Proposition 3.1
together with (3.6) and (3.7), it suffices to prove

Proposition 3.2 The operator exp(−A(Ω)t) maps from L∞σ, a to itself for
all t > 0.

Proof. It suffices to show that exp
(−A(Ω)t

)
U = exp(−ΩtS) exp(νt∆)U ∈

B0 if U ∈ B0. We first prove that exp(νt∆)U ∈ B0 if U ∈ B0. Since
(
exp(νt∆)U

)
(x)

=
∫

R2

(∫ ∞

−∞
U(x1 − y1, x2 − y2, x3 − y3)Gνt(y3)dy3

)

× Gνt(y1, y2)dy1dy2

with the Gauss kernel gνt, it suffices to prove that

lim
L→∞

1
2L

∫ L

−L

∫ ∞

−∞
U(x1 − y1, x2 − y2, x3 − y3)Gνt(y3)dy3dx3 = 0
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for a.e. (x1−y1, x2−y2). This follows from the uniform convergence property
Remark 3.1(iv), since the Gauss kernel Gνt(y3) is integrable for large y3. We
thus proved that exp(νt∆)U = 0. The divergence free property is clear, so
we conclude that exp(νt∆)U ∈ B0 if U ∈ B0. The proof will be complete if
we prove

exp(−ΩtS)U ∈ B0 if U ∈ B0.

We give the proof of this fact in Lemma B.4. ¤

4. Local existence and uniqueness

In this section we prove time-local existence and uniqueness for (1.1)-
(1.2). The differential equations are formally transformed into the integral
equation of the form:

U(t) = exp
(−A(Ω)t

)
U0 −N(U, t; Ω) for t > 0.(I)

Here the nonlinear term N(U, t; Ω) = N(U, U, t; Ω) is defined by

N(U, V, t; Ω) =
∫ t

0
exp

(−A(Ω)(t− s)
)
Pdiv(U⊗V)(s)ds.

We call a solution of the integral equation (I) a mild solution of the rota-
tional Navier-Stokes equations. Since PU = U for divergence free vector
field and P∆ = ∆P, we have

A(Ω) = −P∆ + ΩPJ = −∆ + ΩPJP = −∆ + ΩS.

Note that

exp
(−A(Ω)t

)
= et∆ exp(−ΩtS),

where et∆ is the solution operator of the heat equation (in what follows
we put ν = 1 for simplicity). For an interval I ⊂ [−∞, ∞] and a Banach
space X let C(I;X) denote the space of all continuous functions with valued
in X. The space Cw(I;X) denotes the space of all X-valued star weakly
continuous functions.

The goal of this section is to prove the following theorems.

Theorem 4.1 (Existence and uniqueness of mild solution U) Suppose
that U0 ∈ L∞σ, a(R3). Then
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(1) There exist T0 = T0(Ω) > 0 and a unique solution U = U(t) of (I)
such that

U ∈ C([η, T0];L∞σ ) ∩ Cw([0, T0];L∞σ ) (4.1)

for any η > 0.
(2) The solution U satisfies

sup
t∈(0, T0)

‖t1/2∇U‖L∞σ <∞ and ∇U ∈ C([η, T0];L∞σ ) (4.2)

for any η > 0.

Theorem 4.2 (Existence of classical solution U) Suppose that
U0 ∈ L∞σ, a(R3). Let U = U(t) be a solution of (I) satisfying (4.1) and (4.2).
If we set

∇p(t) = ∇
3∑

j, k=1

RjRkUjUk(t)− Ω



R1(R2U1 −R1U2)
R2(R2U1 −R1U2)
R3(R2U1 −R1U2)




for t > 0, (4.3)

then the pair (U, ∇p) is a classical solution of (1.1)-(1.2).

Such a solution (satisfying (4.1)-(4.3)) is unique. In fact a stronger
version is available.

Theorem 4.3 (Uniqueness of classical solution U) Suppose that U0 ∈
L∞σ, a(R3). Let

U ∈ L∞(
(0, T )× R3

)
, p ∈ L1

loc([0, T );BMO)

be a solution of (1.1)-(1.2) in a distributional sense for some T > 0. Then
the pair (U, ∇p) is unique. Furthermore, the relation (4.3) holds.

Remark 4.1 (i) For a lower estimate for T0 > 0 we get

T0(1 + ΩT0)6+4δ ≥ C

‖U0‖2
L∞σ, a

, (4.4)

where δ > 0 can be taken arbitrarily, and C = C(δ) > 0 is a constant
independent of ν, Ω, T0, and ‖U0‖Lσ, a .
(ii) For regularity we can get the same results as in [12]. The remark
except (i) after Theorem 1 in [12] holds for our equation (I).
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(iii) From the proof given below it is rather clear that one can take initial
data in W + Ḃ0

∞, 1, which is larger than L∞σ, a. In particular, this class
includes Ḃ0

∞, 1 ∩ L∞σ for which local existence is discussed in [26].
(iv) If in addition we assume that U0 ∈ BUC so that U0 ∈ BUC, then
by construction our solution U ∈ C([0, T0];BUC); here, BUC denotes the
space of all bounded uniformly continuous functions in R3. Indeed, since
Ḃ0
∞,1 ⊂ BUC (see e.g. Example 2.3(iv) in [26]), U0 ∈ BUC. Since

et∆U0 ∈ C([0, ∞);BUC) (see Proposition A.1.1 in [12])

and

exp(−ΩtS)U⊥
0 ∈ C([0, ∞); Ḃ0

∞, 1),

it is easy to see that Uj ∈ C([0, ∞);BUC). Thus its uniform limit U
belongs to C([0, T0];BUC).

We note that Theorem 4.2 follows from Theorem 4.1 as observed in
[12], where the case Ω = 0 is discussed. We also note that the uniqueness
(Theorem 4.3) can be proved along the line of [15], [19], where the case
Ω = 0 is discussed. We won’t repeat the proofs. The proof of Theorem 4.1
is based on a standard iteration method, and is similar to that of [12]. We
have already prepared two estimates for exp(−ΩtS) in BMO and Besov
spaces (Proposition 2.2 and Proposition 3.1). We further estimate its spatial
derivatives.

Lemma 4.1 (Estimate for derivative of the heat operator) There exists
a constant C > 0 (depending only on space dimensions) that satisfies

(1) ‖∇et∆f‖L∞ ≤ Ct−1/2‖f‖BMO

for t > 0 and f ∈ BMO, (4.5)

(2) ‖∇et∆f‖Ḃ0
∞, 1

≤ Ct−1/2‖f‖Ḃ0∞,∞

for t > 0 and f ∈ Ḃ0
∞,∞. (4.6)

Remark 4.2 (i) Because of ‖ · ‖BMO ≤ ‖ · ‖L∞ it follows from (4.5)
that

‖∇et∆f‖L∞ ≤ Ct−1/2‖f‖L∞ for t > 0 and f ∈ L∞. (4.7)
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Since ‖ · ‖L∞ ≤ ‖ · ‖Ḃ0
∞, 1

and ‖ · ‖Ḃ0∞,∞
≤ ‖ · ‖L∞ , the above estimate

(4.7) is derived from (4.6), too.
(ii) In the case of Ω = 0 (non-rotating case), the estimate (4.5) without
using Besov spaces yields the boundedness of the nonlinear term in L∞,
that is, we get

‖et∆P∇ · (U⊗U)‖L∞ = ‖∇ · et∆P(U⊗U)‖L∞

≤‖∇ · et∆‖BMO→L∞‖P(U⊗U)‖BMO

≤Ct−1/2‖P(U⊗U)‖BMO

≤Ct−1/2‖U⊗U‖BMO

≤Ct−1/2‖U⊗U‖L∞ ≤ Ct−1/2‖U‖2
L∞ .

