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Nonlinear nonlocal Ott-Sudan-Ostrovskiy type equations
on a segment
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Abstract. We study the global existence and large time asymptotic behavior of so-

lutions to the initial-boundary value problems for the nolinear nonlocal equation on a
segment (0, a)

ut—&-uux—i-%@x/ox%ds:O, t >0,
u(z, 0) = up(x), (0.1)
u(a,t) =0, t>0
and
ur + g + G /aE 7%8(8’ t)ds =0, t>0,
T Jo VT—s
u(z, 0) = up(z), (0.2)
u(a, t) =uz(0,¢t) =0, t>0

where the constant C; is choosen by a dissipative condition, such that Re C1p3/2 > 0
for Rep = 0. We prove that if the initial data ug € L°°(0, a) is small enough, then
there exists a unique solution of problems (0.1) and (0.2) u € C [0, +00);L2(0, a) N
C R*t;H!(0, a) . Moreover there exists a constant A such that the solution has the
following large time asymptotics uniformly with respect to = € (0, a)

u(z, t) = At~ 2/3A (2t =2/3) + Ot~ C1+9)/3y,
where § € (0, 2/3) and
€7i7r/4\/§ +ico

21 /0

A(s) = exp(sz — C12%/?)dz, s > 0.

Key words: dissipative nonlinear evolution equation, large time asymptotics, Ott-Sudan-
Ostrovskiy equation.

1. Introduction

We study the initial-boundary value problem for the nonlinear nonlocal
Ott-Sudan-Ostrovskiy type equations
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4 x s t
ut—l—uuz—i—g&v us(3, )ds:O, t>0, z€(0,a),
™ 0 r— S
u(z, 0) =uo(z), € (0,a), (1.1)
[ u(a, t) =0, t>0
and
Cr [* uss(s, t)
T - 7d =Y, t 9 9 9
g+ utly + — ; \/ms 0 >0, z€(0,a)
u(z, 0) =up(x), =z € (0, a), (1.2)
u(a, t) =0, wug,(0,t)=0, ¢t>0,

where the constant C is chosen by dissipative condition, such that
ReC1p?/2 > 0 for Rep = 0.

There are many physical problems, which are described in unified way
by nonlinear nonlocal equation

up + uty + / q(z — s)07u(s, t)ds = 0. (1.3)
0

It represents, as particular cases, many equations that are of great physical
interest, for example, the Korteveg-de Vries equation

Ut + Uty + QUgyy = 0
and Korteveg-de Vries-Burgers equation
Ut + Uly + Ugy + OUzze = 0.

Both are well-known in the theory of surface waves in water and in nonlinear
acoustics for fluids with gas bubbles. Ott, Sudan and Ostrovskiy proposed
the following generalization of Korteveg-de Vries equation (see [6])

1 (" ug(zx, t)
Ut + Uy + QUggy + 7r/0 7mds =0.
For the general theory of nonlinear pseudodifferential equations on a half-
line we refer to the book [4]. (For the case of the Cauchy problem we refer
to (3], [6].)

Up to now the theory of nonlinear nonlocal initial-boundary value prob-
lems on a segment is not developed well due to it’s difficulty. There are many
open natural questions which we need to study. First of them is how many
boundary data should be posed in the initial-boundary value problems for
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it’s correct solvability. There are some results in the case of nonlinear dif-
ferential equations [1], [2]. However, as far as we know there are few results
in the case of nonlinear pseudodifferential equations. In paper [7] we con-
sidered the case of pseudodifferential operator K of order a € (0, 1) taking
as an example the nonlocal Schrodinger equation on a segment

(1.4)

w+ilufu+Ku=0, t>0, ze(0,a),
u(z, 0) = up(x), z € (0, a).

We have introduced the pseudodifferential operator on a segment with sym-
bol K(p) = Cp® as follows

Ku =04(x)
[a]
xcl{f«p) (et 0-3

J=1

p]

(0, t)— e P03 u(a, t) >}

where by [a] we denote the integer part of the real number o and we define
by 6,(x) the step function

_J 1, 2€(0,a)
0“(96)_{0, z ¢ (0, a)

Here the Laplace transform and the inverse Laplace transform we denote
by symbols £ and £~ respectively. We proved in [7] that if the initial data
ug € L*(0, a) and [Jug||Le < €, then there exists a unique solution u €
C([0, 00); L>(0, a)) of the initial-boundary value problem (1.4). Moreover
there exists a constant A such that the solution has the following large time
asymptotics

u(z, t) = At=*A (ﬂ%) ) (t7(1+5)/a> 7

where A(z) = 1/(2mi) ffzooo e Ay,
In paper [5] we studied the Whitham equation on a segment in the case

of v € (3/2, 2)

{ut—i—uux—l—Ku:O, t>0, z€(0,a), (1.5)

u(z, 0) = up(x), z € (0, a).

We proved that there exists a unique solution u € C([0, co); L?(0,a)) N
C([0, 00); H'(0, a)) of problem (1.5) for small initial data ug € L>(0, a).
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Here we denote by

H'(0, a) = {f, 0. € L*(0, a); || fllr = | fllLe + 02 f 2 < +oo}

the Sobolev space. Note, that in both cases a € (0, 1) and « € (3/2, 2) we
did not put any boundary data in the problems (1.5) and (1.4).
In the present paper we consider cases of nonlocal operators of type

v Us(57 t)
Liu = 0, ————d
1u /(; s S

and

T ugs(s, t)
Lou = ———=ds,
2 /0 Vi—s

which have the same order av = 3/2, so on the face of it should have the same
number of the boundary data. However this is not the case. Indeed, we will
prove that we have to put in the problem (1.1) for it’s correct solvability one
boundary value u(a, t), whereas in the problem (1.2) - two boundary data
u(a, t) and u,(0, t). For simplicity we take homogeneous boundary data
however we believe that the methods developed in this paper also work for
non homogeneous boundary data.

