Hokkaido Mathematical Journal Vol. 34 (2005) p. 587-598

A weighted weak type estimate
with power weights for sublinear operators
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Abstract. A weighted weak type estimate with power weights is established for sub-
linear operators which satisfy certain size condition.
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1. Introduction

We will work on R™, n > 1. Let K(x) be a function on R™\{0}. A well
known result of Stein [9] states that if K satisfies the size condition

[K(2)| < Clz[™", « € R"\{0} (1)

and the operator

Tf(x) =p.v. A K(z —y)f(y)dy
is bounded on LP(R™) for some p with 1 < p < oo, then T is also bounded
on LP(R", |z|*dz) provided that —n < o < n(p — 1), where LP(R", |z|*dx)
denotes the weighted Lebesgue space defined by

LP(R", |z|%dx) = {f is measurable on R™ and

HfH]z”(R"»Ix\adx) - /R" |f(@)|P|z[*dz < OO}

Soria and Weiss [8] gave some beautiful generalizations of Stein’s result. In
particular, they obtained the result of Stein in the case p = 1. However,
either the result of Stein or the result of Soria and Weiss does not apply to
the commutators of singular integral operators. Lu and Yang [4], Hu, Lu
and Yang [3], and Hu [2] established some boundedness results for sublinear
operators on weighted LP(R™) (1 < p < 00) spaces with power weights, and
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these boundedness results are very suitable for the commutators of singular
integral operators. The main purpose of this paper is to give a weighted
weak type estimate with power weights for certain sublinear operators. Our
main result can be stated as follows.

Theorem 1 Let m be a positive integer, —n < (1 < [Po < 00, T be a
sublinear operator which satisfies

Tf(z)] < /Rn [b(z) = b(y)|"'| K (z, y) f(y)ldy, (2)

where b € BMO(R"™), K(z, y) is a function on R™ x R"\{(z, y): x = y}.

Suppose that

(i) for some v > m, T is bounded from L'(log L)Y(R™) to weak-L'(R"),
namely

n. |f ()] @I,
Hx eR"™: |Tf(x)| > )\}‘ < C/Rn Tlog7<2+ T)dw,
(il) for any 0 <r < oo and 1 < B < P2, the operator
5.0 = [ K (2, ) log™ (2 + 1" [ Kz y) )| f )|y (3)
r<|z—y|<2r

is bounded on L'(R", |xz|?dz) with bound B and B is independent of
T
Then T is also bounded from L (log L)Y (R™, |z|*dx) to weak-L'(R™, |z|%dx)
provided that 51 < a < (2, that is,

/@) @)
“d C YA log7 (24 220 P ’ 4

with the constant C independent of f and .

Throughout this paper, C' denotes the constants that are independent
of the main parameters involved but whose value may differ from line to
line. For r > 1, v’ is the dual exponent of r, i.e., ¥ = r/(r — 1). For any
v > 1, the function ®,, is defined by

O, (t) =tlog”’(2+1t), t>0.
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2. Proof of Theorem 1

We begin with a preliminary lemma which will be important in the
proof of Theorem 1 and has independent interest.

Lemma 1 Letm, [ and k be nonnegative integers. Then there is a positive
constant C' = Cy, 1.1 such that for any a > 0 and t1, t2, t3 > 0,

Oy (t1t5") Pk (t3) < CPi(a™") (Prym(ats)Prymn(ts) + expta).

Proof. At first we claim that there is a positive constant C such that for
any 1, t2, t3 > 0,

Dy (t1t5")Pr(ts) < C(Prpm (t1)Pipmr(ts) +expta).
In fact, if 0 < t3 < 1, then we have
Dy (t115") Dk (t3) < OBy(trty') < C(Dpppm(ts) + expta)
< C(Prm(t1) Prymsk(ts) + expta),
where in the second inequality we have employed the inequality
Dy (t115") < C(Prym(t1) + expta),

see [6] or [7] for details. On the other hand, if t3 > 1, a trivial computation
leads to that

Dy (t1th") < By (Pr(ts) ) @y (Pr(ts)taty’)
< CPp(ts) M (Pram (L1 Pk(t3)) + expto)
< COp(t3) " (Pram (1) Pipm(t3) + expty).