Here we used the boundedness of the operator P. The above estimate
follows from the Besov estimate (4.6), too if we use the boundedness of the
operator P in the Besov spaces.

Proof. Since the estimate (2) shall be proved in Appendix D, here we show
only (1). In [9, Lemma 2.1] Carpio obtained for the Gauss kernelGt = Gt(x)
that

‖∇Gt‖H1 ≤ Ct−1/2, t > 0.

Here, H1 denotes the Hardy space. Since the dual space of the space H1 is
BMO, we have

‖∇et∆f‖L∞ ≤ ‖∇Gt‖H1‖f‖BMO ≤ Ct−1/2‖f‖BMO.

Lemma 4.1 has been proved. ¤

Using the above lemma and Proposition 3.1, the linear term is estimated
as follows.

Lemma 4.2 (Estimate for the linear term) For each δ > 0 there exists a
constant C (independent of Ω, t, f) that satisfies

∥∥exp
(−A(Ω)t

)
f
∥∥

L∞ ≤ C(1 + Ωt)(3/2)+δ‖f‖L∞σ, a
, t > 0, and

∥∥∇ exp
(−A(Ω)t

)
f
∥∥

L∞ ≤ Ct−1/2(1 + Ωt)(3/2)+δ‖f‖L∞σ, a
, t > 0

for all f = (fi)1≤i≤3 ∈ L∞σ, a.
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Proof. By (3.6), Proposition 3.1 and ‖ · ‖L∞ ≤ ‖ · ‖Ḃ0
∞, 1

we get for any
δ > 0 that

‖ exp(−A(Ω)t)f‖L∞ = ‖et∆f + et∆ exp(−tΩS)f⊥‖L∞

≤‖et∆f‖L∞ + ‖et∆ exp(−tΩS)f⊥‖L∞

≤‖f‖L∞ + ‖ exp(−tΩS)f⊥‖L∞

≤‖f‖L∞ + ‖ exp(−tΩS)f⊥‖Ḃ0
∞, 1

≤‖f‖L∞ + C(1 + Ωt)(3/2)+δ‖f⊥‖Ḃ0
∞, 1

≤C(1 + Ωt)(3/2)+δ‖f‖L∞σ, a
.

Similarly Lemma 4.1 implies that

‖∇ exp(−A(Ω)t)f‖L∞

= ‖∇et∆f +∇et∆ exp(−tΩS)f⊥‖L∞

≤ ‖∇et∆f‖L∞ + ‖∇et∆ exp(−tΩS)f⊥‖L∞

≤ Ct−1/2‖f‖BMO + Ct−1/2‖ exp(−tΩS)f⊥‖Ḃ0
∞,1

≤ Ct−1/2(‖f‖BMO + (1 + Ωt)(3/2)+δ‖f⊥‖Ḃ0
∞, 1

)

≤ Ct−1/2(1 + Ωt)(3/2)+δ(‖f‖L∞ + ‖f⊥‖Ḃ0
∞, 1

)

≤ Ct−1/2(1 + Ωt)(3/2)+δ‖f‖L∞σ, a
.

We have proved Lemma 4.2. ¤

Next we prepare estimates for the nonlinear term.

Lemma 4.3 (Estimate for the nonlinear term - BMO version) There ex-
ists a constant C > 0 independent of Ω, t, F and f such that

‖ exp(−A(Ω)t)PdivF‖L∞ ≤ Ct−1/2(1 + (Ωt)4)‖F‖BMO, t > 0,

and

‖∇ exp(−A(Ω)t)Pf‖L∞ ≤ Ct−1/2(1 + (Ωt)4)‖f‖BMO t > 0

for all F = (Fi, j)1≤i, j≤3 ∈ BMO, with divF ∈ BMO and for all f =
(fi)1≤i≤3 ∈ BMO.
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Proof. It is easy to see that

PdivF = divF + div(P− I)F t,

where F t is transposed matrix of F . We rewrite

exp
(−A(Ω)t

)
PdivF = et∆ exp(−ΩtS) div{F + (P− I)F t}.

Since the symbol of the operator et∆ exp(−ΩtS) div is represented by

exp(−t|ξ|2)
{

cos
( ξ3
|ξ|Ωt

)
I−R(ξ) sin

( ξ3
|ξ|Ωt

)}
iξk

= iξk exp(−t|ξ|2) cos
( ξ3
|ξ|Ωt

)
I

− iξkR(ξ) exp(−t|ξ|2) sin
( ξ3
|ξ|Ωt

)
, (4.8)

one sees from Proposition 2.2 that

‖et∆ exp(−ΩtS)div‖BMO→L∞ (4.9)

≤‖∇et∆‖BMO→L∞‖cos(−iR3Ωt)‖BMO→BMO

+‖curlet∆‖BMO→L∞‖sin(−iR3Ωt)‖BMO→BMO‖R‖BMO→BMO

≤Ct−1/2
(
1+(Ωt)4

)
, (4.10)

where C > 0 is independent of Ω and t. Thus, by Lemma 4.1, Proposi-
tion 2.2 and boundedness of the operator P in BMO we have

‖ exp
(−A(Ω)t

)
PdivF‖L∞

≤ Ct−1/2
(
1 + (Ωt)4

)‖F + (P− I)F t‖BMO

≤ Ct−1/2
(
1 + (Ωt)4

)(‖F‖BMO + ‖(P− I)F t‖BMO

)

≤ Ct−1/2
(
1 + (Ωt)4

)‖F‖BMO.

Similarly, we get by (4.9)
∥∥∇ exp

(−A(Ω)t
)
Pf

∥∥
L∞ ≤ Ct−1/2

(
1 + (Ωt)4

)‖f‖BMO

because the symbol of the operator ∇ exp(−A(Ω)t) is the essentially same
as that of et∆E(−Ωt) div. We have proved Lemma 4.3. ¤
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Lemma 4.4 (Estimate for the nonlinear term - Besov version) For each
δ > 0 there exists a constant C = C(δ) > 0 independent of Ω, t, F and f

such that

‖exp(−A(Ω)t)PdivF‖Ḃ0
∞,1
≤Ct−1/2(1+Ωt)(3/2)+δ‖F‖Ḃ0∞,∞

, t>0,

and

‖∇ exp(−A(Ω)t)Pf‖Ḃ0
∞,1

≤ Ct−1/2(1 + Ωt)(3/2)+δ‖f‖Ḃ0∞,∞
t > 0

for all F = (Fi, j)1≤i, j≤3 ∈ Ḃ0∞,∞, with divF ∈ Ḃ0∞,∞ and for all f =
(fi)1≤i≤3 ∈ Ḃ0∞,∞.

Proof. For the operator et∆E(−Ωt) div whose symbol has the form (4.8)
we get from Proposition 3.1 and Lemma 4.1(2) that

‖et∆E(−Ωt)div‖Ḃ0∞,∞→Ḃ0
∞,1

≤‖∇et∆‖Ḃ0∞,∞→Ḃ0
∞,1
‖cos(−iR3Ωt)‖Ḃ0∞,∞→Ḃ0∞,∞

+‖curlet∆‖Ḃ0∞,∞→Ḃ0
∞,1
‖sin(−iR3Ωt)‖Ḃ0∞,∞→Ḃ0∞,∞

‖R‖Ḃ0∞,∞→Ḃ0∞,∞

≤Ct−1/2(1+Ωt)(3/2)+δ,

where C > 0 is independent of Ω and t. We have proved Lemma 4.4. ¤

Proof of Theorem 4.1. Since we can employ both Lemma 4.3 (BMO esti-
mate) and Lemma 4.4 (Besov estimate) for estimating the nonlinear term in
L∞, in this proof, read the power α = 4 when X = BMO or α = (3/2) + δ

with any δ > 0 when X = Ḃ0∞,∞, respectively. The proof parallels in both
cases. We use the following successive iteration:

U1(t) = exp(−A(Ω)t)U0,

Uj+1(t) = exp(−A(Ω)t)U0 −N(Uj , t; Ω) for j ≥ 1.