Since the nonlinearity uu, represents the so-called derivative loss, we
have to use the smoothing properties of the strongly dissipative linear op-
erator. Therefore the methods of papers [5] and [7] do not work directly.
We adopt here approach based on the estimates of the Green function. An-
other difficulty of nonlocal equation on a segment is that the symbol K (p)
is not analytic in the left-half complex plane. Therefore we can not apply
the Laplace theory directly, we use a methods of paper [5] to construct the
Green function.

To state the results of the present paper precisely we give some nota-
tions. We introduce the following function space

Zr,, = {6(2, 1) € C(0, THLA(0, a)
NC((0, T; HY(0, a));[|¢llz.., < +o0}
with the norm

I6ll2r., = sup (160 + 17 6.(0)ls2)
S b
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Now we state the results. First of all we formulate the local existence of the
solutions of the initial-boundary value problems (1.1), (1.2).

Theorem 1 Suppose that the initial data ug(x) € L*(0, a). Then for
some T > 0 there exist unique solutions u(x,t) € Zr  to the initial-
boundary value problems (1.1), (1.2), where v > 0 is small enough.

In the next theorem we give some sufficient conditions for global exis-
tence of solutions.

Theorem 2 Suppose that the initial data ug(x)€L>(0, a) is small enough.
Then there exist unique solutions ue C([0, +00); L*(0, a))NC(RT; H(0, a))
to the initial-boundary value problems (1.1), (1.2). Furthermore these solu-
tions u have the following asymptotics for large time

u(z, t) = At—2/3A(:rt_2/3) 4 O(t_2(1+5)/3)’
where 0 € (0, 2/3) and

—in/4, /9 ptico
A(s) = 622\[/ esz_clzg/zdz, s>0
™ 0

a +oo a
A= / uo(x)dx +/ dT/ uuydr < oo.
0 0 0

Remark 1 Note that due to the condition u.(0, t) = 0 the solutions for
the initial-boundary value problems (1.1), (1.2) have the same large time

and

asymptotics. However we expect that solutions of (1.2) and (1.1) could
have different large time asymptotic behavior in the case non homogeneous
boundary data u, (0, t) = h(t).

Remark 2 Note that the problem (1.1) with the boundary data at the
point z = 0 instead of x = a is not correctly posed. The problem (1.2) with
the boundary data ug(a, t) = ug(0, t) = 0 or u(a, t) = u(0, t) = 0 also is
not correctly posed.

2. Preliminaries

We denote operator

1 [i© egla—pa _ 1
Plotp 0] = 5z [ o ala, s
—100
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In the next lemmas we give the proofs of the main properties of the
operator PP (see also paper [5]). Recall that by £~! we denote the inverse
Laplace transformation.

Lemma 1 Let the function g(p) be analytic for all complex p, except p € T’
and satisfy the following estimate

1+ |e P
lg(p)| < T
where § > 0. Then
ela—pla
Plg(p)] = 9(p) +/F p— 9(q, t)dq (2.1)
and
L7HPlg(p, )]} = 0a(x) L™ {g(p, 1)} (2:2)

Proof. Let us consider the case Rep > 0. Using the Cauchy theorem we
obtain

1 [t elg—pla 1 ela—pla
— ——9(q, t)dg = 5— g(q, t)dgq
2m J oo 4P 2ri Jr ¢q—p
and
1 [ 1

— —9(q, t)dg = —g(p, t).
97 _mq_p( ) (p, 1)

In the same way we have for Rep <0

1 [t elg—pla (. t)d - 1 ela—pla (4. )d
o gqvtngpthr./ g(gq, t)dq
21 J oo 4P 2mi Jr ¢q—p

and
1 [ 1
— ——yg(q, t)dg = 0.

2mi —ico 4§ =P
Therefore statement (2.1) is proved. By a direct calculation using the
Cauchy theorem we have for z > a

100 100+4-¢€ e(qu)a -1
/ eP* ——9(q, t)dgdp = 0.
—1400 q—p

—i00+€
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Also for z < a

100 qa
/ dpe?==?) / Cg(q, t)dg = 0.
—100 rq—>o

Therefore using representation (2.1) we obtain formula (2.2). Lemma 1 is

proved. ([l

Denote by K (p) = C1p*/?. We make a cut along the contour I

3
Fz{zEC,argze(—Qw—i—ﬁ,ﬁ],ﬁe<72T, ;)} (2.3)
Lemma 2 Let the function g(p) be analytic for all complex p, except p €
I'. Suppose that function ¢(p) has the following asymptotics for |p| > 1

a—e P 1+ |ep“]>
=—+4+0 ( . 2.4
o) = = PES 2.4)

Then the function gi(p) = Plg(p)] has the same main term of the asymp-
totics as the function ¢(p), i.e.

n(p) = Plo()] = =0 0 (FHETL). (2.5)
p |
Moreover
1 ela—p)a
IP’[K(p)%i/r p— Q(Q)dQ] =0. (2.6)
Proof. We have
1 ela—pla o—qay, _ e pab.