Lemma 1 now follows from the fact that
(1117 (t3) < Dy(a )0y (at th ) Pr(ts).
O

Proof of Theorem 1. By the John-Nirenberg inequality, there are positive
constants By and By such that

Q(b)|
sup / exp dx < By,
Qcen Q] BZHbHBMO(R”)> '

where @) is a ball, mg(b) is the mean value of b on @Q, ie., mg(b) =
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Q! fQ y)dy. By homogeneity, it suffices to prove that

/ [ < 0/ 2)|log? (2 + |f(2)]) 2| de,
{z€R": |Tf(2)|>7DB1}

where D = Dy + Do+ D3 with Dy, Do, D3 positive constants which depend
only on Bs, m and n, and will be chosen later. For each k € Z, set C), =
{z e R": 2F < |z| < 2¥*1}. Denote by y; the characteristic function of C;.
For each fixed f € L'(log L)Y (R", |z|*dx), write

= Y J@x@) =) fi)
j==o0 j=—o0

and

|z|%dx

/{J:ER" | Tf(z)|>7DB1}

<C i ko {a:GCk ( Z f;) >3D31H
k=—c0

j=k+3
re 3 2effzea (3 1)w)|>pal]
- j=k—2
+C Z 2w e i |1 Z fi)| > 3DB1}|
=

:E1+E2+E3.

Since T is bounded from L'(log L)Y(R") to weak-L'(R"), it follows that

k+2

B Yy 2o 2/ 1£5(2)] log™ (2 + | () )z

k=—o0c0 j=k—2

S [f ()| 1og” (2 + [ f (2)])||* d.

To estimate the term E;, we choose a number aq such that 8] < a1 < «
and write

oo
E, <C Z Zka_kal/{xec |x|“ dx.
k*:

W % 41 fi) @) >3DB}
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Let A; = {x € R": |z| < 297!} and b; be the mean value of b on A;. By
the John-Nirenberg inequality, we know that for any k, j € Z, |bj — by| <
C|k — j|. Note that for x € Cy,

(3 5)@
J=k+3

S LK I b

j=k+3

3 |b(z) — b/ b(y) — bj|" K (=, y) f;(y)|d
§< )J;H’» /2 ! !

IN

I |p—y[ <2712

a
Ms
'MS

o) =bl' [ 1) = b K ) )

i—2<|g—y|<20+

$OSS DGR [ 1) K ) )l

J—2<|z—y|<29+2

By Lemma 1 (with t; = [b(y) — b;|™ | K (=, y)|/(B2|’b||BMO(R"))m_l7
ta = [b(z) — bi|/(B2||bl[BMmo®n)); t3 = 1, and a = 2(k=3)a1|Cy|) we have

Uf(x )
<oy 3 |Ck| exp( o =0y,

P oj il Bs||bll Mo rn)

roy Y |ck|

=0 j=k+3

o b () =1
9i-2<|z—y|<2it2 207K (By|lbllpmomn)) ™
< | @, )15 ()l dy
O 9(i—k)a b(x) — b
<oy exp( =B ),

j_k+3 !Ck| B2Hb”BMO(R")

+CZ Z

1=0 j=k+3

!kl
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X/ l( _[b(y) = ;[ Cy
2i-2<ja—y|<oitz 2070 (Ba|bllpmo(rn)) ™

X|K (@, )] )16 ()ldy
= ULf(x) + U}l f(2).