For j ≥ 1 and T > 0 we set

Kj = Kj(T ) = sup
0<s<T

‖Uj(s)‖L∞

and K ′
j = K ′

j(T ) = sup
0<s<T

(
s1/2‖∇Uj(s)‖L∞

)
.

Put K0 = ‖U0‖L∞σ, a
and note that K0 is independent of T > 0. It follows



342 Y. Giga, K. Inui, A. Mahalov and S. Matsui

from Lemma 4.3 and ‖ · ‖X ≤ ‖ · ‖L∞ that

‖N(Uj , t; Ω)‖L∞

≤
∫ t

0
‖ exp(−A(Ω)(t− s))Pdiv(Uj ⊗Uj)(s)‖L∞ds

≤
∫ t

0
‖ exp(−A(Ω)(t− s))Pdiv ‖X→L∞‖(Uj ⊗Uj)(s)‖Xds

≤
∫ t

0
C(t− s)−1/2(1 + Ω(t− s))α‖(Uj ⊗Uj)(s)‖Xds

≤ Ct1/2(1 + Ωt)α sup
0<s<t

‖(Uj ⊗Uj)(s)‖X

≤ Ct1/2(1 + Ωt)α sup
0<s<t

‖(Uj ⊗Uj)(s)‖L∞

≤ Ct1/2(1 + Ωt)α sup
0<s<t

(‖Uj(s)‖2
L∞)

≤ Ct1/2(1 + Ωt)α
(

sup
0<s<t

‖Uj(s)‖L∞
)2
. (4.11)

Similarly we have from Lemma 4.3

‖∇N(Uj , t;Ω)‖L∞

≤
∫ t

0
‖∇ exp(−A(Ω)(t− s))Pdiv(Uj ⊗Uj)(s)‖L∞ds

≤C
∫ t

0
(t− s)−1/2(1+ Ω(t− s))α‖div(Uj ⊗Uj)(s)‖Xds

≤C
∫ t

0
(t− s)−1/2(1+ Ω(t− s))α‖div(Uj ⊗Uj)(s)‖L∞ds

≤C
∫ t

0
(t− s)−1/2(1+ Ω(t− s))αs−1/2s1/2‖∇Uj(s)‖L∞‖Uj(s)‖L∞ds

≤C(1+ Ωt)α sup
0<s<t

(
s1/2‖∇Uj(s)‖L∞

)
sup

0<s<t
‖Uj(s)‖L∞ . (4.12)

By the above estimates and Lemma 4.2 there exist constants C0, C1, C2

and C3 independent of Ω and T such that

Kj+1(T ) ≤ C0(1 + ΩT )βK0 + C1T
1/2(1 + ΩT )α(Kj(T ))2,

K ′
j+1(T ) ≤ C2(1 + ΩT )βK0 + C3T

1/2(1 + ΩT )αKj(T )K ′
j(T )

for j ≥ 1. Here, β := (3/2) + δ for any δ > 0. Taking T0 small so that
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T
1/2
0 (1 + ΩT0)α+β < 1/

(
4(C0C1 + C2C3)K0

)
, we get

sup
j≥1

Kj(T ) ≤ 2C0K0(1 + ΩT )β and

sup
j≥1

K ′
j(T ) ≤ 2C2K0(1 + ΩT )β if T ≤ T0. (4.13)

Next we shall prove the convergence. For j ≥ 1 and 0 < T < T0 put

Lj = Lj(T ) = sup
0<s<T

‖Uj(s)−Uj−1(s)‖L∞ ,

L′j = L′j(T ) = sup
0<s<T

(
s1/2‖∇Uj(s)−∇Uj−1(s)‖L∞

)
.

Since

Uj+1(t)−Uj(t) = N(Uj , Uj , t; Ω)−N(Uj , Uj−1, t; Ω)

+N(Uj , Uj−1, t; Ω)−N(Uj−1, Uj−1, t; Ω), (4.14)

similarly as in (4.11) and (4.12), we get from (4.13) that

‖Uj+1(t)−Uj(t)‖L∞

≤
∫ t

0
C(t− s)−1/2

(
1 + Ω(t− s)

)α

× (‖Uj(s)‖L∞ + ‖Uj−1(s)‖L∞
)‖(Uj −Uj−1)(s)‖L∞ds

≤ Ct1/2(1 + Ωt)α sup
0<s<t

(‖Uj(s)‖L∞ + ‖Uj−1(s)‖L∞
)

× sup
0<s<t

‖(Uj −Uj−1)(s)‖L∞

≤ Ct1/2(1 + Ωt)α+β sup
0<s<t

‖(Uj −Uj−1)(s)‖L∞ (4.15)

and

‖∇Uj+1(t)−∇Uj(t)‖L∞

≤ C

∫ t

0
(t− s)−1/2

(
1 + Ω(t− s)

)α

× s−1/2{s1/2‖∇Uj(s)‖L∞‖(Uj −Uj−1)(s)‖L∞

+ s1/2‖Uj(s)‖L∞‖∇(Uj −Uj−1)(s)‖L∞}ds

+ C

∫ t

0
(t− s)−1/2

(
1 + Ω(t− s)

)α

× s−1/2{s1/2‖∇Uj−1(s)‖L∞‖(Uj −Uj−1)(s)‖L∞
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+ s1/2‖Uj−1(s)‖L∞‖∇(Uj −Uj−1)(s)‖L∞}ds
≤ C(1 + Ωt)α+β{ sup

0<s<t
‖(Uj −Uj−1)(s)‖L∞

+ sup
0<s<t

‖∇(Uj −Uj−1)(s)‖L∞} (4.16)

for t < T0. Hence there exist C4, C5 > 0 independent of Ω and T such that

Lj+1(T ) ≤ C4K0T
1/2(1 + ΩT )α+βLj(T ),

L′j+1(T ) ≤ C5K0T
1/2(1 + ΩT )α+β

(
Lj(T ) + L′j(T )

)

for j ≥ 1 and T < T0. Taking T1 small so that T 1/2
1 (1 + ΩT1)α+β <

1/
(
2(C4 + C5)K0

)
, it is easy to see that

sup
j≥1

Lj+1(T )
Lj(T )

<
1
2

and sup
j≥1

Lj+1(T ) + L′j+1(T )
Lj(T ) + L′j(T )

<
1
2

if T ≤ T1.

Thus, choosing T < min(T0, T1), the approximations {Uj(t)}j≥1 and
{t1/2∇Uj(t)}j≥1 are Cauchy sequences in L∞

(
(0, T ) × R3

)
. Denote its

limits by U(t) and V(t), respectively. Since Uj satisfies (4.1), so does U.
Similar calculation as in (4.15) and (4.16) yields that

N(Uj , t; Ω) → N(U, t; Ω) in L∞
(
(0, T )× R3

)
as j →∞,

∇N(Uj , t; Ω) → ∇N(U, t; Ω) in L∞
(
(0, T )× R3

)
as j →∞,

which guarantees that t1/2∇U = V and that the limit U solves the integral
equation (I). The properties (4.2) for U are also inherited from Uj ’s.

It remains to prove the uniqueness. We set W = U1 −U2 and observe
that

W(t) = N(U1, U1, t; Ω)−N(U2, U2, t; Ω).