2mi Jr ¢q—p q
Therefore using the asymptotic formula for the function ¢(p) and applying
the Cauchy theorem we obtain

1 ela—pla p .
ﬁrq_pg(Q)q (2.7)
1 ela—p)a e—qap e—pa
= i (g(q) + > dq + b
m™Jr 4—0P q p

1 e—Pa —qay, —pa
:T(j /eqa<g(q)+e )dq+e b
T p Jr q p
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1 e P2 el% e 1%
- — / q <g(Q) + ) dq.
2wt p Jrq—p q

Using
lim £7{g(p)}
L 00 oz [@—€ 7P 1+ |e7P?]
= L ( p 9 [t o
_—

via formula (2.4) we have

lim L7YPg} (2.8)
1 100+€ 1 e(qu)a -1 e
= lim — pe___ [ © t b(t) )d
v—an0 27 /_m+€e omi q—p (g(q’ )+ ()> ?

1 100+-¢€ 1 qa —qa
= lim / ep(x—a)'/ ¢ g(Q7 t) + c b(t) dq
x—a—0 270 | 000 e 2w Jrq—p q

1 100+-¢€ e~ pa
+ lim / eP* (g(p, t)+ p b(t)> dp

x—a—0 271 —ico+e

1 —aa

— [ e t
omi 1€ <g(q, )+

b(t)) dg = —b.
Putting (2.8) into (2.7) we obtain
1 ela—p)a
2mi r 4—p

1 e Po ed® e 9% (¢t
=—c= /F q(Q(q, t) + q()>dq-

2 p q—0p

9(q, t)dg (2.9)

Since for ¢ € T

e~ 1 le~19|
o0+ =0 (i)

we can prove that

e e el® e~ 9% e~ pe
/ q<g(q)+ )dq=0<’ 2‘>,
p Jra—p q |
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and as a consequence of (2.9)

1 ela—p)a

2mi Jr ¢q—p

g(q, t)dg = O (’e_pa‘> . (2.10)

IpI?
Therefore via the representation (2.1) we have

1 ela—pla

— d
5 Fq_pg(q)q

a—e P 14 |e7P®
Lo (L,
p Pl

The first statement of Lemma is proved. Via estimate (2.10) we have
1+ |e~Pe|

K 1 ela—pa p
(p)Zm/p q—p 9(q)dq W-

Therefore from (2.1) and formulas (2.9), (2.10) we see that

. 1 ela—p)a
L PPﬂm%mA:q_pg@M4

— 0@ R [ (ot + <)

1 eda e e+ioco ep(x—a)K
z%@)/ q@@+ 0@/ ———J@@
r q e p(p—q)

27t Jrq—p —ico —q

<

=0.
As a consequence we get (2.6). Lemma 2 is proved. O
Remark 3 If the function g(p) is analytic for all p € C, then

Plg(p)] = g(p).

We defined the pseudodifferential operator Ku by

Ko = 0, (2) £~ {K(p) (a(p, f) - 0.8 = ‘;pa“(a’ t)> } (211)

Lemma 3 We have for all x € (0, a)

T ugs(s, t) s u_ux(O, t)
e
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and
T us(s, t)
0 r— S

Or ——2ds = Ku.

Proof. We have by direct calculations

T ug(x, t) uz(0, t) /x Ugs
(935/ ds = + ds.
0o Vr—s NZA 0

Taking the Laplace transformation we get

E{/ Uss ds}
0 xr — S

{2 (om0 )

j=1

Taking the inverse Laplace transformation and using the result of Lemma 1

we have
€T __ p—Dba
/ Uss oo Ou(2) L {K(p) (ﬂ(p, H— u(0, t) — e Pu(a, t))}
0 VT —s p
— e pa
() {&EU(O, t) — e POu(a, t) } .
VP
Since
_ egha
0 ()L {@UU(O, t) — e P*9pu(a, t)}
VP
B ozu(0,t) 1 L |
B 0zu(0, t)
= 9a(9€)7
we easily get the statement of the lemma. O

Lemma 4 Let K(p) = C1p*/2. Then there exists only one inverse func-
tion ¢(&) = K—1(=¢), such that ¢(€) is analytic for Re& > 0 and

Re ¢(€) > 0
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Proof. The function £ = —C’lp3/2 defined in argp € [-27 + 3, §) has
different inverse functions

¢ %3

—|  exp-i(m+ 27l +argé —argC)
Cy 3

in the domain Re& > 0, where [ is an integer, such that
2
2+ < §(7r+27rl—|—arg§—arg01) <p (2.12)

for all —7/2 < arg¢ < w/2. From (2.12) we get the following estimate

1
—2+9<IS -+

for ¢ = —arg&/(2m) + arg C1/(2m) + 3(3/(4m). The value arg C is defined
by the dissipation condition Re K (p) > 0 for Rep = 0. This implies

3 argC; 5
- < < -. 2.13
8~ 2w — 8 (2.13)

Then for ¢ = argCy/(2m) — 5/8 we get

1
—— < <0.
1 S¥s
Thus the integers [ must satisfy the inequalities
1 1
- R -
a+¢ 5 Sl=—5 +¢
and
36

o+

argé 11 33 1 argé
_ N el < I
27 8+w+47r_l_8 27

for all arg¢/(2m) € [—1/4, 1/4]. Therefore

_Z 4P _Z 2
8 + dr — = 8 * ar
Since @ € (7/2, 37/2) we have
3 33 9
8§ T ®

Hence there exists one inverse function ¢(¢) = K~1(—¢), which is analytic
in Re¢ > 0. Lemma 4 is proved. ([
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3. Linear problem

We consider the following linear initial-boundary value problem

Ut‘i‘gam Mds:f(x, t), t>0, T € (O, a),
T 0 xr— S
w2, 0) = up(z). =€ (0, a), (3.1)

u(a, t) =0, ¢>0.