A standard computation leads to that

[e.9]

Z 2ka—ka1/ |.%"a1d$

ke — o0 {Ck: Ul f(x)>DB1}

= ka—ka — 2(j7k)al
<C Z 2 ! Z ”fj||1w

ke —oo j—kt3
|b(x) — by .
X ex | | @ dl‘
/Ck p<BQHbHBMO(]R“)>‘ |

X0 bekar oy 20 b(2) — byl
<cC gka—kai i / exp| =——— )dzx
<c Yy > Iy /e ))

f=—o0 k3 Ba|[bllsmo(rn

<C > 2RRr N il e, gfean 20

k=—00 j=k+3
00 j—3
<C Y il e, jaean 2@ Y 2heen)
j=—o00 k=—o0

<Cfllprme, 2)odz)-

Let ay ; = |C;||Cyx|71277k20=Fa1_ Tt is obvious that for k, j € Z with j >
k+ 3, ar, ; > 1. Another application of Lemma 1 with a = ay, ; yields

Uy f(2)
o~ 2V [b(y) — bjl
<C / exp( = t—2)dy
;3@1«’%]’ c; <B2Hb”BMO(R")>
< oli-k)ar
+C
joits |Chlar.g

a, j|Ck|
S S €= L) E A
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o0

k=7 b(v) — b
o 2] ol
j:k+3’ il Aj 2| ”BMO(R")
+C Y
j=k+3 15l

o N (T E TN

o . —k m
<D1B;1+C Z u
s 1G]

o N (STl R TN

This in turn implies that

(e o]

> 2 | ol da
k——o00 {z€Cy: Ullf(z)>2DB1}
o0
< 22’““’“‘1 S0 =k ] d
k=—o0 j=k+3 ]G]

2€Ck: X f2j*2§|x—y|§2j+2 (I)m(|0]||K(QZ‘, y)|)
X® (| f5(y))dy > CDBy

<0 3 Pt Y (s (1))
k=—00

L} (R™, || da)

Jj=k+3
00 7j—3 .
<C Y NCm(IfiD I @e, joeary >, (G — k)ym2t=ieen
j=—o00 k=—o00

< Cl @i (DI 1 (Rr, 2] dz)-

Similarly, for each fixed k € Z and x € Cj, we can easily deduce that

Vif(x)
<CY > G- k)ZTC; . exp(—‘b@) il )y

1=0 j=k+3 Bs|[bllBmo®n)

+C§m: i (j — /-c)ZE
]

1=0 j=k+3
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8 / | 0 (IG5 29 VK (2, )l fi(y)]) dy
27 -2< o —y|<29+2

S 1
<DoBi+C Y (j— k)P —

j=k+3 €l
x / | (G IK (@, )Pl £5()])dy-
2-2< |z—y|<29+2

Therefore,

o0

Z 2k(a—a1)/ |.’E|a1dl‘

k=—o0 {z€Cy): Vi f(z)>2DB1}

<C Yo 20 N (G k)PS0 (P £ Dt gen, g
k=—o0 j=k+3

<Ol (|f D1 ®r, j2)oda)-

Now we turn our attention to the term Eg. Take a9 such that o < ag <
B2 and write

E; < 3 2k(a°‘2)/ |z|*2dz.
’ kzz—oo {xeCk: ‘T(Z?;Ew fj)(I)‘>3DBl}

A familiar argument involving Lemma 1 tells us that for each fixed k € Z
and z € Cy,

k-3

: j:z:oo /2k_2<x—y|<2k+2 [K (2, y)l|b(x) = b(y)[™[£;(y)|dy

m

k-3
<CY D [b(x) — bl

=0 j=—o00
< (o)~ bl o, ) )l
2k=2< g —y| <2H+2

U 2li—k)az

= b(z) — b
<0 Y Har ool Ul

1=0 j=—o0 Bal[bllsmo(rn
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m k=3 9(j-k)as
+Cl§;z |Cr|
e

b Yy)— bk m— Ck
X/ l( (j—k|)a(2 L= Bl 1k o K (s y)l)
2k =2 < |p—y|<2k+2 2 (BQHbHBMO(Rn))

x| f5(y)|dy
[
9(i—k)az blx) —b
<C exp( G =0y,
j=—00 [Cl Bs||bllsmorn)
m k-3 .
9(i—k)az
+C
lz; _Z |C
=0 j=—o©
b Y —-b m—I C
X/ q”( (J;;J)a() I 1K (, y)l)
2k—2 < |z —y| <2k +2 2 2(B2Hb||BMO(Rn))
x|fi ()l dy

= Wi f(z) + Wi f(2).