Then the same calculation as (4.14) and (4.15) gives us W ≡ 0. ¤

5. Concluding remarks

The above results for the 3D rotating Navier-Stokes Equations can be
formulated for solutions of the three-dimensional Navier-Stokes Equations
with initial data of the form V(t, y)|t=0 = V(0) = Ṽ0(y) + (Ω/2)e3 × y:

∂tV + (V · ∇)V + ν curl2 V = −∇q, ∇ ·V = 0, (5.1)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω
2
e3 × y (5.2)
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where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and q is
the pressure. In Eqs. (5.1) e3 denotes the vertical unit vector and Ω is a
constant parameter. The field Ṽ0(y) depends on three variables y1, y2 and
y3. Since curl

(
(Ω/2)e3 × y

)
= Ωe3, the vorticity vector at initial time t = 0

is

curlV(0, y) = curl Ṽ0(y) + Ωe3. (5.3)

In (5.2) we take Ṽ0(y) ∈ L∞σ, a(R3).
We now detail the canonical rotation transformation between the orig-

inal vector field V(t, y) and the vector field U(t, x). Let J be the matrix
such that Ja = e3 × a for any vector field a. Then

J =




0 −1 0
1 0 0
0 0 0


 ,

Υ(t) ≡ eΩJt/2 =




cos(Ωt/2) − sin(Ωt/2) 0
sin(Ωt/2) cos(Ωt/2) 0

0 0 1


 . (5.4)

For any fixed parameter Ω we introduce the following fundamental ro-
tation transformation:

V(t, y) = e+ΩJt/2U(t, e−ΩJt/2y) +
Ω
2
Jy, x = e−ΩJt/2y. (5.5)

The transformation (5.5) is invertible:

U(t, x) = e−ΩJt/2V(t, e+ΩJt/2x)− Ω
2
Jx, y = e+ΩJt/2x. (5.6)

The transformations (5.5)-(5.6) establish one-to-one correspondence between
solenoidal vector fields V(t, y) and U(t, x). We note that x = y for t = 0
and therefore Ṽ0(y) = Ṽ0(x). Let x = (xh, x3) where xh = (x1, x2, 0),
|xh|2 = x2

1 + x2
2 and similarly for y.

The following identities hold for the vector fields V(t, y) and U(t, x)
and pressure π:
1. ∇y ·V(t, y) = ∇x ·U(t, x).
2. ∇yπ = Υ(t)∇xπ.
3. curly V(t, y) = Υ(t) curlx U(t, x) + Ωe3,

curl2y V(t, y) = Υ(t) curl2x U(t, x).



346 Y. Giga, K. Inui, A. Mahalov and S. Matsui

4. (D/Dt)V(t, y) =Υ(t)
(
(D/Dt)U(t, x)+ΩJU−(Ω2/4)xh

)
whereD/Dt

are the corresponding Lagrangian derivatives, JU = e3 ×U.
The above identities 1-4 imply that the transformation (5.5)-(5.6) is canon-
ical for Eqs. (5.1)-(5.2). From the property 1 it follows that ∇x ·U(t, x) = 0
since ∇y ·V(t, y) = 0. Now using 2-4 and the fact that Υ(t) is unitary, we
can express each term in (5.1) in x and t variables to obtain the equations for
U(t, x). Under the canonical rotation transformation (5.5)-(5.6) Eqs. (5.1)-
(5.2) turn into Navier-Stokes system (5.7)-(5.8) with an additional Coriolis
term Ωe3 ×U and modified initial data and pressure:

∂tU + (U · ∇x)U + ν curl2x U + Ωe3 ×U = −∇xp,

∇x ·U = 0, (5.7)

U(t, x)|t=0 = U(0, x) = Ṽ0(x), (5.8)

where x = y at t = 0 and xh = (x1, x2). The systems Eqs. (5.1)-(5.2)
and (5.7)-(5.8) are equivalent for every Ω and the pair of transformations
(5.5)-(5.6) establishes one-to-one correspondence between their fully three-
dimensional solutions.

We now state our theorem for the initial value problem (5.1)-(5.2).

Theorem 5.1 (Existence of classical solution v) Suppose ṽ0 ∈ L∞σ, a(R3).
Then there exists a classical solution (V, ∇q) of (5.1)-(5.2) satisfying

∇q(t) = ∇
3∑

j, k=1

RjRkVjvk(t)

− Ω



R1(R2V1 −R1V2)
R2(R2V1 −R1V2)
R3(R2V1 −R1V2)


 +∇Ω2|yh|2

8
for t > 0.

Such a solution is unique provided that v − (Ω/2)Jy ∈ L∞(
Rn × (0, T )

)
.

This follows from Theorem 4.2 and Theorem 4.3.

A. Appendix: Calculation of integral kernels

In this section we analyze inverse Fourier transform of
e−ν|ξ|2t cos

(
(ξ3/|ξ|)Ωt

)
, which gives the integral kernel in the convolution

operator with Φ0(x) (diagonal terms in (2.16)-(2.17)). The calculation of
the inverse Fourier transform of e−ν|ξ|2t sin

(
(ξ3/|ξ|)Ωt

)
(ξj/|ξ|) (off-diagonal
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terms in (2.16)-(2.17)) is similar. The integral kernel is obtained in the form

(2π)−3/2F−1

(
e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

)
− e−ν|ξ|2t sin

( ξ3
|ξ|Ωt

) ξj
|ξ|

)

since F−1mFf = (2π)−3/2(F−1m) ∗ f for a symbol m and a function f .
We have

F−1

(
e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

))

=
1

(2π)3/2

∫

R3

cos
( ξ3
|ξ|Ωt

)
e−ν|ξ|2teix·ξdξ, (A.1)

where x = (x1, x2, x3) and we denote |x|2 = x2
1 + x2

2 + x2
3, |x′|2 = x2

1 + x2
2.

Using spherical coordinates with center at 0 and azimuthal angle θ measured
from the axis determined by the vector x, one has (0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π,
ρ = |ξ|)

ξ3
|ξ| = −|x

′|
|x| sin θ sinψ +

x3

|x| cos θ. (A.2)

Then
∫

R3

cos
( ξ3
|ξ|Ωt

)
e−ν|ξ|2teix·ξdξ

=
∫ +∞

0

∫ 2π

0

∫ π

0
cos

(Ωt|x′|
|x| sin θ sinψ

)

× cos
(Ωtx3

|x| cos θ
)
e−νρ2tei|x|ρ cos θρ2 sin θdρdψdθ

= 2π
∫ +∞

0

∫ π

0
J0

(Ωt|x′|
|x| sin θ

)
cos

(Ωtx3

|x| cos θ
)
e−νρ2t

× ei|x|ρ cos θρ2 sin θdρdθ, (A.3)

where we have used the identity
∫ 2π

0
cos

(Ωt|x′|
|x| sin θ sinψ

)
dψ = 2πJ0

(Ωt|x′|
|x| sin θ

)
. (A.4)

Here, Jn(z) denotes the Bessel function for n = 0, 1, 2, . . ..
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Let µ = cos θ. Then we have from (A.3)
∫

R3

cos
( ξ3
|ξ|Ωt

)
e−ν|ξ|2teix·ξdξ

= 2π
∫ +∞

0

∫ 1

−1
J0

(Ωt|x′|
|x|

√
1− µ2

)

× cos
(Ωtx3

|x| µ
)
e−νρ2t cos(|x|ρµ)ρ2dρdµ (A.5)

since the function sin(|x|ρµ) is odd in µ and other functions are even in µ.
Now we calculate the integral in (A.5) involving integration with respect

to ρ. We have after somewhat lengthy but elementary calculations (which
also involves shifting contour of integration in complex plane) or from the
Table of Integrals in [16, page 529, 3.952]:

∫ +∞

0
e−νρ2t cos(|x|ρµ)ρ2dρ

=
√
π

4(
√
νt)3

(
1 − |x|2µ2

2νt

)
e−|x|

2µ2/(4νt). (A.6)

Substituting (A.6) into (A.5), we obtain
∫

R3

cos
( ξ3
|ξ|Ωt

)
e−ν|ξ|2teix·ξdξ

= 2π
√
π

4(
√
νt)3

∫ 1

−1
J0

(Ωt|x′|
|x|

√
1− µ2

)

× cos
(Ωtx3

|x| µ
)(

1− |x|2µ2

2νt

)
e−|x|

2µ2/(4νt)dµ. (A.7)

For Ω = 0 the above expression reduces to the heat kernel Gνt(x) =(
1/(4πνt)3/2

)
e−|x|2/(4νt). In fact, since

J0

(Ωt|x′|
|x|

√
1− µ2

) ∣∣∣∣
Ω=0

= 1, cos
(Ωtx3

|x| µ
) ∣∣∣∣

Ω=0

= 1

and
∫ 1

−1

(
1− |x|2µ2

2νt

)
e−|x|

2µ2/(4νt)dµ = 2e−|x|
2/(4νt),
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we get

2π
√
π

4(
√
νt)3

∫ 1

−1

(
1− |x|2µ2

2νt

)
e−|x|

2µ2/(4νt)dµ

= 2π
√
π

4(
√
νt)3

2(4πνt)3/2 1
(4πνt)3/2

e−|x|
2/(4νt) = (2π)(3/2)·2Gνt(x).

Hence the kernel is given by

(2π)−3/2F−1

(
e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

))
= Gνt(x)

if Ω = 0.
Let Ω and t be fixed. The asymptotics of the integral kernel in |x| can

be analyzed using (A.7). Clearly, it is bounded for |x| → 0. Now we deduce
the behaviour for large |x|. The main obstacle to a rapid decay of the kernel
for large |x| is that the term e−|x|2µ2/(4νt) appears in combination with |x|2µ2

and e−|x|2µ2/(4νt)|µ=0 = 1. The main contribution to the kernel asymptotics
for large |x| is given in the integral (A.7) by a small interval containing µ =
0. If we expand the expression J0

(
(Ωt|x′|/|x|)

√
1− µ2

)
cos

(
(Ωtx3/|x|)µ

)
under integral in powers of µ (valid uniformly in |x| since |x3|/|x|, |x′|/|x| ≤
1), then first we recover the term (heat kernel) × J0

(
(Ωt|x′|/|x|)) which

clearly rapidly decays as |x| → +∞. Since the function under integral is
even in µ, the next term will be of the form (function independent of µ)×
µ2

(
1 − |x|2µ2/(2νt)

)
e−|x|2µ2/(4νt). Its asymptotic behaviour for large |x| is

given by the integral:
∫ 1

−1
µ2

(
1− |x|2µ2

2νt

)
e−|x|

2µ2/(4νt)dµ

=
1
|x|3

∫ |x|

−|x|
η2

(
1− η2

2νt

)
e−η2/(4νt)dη ∼ C(νt)

|x|3 for large |x|.

Therefore, the integral kernel behaves as 1/|x|3 for large |x|. In par-
ticular, the integral kernel does not belong to L1(R3). The corresponding
integral operator cannot be viewed as a bounded operator in L∞(R3) since
a characteristic function of the outside of a large ball is always mapped to
∞ by this operator.

The above analysis and similar considerations for

F−1

(
e−ν|ξ|2t sin

( ξ3
|ξ|Ωt

) ξj
|ξ|

)
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show that

F−1

(
e−ν|ξ|2t cos

( ξ3
|ξ|Ωt

))
,

F−1

(
e−ν|ξ|2t sin

( ξ3
|ξ|Ωt

)
R(ξ)

)
∈ Lq(R3), 1 < q < +∞.

It is clear without any calculations that F−1
(
e−ν|ξ|2t sin

(
(ξ3/|ξ|)Ωt

)
R(ξ)

)

does not belong to L1(R3) since e−ν|ξ|2t sin
(
(ξ3/|ξ|)Ωt

)
(ξj/|ξ|) (j = 1, 2) are

discontinuous at ξ = 0.

B. Appendix: Estimate for the Coriolis solution operator

In this section we introduce the homogeneous Besov spaces Ḃs
p, q =

Ḃs
p, q(Rn) and show boundedness of the Coriolis solution operator exp(−ΩtS)

in the Hardy space, BMO, and the Besov spaces.
All assertions in the Appendixes B, C and D except Lemma B.4 hold in

the general space dimension n = 1, 2, 3, . . . although the Rotating Navier-
Stokes equations is valid only when n = 3.

Before introducing the homogeneous Besov spaces, we prepare some
notations. By S we denote the class of rapidly decreasing functions. The
dual of S, the space of tempered distributions is denoted by S ′. By H1 we
denote the Hardy space. It is well known that the dual space of the Hardy
space H1 is BMO, the space of functions of bounded mean oscillation. Let
{φj}∞j=−∞ be the Littlewood-Paley dyadic decomposition satisfying

φ̂j(ξ) = φ̂0(2−jξ) ∈ C∞c (Rn),

supp φ̂0 ⊂
{1

2
< |ξ| < 2

}
,

∞∑

j=−∞
φ̂j(ξ) = 1 (ξ 6= 0). (B.1)

Definition B.1 (See, e.g. [5] page 146) The homogeneous Besov space
Ḃs

p, q = Ḃs
p, q(Rn) is defined by

Ḃs
p, q ≡

{
f ∈ Z ′; ‖f ; Ḃs

p, q‖ <∞}
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for s ∈ R and 1 ≤ p, q ≤ ∞, where

‖f ; Ḃs
p, q‖ ≡





[ ∞∑

j=−∞
2jsq‖φj ∗ f ;Lp‖q

]1/q

if q <∞,

sup
−∞≤j≤∞

2js‖φj ∗ f ;Lp‖ if q = ∞.

Here Z ′ is the topological dual space of the space Z, which is defined by
Z ≡ {

f ∈ S;Dαf̂(0) = 0 for all multi-indices α = (α1, . . . , αn)
}
.

The above definition yields that all polynomials vanish in Ḃs
p, q, however,

it is well known that

Ḃs
p,q
∼=

{
f ∈S ′;‖f ; Ḃs

p, q‖<∞ and f =
∞∑

j=∞
φj ∗ f in S ′

}
(B.2)

if

s < n/p or (s = n/p and q = 1). (B.3)

For the indices s ∈ R, 1 < p, q ≤ ∞ satisfying the negation of (B.3);

s > n/p or (s = n/p and p 6= 1) (B.4)

we define the space Ḃs
p, q by duality as follows.

Ḃs
p, q := (Ḃ−s

p′, q′)
′ for

1
p

+
1
p′

= 1,
1
q

+
1
q′

= 1.

In particular, we define Ḃ0∞,∞ := (Ḃ0
1, 1)

′. We do not define Ḃs
p, q for the

case p = 1 or q = 1 satisfying (B.4) since we do not use the spaces. In this
paper by abuse of notation we denote Ḃs

p, q simply by Ḃs
p, q. For the details

and examples one can consult e.g. [26], [27], [30].
The key lemma of this section is as follows.

Lemma B.1 (Boundedness of convolution-type operator) Let 1 ≤ q ≤
∞. For h ∈ S ′ let T = h∗ be a convolution-type operator defined on S.
Assume that T is regarded as a bounded operator H1 → H1. Then, the op-
erator T is bounded from Ḃ0∞, q to itself. Its norm ‖T‖Ḃ0∞, q→Ḃ0∞, q

is bounded
by C‖T‖H1→H1 with C = C(n) > 0 independent of q, h.
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Proof. We give the proof only when q = 1. The proof can be easily mod-
ified to the case 1 < q ≤ ∞. By the definition of the Besov norm we
have

‖Tf ; Ḃ0
∞, 1‖ =

∞∑

j=−∞
‖φj ∗ Tf‖∞ =

∞∑

j=−∞
‖φj ∗ h ∗ f‖∞.