To derive an integral representation for solutions of the problem (3.1) we
suppose that there exists a solution u(z, t) of problem (3.1), which is pro-
longed by zero outside of the interval (0, a), that is

u(z, t) =0 forall z ¢ 10, al.

Via Lemma 3 we have for the Laplace transforms

1 T us(s, t)
—0y d
efzo- [ el

=P [K (p) (ﬂ(p, t) —

(0, t) — ;‘pau(a, t))}

and

~

Up, t) =Pla(p, t)].  Flp, t) =P[f(p, 1)].

Applying the Laplace transformation with respect to z to problem (3.1) we
obtain

P [a+ &) (20,0 - “OEDZEEHED) - F ) o,

t>0, z€(0,a), (3.2)
u(p, 0) = uo(p),
u(a, t) = 0.

We look for the solution of (3.2) in the form

u(p, t) = Plua(p, 1)]. (3.3)

The substitution of the representation (3.3) into (3.2) yields
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(P[“HK(p) (mp,t)—“(ovt)—e”“u(a,t)) . ]

P - (p7 t)

e(q—P)a
+P[ : /r (u1e(g, 1) + K (p)ur(g; t))dq] =0, t>0, (3.4)

2mi

N q—p
u1(p, 0) = uo(p)
u(a, t)=0, ¢>0.

Now we prove that under some conditions (see (3.9) below) we can define
the function uq(p, t) as the solution to the following problem

u(0, t) — e Pufa, t)\ =
- P ) - f(pa t)

e+ K() (ulm )

u1(p, 0) = uo(p),
u(a, t) = 0.

(3.5)

Indeed, integrating equation (3.5) with respect to time, we write u1(p, t) as

t
U (p, t) = e K@G(p) + / e KD £y (p, 7)dr, (3.6)
0

where

-~

filp. ) = Flp. 1) — K(p) (m(p, -

u(0, t) — e Pu(a, t))
) .
In order to get the integral formula for solutions of (3.4), we need to

know the boundary values u(0, t) and u(a, t). We will find them using the
following growth condition

a1 (p, t)] < M1+ [p]) (1 + e7P|) for all |p| > 1, (3.7)

with some M, § > 0, which guarantee us that ui(p, t) has the following
asymptotic behavior for [p| > 1
_u(0, t) — e Pu(a, t)

- _ 1y 1+e P
1(p, 1) , o <p<K<p>>1-v) (38)

and as consequence of Lemma, 2

ela—pla
P[le/r q—p (u1t(q, t) + K(p)ui(q, t))dq} =0.

Also under condition (3.7) inverse Laplace transform u(z, ¢) vanish for all
x < 0 and z > a (see Lemma 1). It is easy to prove that condition (3.7)
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is fulfilled in domains Re K(p) > 0. In domains, where Re K(p) < 0, we
rewrite formula (3.6) as

—+o00
U(p, t) = K@ (ﬂo(p)Jr / KW 1 (p, T)dT>
0

+oo
[ R, s
t

Clearly the last integral

+o00o
[ 0 g,
t

satisfies condition (3.7) for all [p| > 1, such that Re K(p) < 0. However
the first summand with exponentially growing factor e 5 ®? does not sat-
isfy condition (3.7), therefore we have to put the following necessary and
sufficient condition

+o0
uo(p) + /0 KT (p, T)dT =0 (3.9)

for all |p| > 1 in the domains, where Re K (p) < 0.

We use the equation (3.9) to find the boundary values u(0, t) and u(a, t)
involved in formula (3.6).

Via Lemma 4 taking the root ¢(&) of equation K (p) = —¢ we transform
the half-complex plane Re{ > 0 to domain, where Re K (p) < 0. We have

6(€) = C;l|§|2/36i(—27r/3+arg§/oz)' (3.10)
Note that in right-half complex plane Re& > 0

Re¢ > 0.
The condition (3.9) can be written as equation

=~ u — e~ hagy
(0) + (6, ) - Ll = )

for Re & > 0, where functions u(0, &) and u(a, &) are the Laplace transforms
of the boundary data u(0, t) and wu(a, t) with respect to time, and

=0 (3.11)

~

a ~ “+o0 a
() = /O ugly)dy,  F(d, €)= /0 /0 e~ OUTED £y 1)dydt.
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From (3.11) we obtain

8(0(0) + (9, ©))

a0, €) = (3.12)
§
and the Laplace transforms (0, &) satisfy the growth condition
[a(-, &)l < M(1+ €))7 for all ¢ > 1 (3.13)

with some M, 8 > 0, which is sufficient for the existence of the inverse
Laplace transform u( -, t).
Taking the inverse Laplace transform of (3.12) we obtain

u@ﬂ=] /wﬁd%@+ﬂ¢®%5

2mi —100 5

(3.14)

Thus in the supposition that there exists a solution of the problem (3.1) we
get the integral representation (5.2) for this solution

u(z, t) =04 (x) L™ {ur} (3.15)
1 100 Kot
zﬂa(x)% </ ' dpeP®e (®) uo(p)
100 t
—i—/ioodpepx/o e K@) (t-7) <f(p, T)+ Kl()p)u((), 7')> dT) ,

where the functions u(0, 7) were defined by formula (3.14).

Now we prove that the function u(x, t) given by formula (3.15) is a
solution to problem (3.1). Taking the Laplace transformation of (3.15) and
using the asymptotic representation (4.4) of u(p, t) we get

where the function ui(p, t) is defined by (3.6), i.e.
t
Ui (p, t) = e KPIG(p) + / e KW= 1 (p, 7)dr.
0

By virtue of formula (4.4) and Lemma 2 the Laplace transform u(p, t) has
the following asymptotic representation for |p| > 1

u(p, t) = WO 8) = e ula, ) ot (L1
P P
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Therefore substituting (3.16) into the definition of the pseudodifferential
operator Ku (see formula (2.11)) and using

i | ]

we obtain

Since L7P =0,(z)L~! and

ue + K(p)ur = f(p, t) + KZ(?P) (u(O, t) — f;_pau(a, t)>

we obtain

Ku =04 (z) L1 {K(p) (m —

=04(x)L™ {u1t+fp, }——ut(a: t)+ f(z, t).

So the function u(z, t) given by (3.15) satisfies equation u(z, t) + Ku =
f(z, t). Also clearly that the initial condition of the problem (3.1) is fulfilled

u(0, t) — e Py >

1 100
e, 0) = bu(@)g [ dperi(p) = uola).
Thus there exists a solution to the problem (3.1), which is given by for-
mula (3.15). The uniqueness follows from the fact that all solutions have
representation (3.15).
Using representations (3.14) we have (for simplicity we put f(z, t) = 0)
1 100

t
Li=o | dper / K@= (U0 T) g
T 0 P

—100
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L e dpepr(p) efK(p)ti e ¢a0(¢)

= d
2mi —100 p 2mi —100 5 g
t
" / dre K@
0
Integrating with respect to 7, substituting the Laplace transform ug(¢) and
using
00 &)y 1
ge” ¢ =0
Lo & K(p)+¢€
we obtain
I=—— dpepm (p)/ 6§t¢ df
2mi —100 p 2m —100 ‘SK( ) 5

:_i a 100 ft(bei 100 px&
i o [ 35S [

Therefore we have the following integral representation for solutions wu(z, t)
of problem (3.1)

u(z, ) = / ()G (. v, Ddy (3.17)

/ dT/ fly, G(x, y, t — T)dr,

where the Green function G(z, y, t) is defined by
1 100
Gz, y, t) =0q(x)=— (/ e~ K®)t+p(z—y)
21\ J _ino

1 [ e
+— ¢

O [ e )
271 oo dee § /ioo e p(K(p) +¢)

Thus we have proved the following result.

Theorem 3 Let the initial data ug € L'(0, a) and a source f(x,t) €
Ll (0, 00;LY(0, a)). Then there exists a unique solution u(z, t) of the
initial-boundary value problem (3.1), which has representation (3.17).

Remark 4 By virtue of Lemma 3 we have

us(s, t T ugs(s, t)
Oy —_d
/ x—s /0 VT —s N
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if uy(0,¢) = 0. Therefore Theorem 3 is true for the following initial-

boundary value problem

Cr [ uss(s, t)
— ds = t>0 0
Ut+ T 0 \/m S f? > ) xE( 7@),

u(z, 0) = wuo(z), € (0,a),
u(a, t) =ugy(0,t) =0, ¢>0.

4. Asymptotics of the Green function
Consider the following function for x € (0, a), y € (0, a), t >0

g(x7 y7 t) = G(x’ t) + F(':U7 y? t)?

where
1 +i00 K( )t
Gz, t) = — p—K )ty
(z, t) = 5 /_ e p
and
1 +i0c0 +ico
F(]), Y, t) = _42/ dpepxle(p)/ eitfqﬁ(ﬁ)y
™ —100 —100

<€ P(E) (K (p) + &)~ de.

Here the function ¢(€) is defined by

6(6) = K1), Re&>0.
Note that Re (&) > 0 for all Re{ > 0.

(4.3)

Lemma 5 The following asymptotics for t — oo uniformly with respect to

z,y € (0, a)
Gz, y, t) = 72BN (xt™3) 4 O(¢72(1+9)/3)

is true, where § € (0, 1] and

—im/4 9 [ticc
A(s) = e2m_\[/0 K@) gz,

(4.4)

Moreover there exists a constant C' > 0 such that for p € [0, 2/3) and v > 0

sup  ytBR /BT 4T
t>0,y€(0, al

X(Hg( Y, t)||L2 +t2/3”gl“('a Y, t)HLQ) <C. (45)
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Proof. First we prove formula (4.4). We write the representation for func-
tion G(z, t) (see (4.2)) as follows

Gz —y, t) =Gz, 1) + (G(x -y, t) = Gz, 1)). (4.6)
Making a change of the variables K (p)t = K(z) we easily find that
Gz, t) = t2BA(xt2/3). (4.7)