Since only three terms in the family {supp φ̂j}j are nonzero for any fixed
point ξ ∈ Rn, we derive

‖Tf ; Ḃ0
∞, 1‖=

∑

j, k∈Z, |j−k|≤2

‖φj ∗ h ∗ φk ∗ f‖∞

≤
∑

j, k∈Z, |j−k|≤2

‖φj ∗ h‖1‖φk ∗ f‖∞.

The fact ‖ · ‖L1 ≤ ‖ · ‖H1 and the assumption yield

‖Tf ; Ḃ0
∞, 1‖≤

∑

j, k∈Z, |j−k|≤2

‖φj ∗ h‖H1‖φk ∗ f‖∞

≤C
∑

j, k∈Z, |j−k|≤2

‖φj‖H1‖φk ∗ f‖∞.

Here, ‖φj‖H1 = ‖φj‖L1 +
∑n

k=1 ‖iRkφj‖L1 is a constant independent of j
since ‖φj‖H1 = ‖φ0‖H1 . Indeed, we obtain that

‖φj‖1 =
∫

Rn

|φj(x)|dx =
∫

Rn

∣∣(F−1(Fφj)(ξ)
)
(x)

∣∣dx

=
∫

Rn

∣∣(F−1(Fφ0)(2−jξ)
)
(x)

∣∣dx

= 2jn

∫

Rn

∣∣∣∣
∫

Rn

ei2
jxξ

(
Fφ0(ξ)

)
(x)dξ

∣∣∣∣dx

= 2jn

∫

Rn

|φ0(2jx)|dx =
∫

Rn

|φ0(x)|dx = ‖φ0‖1

and similarly

‖iRkφj‖1 =
∫

Rn

|iRkφj(x)|dx=
∫

Rn

∣∣∣∣
(
F−1 iξk

|ξ| (Fφj)(ξ)
)
(x)

∣∣∣∣dx

=
∫

Rn

∣∣∣∣
(
F−1 iξk

|ξ| (Fφ0)(2−jξ)
)
(x)

∣∣∣∣dx
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= 2jn

∫

Rn

∣∣∣∣
∫

Rn

ei2
jxξ iξk

|ξ| (Fφ0(ξ))(x)dξ
∣∣∣∣dx

= 2jn

∫

Rn

|iRkφ0(2jx)|dx=
∫

Rn

|iRkφ0(x)|dx= ‖iRkφ0‖1

for all k with 1 ≤ k ≤ n. Thus we conclude

‖Tf ; Ḃ0
∞, 1‖≤C‖φ0‖H1

∑

j, k∈Z, |j−k|≤2

‖φk ∗ f‖∞

≤ 3C‖φ0‖H1

∞∑

j=−∞
‖φj ∗ f‖∞ = C‖f ; Ḃ0

∞, 1‖.

This establishes the result. ¤

Lemma B.2 (Theorem 7.30 in [11], [18], Mikhlin-type theorem in the
Hardy space and BMO) Suppose k > n/2. Let m(ξ) ∈ Ck(Rn \ {0})
satisfy

|Dαm(ξ)| ≤ Cα|ξ|−|α| (ξ 6= 0)

for all |α| = α1 + · · · + αn ≤ k. (B.5)

Then the operator defined by Tm = F−1mF is bounded from H1 to itself
and from BMO to itself.

Lemma B.3 (Boundedness of resolvent operator) Let 1 ≤ q ≤ ∞. Con-
sider the operator λ−iRj : Ḃ0∞, q → Ḃ0∞, q for j = 1, 2, 3. Then, Spec(iRj) ⊂
R. Here Spec(K) denotes the spectrum set of an operator K.

Proof. Assume λ ∈ C \ R. Since it is easy to see that m(ξ) = 1/
(
λ +

(ξj/|ξ|)
)

satisfies (B.5), Lemma B.2 guarantees that (λ− iRj)−1 exists and
bounded from H1 to itself. So, it follows from Lemma B.1 that (λ− iRj)−1

exists and bounded from Ḃ0∞, q to itself. Thus λ ∈ C \ R belong to the
resolvent set. ¤

Proposition B.1 (Estimate for exponential of the operator tRj - (n+ 1)-
power version) Let X be H1, BMO or Ḃ0∞, q for 1 ≤ q ≤ ∞. Then we
have

‖ exp(tRj)‖X ≤ C(1 + tn+1)‖f‖X for t > 0.

Remark B.1 In the case X = Ḃ0∞, q, the power n + 1 of t in the above
estimate can be improved to δ + n/2 with any δ > 0 (see Theorem C.1).
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Proof. In the proof we omit j and write R for Rj . Consider the Yosida
approximation Rλ (λ ∈ N) for R defined by Rλ := RJλ where Jλ := λ(λ−
R)−1. Since Rλ = −λ+ λJλ, we see

‖ exp(tRλ)‖X→X=e−tλ‖ exp(tλJλ)‖X→X

≤e−tλ
∞∑

k=0

(tλ)k

k!
‖(Jλ)k‖X→X .

To estimate ‖(Jλ)k‖X→X we get pointwise estimate for its symbol m(ξ) :=(
λk/(λ− iξ/|ξ|)k

)
to derive

λ−k max
|α|≤n+1

sup
ξ 6=0

|ξ||α||Dαm(ξ)| ≤





C
1
λk

if λ ≥ k,

C
1
λk

(k
λ

)n+1
if λ < k

for some numerical constant C > 0. Hence, applying Lemma B.2 as k =
n+ 1, we see

‖ exp(tRλ)‖X→X

≤ Ce−tλ

( λ∑

k=0

(tλ)k

k!
+

∞∑

k=λ+1

(tλ)k

k!

(k
λ

)n+1
)

≤ C + Ce−tλ 1
λn+1

∞∑

k=λ+1

(tλ)k−n−1

(k − n− 1)!

× kn+1

k(k − 1)(k − 2) · · · (k − n)
(tλ)n+1

≤ C + Ctn+1e−tλ
∞∑

m=λ−n

(tλ)m

m!

≤ C(1 + tn+1).

Then the estimate for exp(tR) inH1 and BMO follows from the convergence
exp(tRλ) → exp(tR) as λ → ∞. The same estimate in the Besov spaces
Ḃ0∞, q follows from Lemma B.1 since exp(tR) =

(
F−1 exp(ti(ξ/|ξ|))) ∗ f is a

convolution type operator. ¤

Lemma B.4 (Persistency of vertical averaging property) Assume that
n = 3. If U ∈ B0, then E(−Ωt)U ∈ B0, where E(−Ωt) = exp(−tΩS).
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Proof. It suffices to prove that Rjf = 0 if f = 0 for f ∈ Ḃ0
∞, 1, where Rj

is a scalar Riesz operator and f is a scalar function. We approximate f by
a finite sum

∑
φj ∗ f .

We set fl =
∑
|k|≤l φk ∗f for l > 0. By a similar argument to prove that

exp(νt∆)U = 0 for U = 0 in the proof of Proposition 3.2 we obtain that
Rjφk ∗ f = 0 if f = 0, since Rjφk is a rapidly decreasing function. This
implies that Rjfl = 0. Since fl → f in Ḃ0

∞, 1 as l →∞, the Riesz operator
Rj is bounded and the subspace of the zero vertical average is closed in
Ḃ0
∞, 1, we conclude that Rjf = 0. ¤

Remark B.2 The fact that Mikhlin’s condition (B.5) implies that a bound
for the operator Tm = F−1mF in Ḃ0∞, q can be proved directly without using
Lemma B.1; see e.g. Amann [1]. However, Lemma B.1 is not included in [1]
and seems to be new.

C. Appendix: Improved estimate for the Coriolis solution oper-
ator in the homogeneous Besov space

In the previous appendix we already obtained an estimate for the Cori-
olis solution operator exp(−ΩtS) with the power n+ 1 of Ωt. Although the
estimate in Proposition B.1 is valid in 3 kinds of spaces, H1, BMO, and
Ḃ0∞, q, we can get sharper estimate if we restrict function space to Ḃ0∞, q.

Theorem C.1 (Estimate for exponential of the operator tRj -
(
(n/2) +

δ
)
-power version) Let 1 ≤ q ≤ ∞. For each δ > 0 there exists a constant

C = C(δ, n) > 0 independent of q, t, j, and f such that

‖(exp tRj)f‖Ḃ0∞, q
≤ C(1 + t)(n/2)+δ‖f‖Ḃ0∞, q

for all t > 0 and f ∈ Ḃ0∞,q.

For the proof the first step is to observe

Lemma C.1 Let 1 ≤ q ≤ ∞. Let φ0 be the function of the Paley-
Littlewood decomposition in the definition of the Besov norm. Then

‖(exp tRj)f‖Ḃ0∞, q
≤ 3‖(exp tRj)φ0‖L1‖f‖Ḃ0∞, q

(C.1)

Proof. By definition



356 Y. Giga, K. Inui, A. Mahalov and S. Matsui

‖(exp tRj)f‖Ḃ0∞, q
=

( ∞∑

k=−∞
‖(exp tRj)(φk ∗ f)‖q

∞

)1/q

=
( ∞∑

h=−∞

∑

|h−k|≤1

‖(exp tRj)(φk ∗ φh ∗ f)‖q
∞

)1/q

≤
( ∞∑

h=−∞

∑

|h−k|≤1

‖(exp tRj)φk‖q
L1‖φh ∗ f‖q

∞

)1/q

Since ‖F−1fλ‖L1 = ‖F−1f‖L1 for fλ(ξ) = f(λξ), λ > 0 and ξj/|ξ| is invari-
ant under this scaling, we have

‖(exp tRj)φk‖L1 =
∥∥∥∥F−1

(
exp

( itξj
|ξ|

)
φ̂0(2−kξ)

)∥∥∥∥
L1

= ‖(exp tRj)φ0‖L1 .

Hence one sees that

‖(exp(tRj)f‖Ḃ0∞, q
≤ 3‖ exp(tRj)φ0‖L1

( ∞∑

h=−∞
‖φh ∗ f‖q

∞

)1/q

≤ 3‖ exp(tRj)φ0‖L1‖f‖Ḃ0∞, q
.

The proof is now complete. ¤

We shall estimate ‖(exp tRj)φ0‖L1 in RHS of (C.1) by using an weighted
L2 estimate.

Lemma C.2 For each σ ≥ 0 there exists a constant Kσ = K(σ) > 0
independent of t > 0 such that

‖(1 + |x|2)σ(exp tRj)φ0‖L2 ≤ Kσ(1 + t)2σ for all t > 0.

Proof. We shall prove this Lemma only for σ ∈ [0, 1] since we only use
such a σ and the idea of the proof for large σ is the same. By the Parseval
equality we have

‖(1 + |x|2)(exp tRj)φ0‖L2 =
∥∥∥∥(1−∆ξ)

(
exp it

ξj
|ξ|

)
φ̂0(ξ)

∥∥∥∥
L2

≤ ‖φ̂0‖L2 + ‖∆ξφ̂0‖L2 + t2‖|ξ|−2φ̂0‖L2 + 2t‖|ξ|−1∇ξφ̂0‖L2 .

Since φ̂0 ∈ C∞0 and 0 /∈ supp φ̂0, we have the desired estimate for σ = 1.
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The case σ = 0 directly follows from the Parseval equality. For σ ∈ (0, 1)
we use the Hölder inequality to get

‖(1 + |x|2)σh‖L2 ≤‖(1 + |x|2)σhσ‖L2/σ‖h1−σ‖L2/(1−σ)

≤‖(1 + |x|2)h‖σ
L2‖h‖1−σ

L2

for any measurable function h ≥ 0.

We thus interpolate the estimate for σ = 0 and σ = 1 to get the desired
inequality for σ ∈ (0, 1). ¤

Proof of Theorem C.1. By Lemma C.1 it suffices to prove that

‖(exp tRj)φ0‖L1 ≤ Cδ(1 + t)(n/2)+δ, t > 0

with Cδ independent of t > 0. By the Schwarz inequality we have

‖h‖L1 ≤ ‖(1 + |x|2)−σ‖L2‖(1 + |x|2)σh‖L2 .

We take h = (exp tRj)φ0 and apply Lemma C.2 with σ = δ/2 + n/4 to get
our desired estimate for σ = δ/2 + n/4. The proof is now complete. ¤

D. Appendix: Estimate for fractional power of Laplacian of the
heat kernel

In this appendix we give the proof of Lemma 4.1(2). For this we need
an estimate for convolution in the Besov space Ḃ0

∞, 1. We shall also show
estimates for derivative and fractional powers of the heat kernel.

Lemma D.1 There exists a constant C > 0 independent of f and g such
that

‖f ∗ g‖Ḃ0
∞, 1(Rn) ≤ C‖f‖Ḃ0

1, 1(Rn)‖g‖Ḃ0∞,∞(Rn)

for f ∈ Ḃ0
1, 1(Rn) and g ∈ Ḃ0∞,∞(Rn).

Proof. By Young’s inequality we have

‖f ∗ g‖Ḃ0
∞, 1

≤
∑

j∈Z
‖φj ∗ (f ∗ g)‖L∞ ≤

∑

j, k∈Z
‖φj ∗ (f ∗ g) ∗ φk‖L∞

≤
∑

j, k∈Z, |j−k|≤2

‖φj ∗ f‖L1‖g ∗ φk‖L∞
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≤3 sup
k∈Z

‖g ∗ φk‖L∞
∑

j∈Z
‖φj ∗ f‖L1 ≤ 3‖g‖Ḃ0∞,∞

‖f‖Ḃ0
1, 1

¤

Then we turn to the proof of Lemma 4.1(2).

Lemma D.2 Let Gt be the heat kernel (4πt)−n/2 exp
(−|x|2/(4t)) for t >

0. Then
(1) ‖∇Gt(x)‖Ḃ0

1, 1(Rn) ≤ Ct−1/2.

(2) (Lemma 4.1(2)) ‖∇et∆f‖Ḃ0
∞, 1(Rn) ≤ Ct−1/2‖f‖Ḃ0∞,∞(Rn)

for f ∈ Ḃ0∞,∞(Rn).

Proof. (1) Since φj(x) = 2jnφ0(2jx), we see

‖φj ∗ ∇Gt‖1 = ‖∇(φj) ∗Gt‖1

= 2j

∥∥∥∥
∫

Rn

|2jn(∇φ0)(2jy)Gt(x− y)|dy
∥∥∥∥

1

≤ 2j‖2jn(∇φ0)(2j ·)‖1‖Gt‖1 ≤ 2j‖∇φ0‖1‖Gt‖1. (D.1)

On the other hand, we get by the mean value theorem and
∫
φ0(z)dz = 0

(φj ∗ ∇Gt)(x) =
∫

Rn

φj(y)(∇Gt)(x− y)dy

=
∫

Rn

2jnφ0(2jy)(∇Gt)(x− y)dy

=
∫

Rn

φ0(z)(∇Gt)(x− 2−jz)dz

=
∫

Rn

φ0(z){(∇Gt)(x− 2−jz)− (∇Gt)(x)}dz

=
∫

Rn

φ0(z)2−jz

(∫ 1

0
(∇2Gt)(x− θ2−jz)dθ

)
dz.