Using the estimate |e ™Y — 1| < C|py|® for y > 0 and p € (—ioo, icc) and
making the same change of the variables we get for § € (0, 1), y € (0, a)

+ic0
|G($ —, t) o G(l‘, t)| < ‘/ 6—K(P)t+}7x(1 _ e—Py)dp

—100

+i00
Sct(1+6)/a/ eReK(z)‘Z|5|dZ|

< ot 20+9/3, (4.8)
Therefore from (4.6)—(4.8) we obtain asymptotics for large time ¢t — oo
Gz, y, t) = t 2B (@t™2/3) 4 O(t720+9)/3), (4.9)
We write the representation of the function F(x, y, t) (see (4.3))
F(z,y,t)=F(x,0,t)+ (F(x,y, t) — F(x, 0, t)). (4.10)

Making a change of the variables ¢ = ¢ and K (p)t = K(z) we get

F(x,0,t) :/ dfeét? dpepx& :tfl/aAg( * ),

—100 5 —100 p(K(p) + f) m
where
Ao(s) = /_ZOO el¢’(q)dq /_ZOO dzezszm. (4.11)

Since Re K (z) > 0 for Rez < 0 via the Cauchy theorem we have for s > 0

e zs K(Z) _ 278 K(Z)
L e v = b e e (4.12)

where the contour I" was defined by formula (2.3).
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Also using 1/K'(¢) = —¢' (by definition K(¢) = —q) we obtain

/_m "ol | RO g /oo W )

ot [ st
Therefore we obtain the following estimate of the function As(s)
100 K(Z)
Ao(s :/ el (q dq/dpezS 4.13
2( ) i ¢( ) r z(K(z)—i—q) ( )

' 100 , 100 s 1
= 2mi /oo co(@)dg - /oo "ol [ dpe 2KG) +a)

=2mi /ZOO el¢!(q)dq

100 . s 1
- [ etada [ e 1) g

100 1 B —6/@
- [ ot [ 4 = 0
We have

2 1K(z) 1 n —q n 21K (2)
K(z)+q z+1 (z+1)(K(z)+q) (2+1)(K(z)+q)
and fjczooo e**(z + 1)7'dz = 2mie™®. Then changing the variables K (p)t =

K(z) and &t = g, using ¢(q) = rq¢?/3, where 7 is some complex constant we
get,

_ ftioo -
F(a,y, t)=Ct™"/° (27%90 / et~ g1/ o g

—100

+i00 B +i00 o
*/ dze* (z+1)71 / G (K (2) 4q) Mg (4.14)

—1400 —100

“+100 _ +1200 Ver
+/. dzemza_l(zﬂ)_l/. e yql/“‘l(K(Z)w)‘ldq),
—ico —ioo

1/

where & = zt~1/®, §j = yt~/*. Differentiating the representation (4.14) of



Nonlinear nonlocal Ott-Sudan-Ostrovskiy type equations on a segment 619

the function F(zx, y, t) with respect to y we get
_ fFioo e
Fy(x,y,t)=—Ct %/ (27Tie_x / et/ g2/a1

—100

+ico +i00 Ve
+/ ezx(z—i—l)_ldz/ eI T 2O W2+ q) g

—100 —100
+1i00 - +i00 Ver

—1—/‘ e”zo‘_l(z—i—l)_ldz/A el yqz/a_l(Caza—i—q)_ldq).
—100 —100

It is easy to see that we can change the contour of integration into

C={z=pe" p2 0,5 =2 +a (4.15)
and
Cy = {q:peﬂﬂ%pZO, 5222-1—62}, (4.16)

where €1 and €5 are fixed small positive constants. Then since Req, Rez < 0
and Rer¢?3y > 0 for all z € C1, g € Co we have

oRez@ < C’z‘—uzj—uz (4.17)

6Req < C|q|—w (4.18)
and

o Rerg?/3§ < C|q’7//41g7ﬂ1(3/2), (4.19)

where 1, pe, v > 0. Also it is easy to see that for all z € C1, ¢ € C3 and
v e o, 1]

K (2) +al ™" < Ol g (4.20)
Using the inequalities (4.17)-(4.20) with p1, uo =0, 1 = 1/a < v < 1/a
and 0 <y <2/a+v—1for ¢ <1and vy >2/a+v for |[¢g| > 1 we get

1By (-, -, D)l < Ot/ ( [ Pt
2

+i00
I et A e
| ;

—100

—+100
s [ et [ q|2/a2+”wdqr)
Co

—100
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<t 2/, (4.21)

Also for puyp € [0,2/3) and po2 € [0, 2/3), choosing v € [0, 1] such that
1/3 < pa+v < 2/3 and v > 0 such that u; +v < 2/3 for |¢g < 1 and
w1 +v>2/3+v+1 for |g| > 1 we have

|F(z,y,t)| < Ct72/3+ﬂl+ﬂ2y*/—’ll(3/2)$7N2 (3/2) (4.22)

x </ |g|¥/3 7171 dg]
Ca

b el a2 [ gprststoigy
C1 CQ

+ | dsafo o061 \qr2/3—2+”—m-7|qu
C1 C2

< Ot~/ tmtny—pm(3/2) —n2(3/2),
Therefore using (4.22) with p3 =0, po =0
IF(-, -, )l < Ct2/3, (4.23)
From (4.21) and (4.23) we get for 6 € [0, 1], y € [0, a].