Hence,

‖φj ∗ ∇Gt‖1≤ 2−j

∫

Rn

∣∣∣∣φ0(z)z
∫ 1

0
(∇2Gt)(x− θ2−jz)dθ

∣∣∣∣dz

≤ 2−j

∫

Rn

|φ0(z)||z|
∥∥∇2Gt

∥∥
1
dz

≤ 2−j
∥∥φ0(z)|z|

∥∥
1

∥∥∇2Gt

∥∥
1
. (D.2)
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We set C0 = ‖∇φ0‖1, C1 = ‖φ0(z)|z|‖1. Then the inequalities (D.1), (D.2)
and ‖Gt‖1 = 1 yield

‖φj ∗ ∇Gt‖1 ≤
{
C02j ,

C22−jt−1.

Here, C2 = C1‖∇2Gt‖1t is independent of t. Thus we get for any N ∈ Z

‖∇Gt(x)‖Ḃ0
1, 1(Rn) =

∞∑

j=−∞
‖φj ∗ ∇Gt(x)‖1

=
( N∑

j=−∞
+

∞∑

j=N

)
‖φj ∗ ∇Gt(x)‖1

≤C0

N∑

j=−∞
2j + C2t

−1
∞∑

j=N

2−j

=C02N+1 + C22−N t−1.

Taking N ∈ Z such that (C2/C)t−1/2 ≤ 2N ≤ (1/2C0)t−1/2, we obtain the
desired result.
(2) This is a direct consequence of (1) and Lemma D.1. ¤

The above estimates can be generalized to the fractional power of the
Laplacian.

Lemma D.3 Let 0 < α ≤ 1. Then there exists a constant Cα = C(α) > 0
such that
(1) ‖(−∆)αGt‖Ḃ0

1, 1(Rn) ≤ Cαt
−α for t > 0,

(2) ‖(−∆)α exp(t∆)f‖Ḃ0
∞, 1(Rn) ≤ Cαt

−α‖f‖Ḃ0∞,∞(Rn)

for t > 0, f ∈ Ḃ0∞,∞(Rn).

Proof. Since the estimate (2) is a direct consequence of (1) and Lemma D.1,
we show only (1). Setting x = t1/2z, it is easy to see that

((−∆)αGt)(x) = t−(n/2)−α((−∆)αG1)(z) for t > 0. (D.3)

Hence, it is sufficient to show only the case t = 1. In fact, by scaling
invariance ‖f(λ·)‖Ḃ0

1, 1(Rn) ≈ λ−n‖f‖Ḃ0
1, 1(Rn) for λ > 0 we get

‖((−∆)αGt)(x)‖Ḃ0
1, 1

= t−(n/2)−α‖((−∆)αG1)(t−1/2x)‖Ḃ0
1, 1
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≤Ct−(n/2)−αtn/2‖(−∆)αG1‖Ḃ0
1, 1

≤Cαt
−α.

For any fixed j ∈ Z one sees that

φj ∗ (−∆)αG1 = φj ∗ (F−1(|ξ|2αĜ1)) = F−1(φ̂j |ξ|2αĜ1).

Since φ̂j(ξ) = φ̂0(2−jξ), we continue

φj ∗ (−∆)αG1 =
∫
eix·ξφ̂0(2−jξ)|ξ|2αĜ1(ξ)dξ

=
∫
eix·2

jξφ̂0(ξ)|2jξ|2αĜ1(2jξ)2jndξ

= 2jn+j2α

∫
ei2

jx·ξ|ξ|2αφ̂0(ξ)Ĝ1(2jξ)dξ

= 2jn+j2α[F−1(|ξ|2αφ̂0(ξ)Ĝ1(2jξ))](2jx)

= 2jn+j2α[F−1(|ξ|2αφ̂0(ξ)) ∗ F−1(Ĝ1(2jξ))](2jx).

It follows from

F−1(Ĝ1(2jξ)) = F−1

(
1

2jn

[
F

(
G1

( x
2j

))]
(ξ)

)
=

1
2jn

G1

( x
2j

)

and F−1(|ξ|2αφ̂0(ξ)) = (−∆)αφ0 that

φj ∗ (−∆)αG1 = 2j2α

[
(−∆)αφ0 ∗G1

( ·
2j

)]
(2jx). (D.4)

Hence Young’s inequality yields

‖φj ∗ (−∆)αG1‖1 = 2j2α

∥∥∥∥
[
(−∆)αφ0 ∗G1

( ·
2j

)]
(2jx)

∥∥∥∥
1

= 2j2α−jn

∥∥∥∥
[
(−∆)αφ0 ∗G1

( ·
2j

)]
(x)

∥∥∥∥
1

≤ 2j2α−jn‖(−∆)αφ0‖1

∥∥∥∥G1

( ·
2j

)∥∥∥∥
1

= 2j2α‖(−∆)αφ0‖1‖G1‖1

≤Cα2j2α. (D.5)

Here we used ‖G1‖1 = 1 and ‖(−∆)αφ0‖1 = ‖F−1(|ξ|2αφ̂0)‖1 ≤ Cα because
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|ξ|2αφ̂0 ∈ S. We next shift (−∆)α to G1( · /2j) in RHS of (D.4) to get

φj ∗ (−∆)αG1=2j2α

[
φ0 ∗ (−∆)αG1

( ·
2j

)]
(2jx)

=2j2α

[(
(−∆)−βφ0

) ∗ (−∆)α+βG1

( ·
2j

)]
(2jx).

Here we set (−∆)β−β = I for β > 0. Then by Young’s inequality for any
fixed j ∈ N we have

‖φj ∗ (−∆)αG1‖1

= 2j2α

∥∥∥∥
[(

(−∆)−βφ0

) ∗ (−∆)α+βG1

( ·
2j

)]
(2jx)

∥∥∥∥
1

= 2j2α−jn

∥∥∥∥
[(

(−∆)−βφ0

) ∗ (−∆)α+βG1

( ·
2j

)]
(x)

∥∥∥∥
1

≤ 2j2α−jn‖(−∆)−βφ0‖1

∥∥∥∥(−∆)α+β

(
G1

( ·
2j

))∥∥∥∥
1

.

Noting that (−∆)γ(G1( · /a)) = a−2γ((−∆)γG1)( · /a) for a > 0, γ > 0,
and ‖(−∆)−βφ0‖1 = ‖F−1(|ξ|−2βφ̂0)‖1 ≤ Cβ for some Cβ > 0 because
|ξ|−2βφ̂0 ∈ S we continue

‖φj ∗ (−∆)αG1‖1≤Cβ2j2α−jn

∥∥∥∥2−2(α+β)j
(
(−∆)α+βG1

)( x
2j

)∣∣∣∣
1

≤Cβ2j2α−jn2−2(α+β)j2jn

∥∥∥∥
(
(−∆)α+βG1

)( x
2j

)∥∥∥∥
1

=Cβ2−2βj
∥∥(

(−∆)α+βG1

)
(x)

∥∥
1
.

Since

‖(−∆)γG1‖1 ≤ Cγ for γ > 0,

we get

‖φj ∗ (−∆)αG1‖1 ≤ Cα, β2−2βj . (D.6)

Fix β > 0 to get from (D.5) and (D.6) that

‖(−∆)αGt(x)‖Ḃ0
1, 1(Rn) ≤

∑

j≤0

Cα2j2α +
∑

j>0

Cα2−j2β ≤ Cα.

¤
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