|F(z,y, t) — F(z, 0, t)] (4.24)
SCIF (-, - OlR=IF (-, -, O)llpdy < et 20075,

By virtue of (4.10), (4.11), (4.13) and (4.24) we estimate F(x, y, t) as
F(z, y, t) = O(t—20+9/3), (4.25)
By formulas (4.9) and (4.25) we find
Gz, y, t) = t 2PN (wt2/3) + O(t~20+9)/3),

where
—i(n/4) Fioo
A(s) = e\/ﬁ/ > K gz,
2 0

Now we prove second part of Lemma 5. Differentiating (4.14) with respect
to x and using (4.17)—(4.20) we get &

[Fo(z, y, t)]
< Ct—4/3+#1+uzy—ulax—#2a</c |q‘1/a—1—#1—7’dq|
2
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+/ |dz||z_|_1|1’2‘11/(3/2);12(3/2)/ |q‘3/2+l/717,u,17'y’dq|
Cl C2

+/ |dz||z[3/2_”(3/2)_“2(3/2)|z+1|_1/ |q|2/3_2+”—“1—’7|dq|>,
Cl C2

For any p; € [0, 2/3) and p2 € (0, 2/3) we can choose v € (1/3, 1) and
~ > 0 in such a way that the inequalities 1 < ps+v < 5/3 and p1 +v < 2/3
in the domain |g| < 1 or g3 +v > 2/3+ v + 1 in the domains |g| > 1 are
valid. Then we obtain

|Ep(z, y, t)] < Ct*4/3+u1+u2y7u1(3/2)x*u2(3/2)' (4.26)
Choosing in formulas (4.22) and (4.26) pea = 1/2 — v we obtain for u €
[0,2/3) and v > 0

sup yu(3/2)t1/3+v—u(1 +1)7%

t>0,y€l0, a]

X (1F (s g, t)llee + 2P Fu (-, t)lle) < C.

The Laplace transform of the function G(z, t) is equal to @(p, t) = eP"t,
So making a change of variable K(z) = K(p)t we get

+t00 1/2
160l = GO mopmo <) ([ erestonaz))
< O/ (2a)

We have
100
Gz, t) = / ePr= K@)y,
—100
Then changing the contour of integration into C; such that Re K(z) > 0
and Re z < 0 and so for u, 11 > 0 we have

eRe(—K (2)+zat=2/3) < C\z|_“_“1(3/2)x_“t2“/3.

Therefore we obtain

G (z, t)] < $2(=2+41)/3 .~ ,z‘lfufmauz‘ < Ct(*““)/%*“,
C1

where p € [0, 2) and we choose 1 such that g+ gy < 2 for |2| < 1 and
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w~+ pia > 2 for |z| > 1. Choosing p = 1/2 — oy we obtain

supt_l'w(l + t)_QVHGm(t)HLz <C
>0

Lemma 5 is proved. O

5. Local existence

In this section we prove Theorem 1 by the contraction mapping princi-
ple. Let u be a solution of the following linear problem

Ugs (s, t)
N(w = t
up + 8 / \/m ds =0, >0, z >0, (5.1)
M%®—ud% >0,
where N(w) = iww, is well defined since w € Zr ., ,, where

Ly .y p= {w e Zr 4 Hw”ZT,'y < p}-

Note that initial value problem (5.1) defines a mapping M by v = M(w)
and we will show that M is the contraction mapping from Zr . , into itself
for a sufficiently small 7' > 0.

From Section 3 we get

wmwzéﬂmmau%w@ (5.2)

+ /Oth/Oa fly, 1)G(x, y, t — T)dr,

where the function G(z, y, t) is defined by (4.1).
Let us prove the following estimate

lullzy , = sup (E/*7 ug (8) ]2 + [u(t)]L2) < CA, (5.3)
te[0, T

where
A= ol + TH|wllz,,

0<p<1/3 andy > 0.
By (5.2) we get

wwwmscéﬂmwmw«w»mp@ (5.4)
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t a
w0 [Car [ NG DG vt = Dlwad.
From Lemma 5 for p € [0, 2/3) and ¢ < 1 we have
IG(-, v, t)llge < Ct=1/3Trmy=nE/2), (5.5)

Therefore using (5.5) with u(3/2) = 1/2 — v(3/2), where 0 < v < 1/3 we
obtain

[ g ledy < € [ 207y
< Cllulles [ o7y < Clual o (5.6)
Since w € Zr,, we have for t <1
NI < [ e, (e, lds (5.7)

< Cllw(t)|lgz lwe(t)|L2 < Cllwllg,, t~/*

Therefore using (5.5) with u = 0, we obtain
[t [N G v = sy 58)
< [ PN ldr
< Cloll, [ 7= 7 dr < Clul, 7%

where 0 < p1 < 1/3. Substituting (5.6) and (5.8) into (5.4) we obtain
lu(®)ll2 < C(lluollx + llwlz,, 7)< CA, (5.9)

where 0 < p; < 1/3. Differentiating (5.4) with respect to z we have

luslles < C /0 o I1Ga (- 3, ©)ldy

t a
e /0 dr /0 N@)(y, Ga(-, 9y ¢ = Pllgady. (5.10)
Via Lemma 5 we have

1G( -, 3, t)llge < Ot~ oy (3/2) (5.11)
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and choosing £11(3/2) =1 —(3/2) we get

sup /3 / koGl -, s D)llLedy (5.12)
te[0, T 0

<c / uo(y)ly~ 1 dy < O

Using (5.11) with u1(3/2) = 1/2 — v(3/2) we obtain

t a
sup ¢1/3+) / dr / N@W) (g, DNIGa (- v, ¢ —)lgedy  (5.13)
te[0, T 0 0

t a
<C sup 751/3+7/ dT(t—T)_Q/S_W/ IN(w) |y~ /27y
t€[0,T] 0 0

t
<C sup 09wy, [ dr(e- )2
t€[0, T 7 Jo

<Olwllz,, T" < CX.
From (5.12) and (5.13) we have

sup tY3%7 lug(t)||lr2 < CA. (5.14)
tel0, T

Therefore we get (5.3), namely,

lullzr, = o 3 g (8) e + [lu(t)|ee
€|0,

< O(||uoll= +T*wlZ,.)- (5.15)

We choose T < 1/(2Cp) and ||lug||Le < p/(2C). Then we have [lul|z, , <
p. Thus the mapping M transforms the closed ball in Z7 , with a center at
the origin and a radius p into itself. Analogously we can prove the estimate
|u —lzy ., < |w— @z, , for small T. Therefore the mapping M is a
contraction mapping in Zr , and there exists a unique solution u(z, t) of
the initial-value problem (5.1). Theorem 1 is proved.

Remark 5 By virtue of estimates (5.15) we see that if the norm of the
initial data |lug|lLee < €, then there exists a time 7' > 1 such that the
solution is also sufficiently small

sup ([[u(t)]|L> + 27 |ug (1) L2) < Ce.
te(0, T
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Remark 6 By virtue of Remark 4 Theorem 1 is true for the following
initial-boundary value problem (1.2).

6. Proof of Theorem 2

Consider the initial-boundary value problem (5.1) with small initial
data

HUOHLoo < €1, (61)

where ¢; > 0 is sufficiently small. Let us prove the following estimate for
allt >0

L+ (fu()llee + 2+ )P ug()2) <e (6.2)

By Theorem 1 the norms ||u(t)||t,2 and ||u,(t)||r,2 are continuous. Therefore
via Remark 5 there exists a maximal time 7" > 1 such that the non strict
estimate (6.2) is valid on [0, T']. We have by the formula (5.2)

wmwpsc(Aﬂm%@mw«wxmm (6.3)
—yédTAWwa%me«,%t—fmm@Q.

Since via Lemma 5 for all ¢t > 1

/377 sup ||G(-, y, )|z < C,
y€l[0, a]

and by virtue of (6.2)
IN(w) (#)llt < Cllu(®) |z llua(®)Le < 727714+, (6.4)
therefore we get
lu(®) |2 < Cert ™1/
Loe /0 (=) A ) g (65)
< Cley + )t~ 34,

Now we estimate the norm |luy(t)||r2. We have by the formula (5.4)

—+o00
mwmscA drluollGe( -+ 1, )l
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+oo
e / ar [ N G 9.t = Dl (66
Via Lemma 5 we obtain
iglgtlﬂf“l(l + )Gl -y, )|lp2 < Oy (6.7)

Therefore using (6.7) with p; = 0 we get for ¢ > 1
a
| drtunllat . 0l < Cae, (63)
0

Also from (6.4) we obtain
t a
| ar / IN() (s TG (> 9, £ — 7)lgady
<0 [ drtt—r) PN

< Cé? / T(t — )71+7771/377(1 + 7)Y
0
< Celt . (6.9)
We use (6.8) and (6.9) in the right-hand side of (6.6) to get
sup 177 ||lug (t)|lr2 < Cler + €2). (6.10)
t>1
From (6.5) and (6.10) we have estimate (6.2) for all ¢t € [0, T]. The con-

tradiction obtained proves the estimate (6.2) for all ¢ > 0. Moreover from
Lemma 5 we have for 6 € (0, 1), u >0

Gz, y, t) =t BN+ Ot 20973y,
where

—i(r/4) /9 [Ficc
V2 / oK) g,
0

Therefore we obtain from (5.2)
u(z, t) =t Y*AN + R(x, t) + Ri(z, t),
where by virtue (6.1), (6.2

+o0o
A:/ uo(y dy+/ / t)dydt < oo
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and

Rlx, ) = O(~20+9)/3) /O " o(y, D)y + /0 S /0 " N)(y, Dy

+ [ ar [N 0@, vt - 1) - Gl 1)
0 0
By analogy with the proof of Lemma 5 we see that

sup |Gi(z, y, t)] < Ct70/3.
z,y€[0, a

So we get for p € (0, 1)

sup  [G(x, y, t —7) = G(z, 5, 1)| <C sup |Gy(x, y, )T
z,y€[0, a] z,y€l0, al

<o/

Therefore choosing p = 2/3 — 3 from (6.4) we obtain

/0' dT/O N(U)(y, T)(g(l’, Y, - 7_) - g(ﬂl’, Y, t))‘
< Ct—5u/3 /OO 7_2/3—7—M(1 + 7_)—1+2fyd7_ _ 0(1‘5—2(14-6)/3)7
0

where § € (0, 2/3). So we find

t
Ra, )] < O(t2(+9/3) <HUOHL1 + [arinc., T>HL1>
0
_ o203,
where ¢ € (0, 2/3). Theorem is proved.

Remark 7 By virtue of Remark 6 Theorem 2 is true for the following
initial-boundary value problem (1.2).
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