For WL, we have

o0
Z oMe—a2) / |x|“2dx

k=—c0 {x€Cy: [WLf(2)|>DB1}
h=—oo p—
=C Z HfjHLl(]Rn"ﬂadx) Z 2(’“*]')(047042)
I k=j+3

<C|fllLr®n, o] dz)-
Applying Lemma 1 with ay, ; = 2k=i9(i=k)e2 e have that
Wi f(@)

m k-3 — 1

Pu(ag,; )20 b(y) — by
SCZ Z ]|C’k\ /Ckexp<))dy

1=0 j=—oo Bs||bl|BMo®n

m k=3 ~71)2(j_k)a2

0y ¥ e

=0 j=—o0
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a, j|Ck|
< /C (55, 1K 2 ) B ) )l

k— j)m(l—i-max((), az—1))
|Ci|

k—3 (
< DyBi+C Yy

j=—o00

< [ BnlICuIE o, ) (1))
Ck

This together with our hypothesis states that

oo

Z Qk(a_O‘Q)/ |x|*2dx

k=—0o0 {zeck: W}le($)>2DB1}
k=3

<0 Y e 3 (| @nll5D)]
k=—00

j==o0

LY (&, |o|22 da)

<C Y N FiD i @e, ppeary >, (k= j)>m2U—Pleae)
j=—o00 k=j+3

<Ol Pm (N1 (®e, o] dz)-

Remark Repeating the proof of Theorem 1, we can obtain

Theorem 2 Let —n < (1 < [P < 0o, T be a sublinear operator which
satisfies

77w < [ RGPt ),

n |z —y|™
where K(x, y) is a function on R™ x R"\{(x, y): x # y}, m is a positive
integer, Runy1(A: 2, 5) = A(%) — ¥\ {07 Aly) fal} (& — ),
and A has derivatives of order m in BMO(R™). Suppose that
(i) for some~y > 1, T is bounded from L'(log L)Y (R™) to weak-L*(R™);
(ii) for any 0 <r < oo and 31 < B < (2, the operator

S, f(x) = / (| K (., )| (4) | dy
r<|z—y|<2r

is bounded on LY(R", |z|Pdx) with bound Br™ and B is independent
of r.
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Then T is also bounded from L' (log L)Y (R", |x|*dx) to weak-L'(R™, |x|*dx)
provided that B1 < o < fa.

3. Application

This section is devoted to an application of Theorem 1. We consider
the sublinear operator which satisfies the size condition

Tf(x)] = /IR |b(z) — b(y)|mw

£ (y)ldy, ()
where m is a positive integer and b € BMO(R"), © is homogeneous of
degree zero. Note that if Q € LI(S"~!) for some ¢ > 1, then ®,,(|Q]) €
Li=¢(S"1) for any positive integer m and e with 0 < € < ¢, and in this

case, the operator

Rei@) = [ en(0G i)y

,’A'I’L

is bounded on L'(R", |2|*dx) with bound independent of  provided that
—1—(n—1)/¢ < a <0 (this can be proved, using the estimate

2r q 1/q
(L6 [ = suras) aot)) < el

cf. [1, page 874]). On the other hand, if Q € L(log L)™(S"7 1), i.e.
[ 19@)log" (2 + 9(0))dz < o
Sn—1

then the operator R, is bounded on L!(R™, |z|%dx) provided that —1 <
a < 0 (this can be proved, using the estimate r—1 ffr ly — sul*ds < C|y|?,
cf. [1, page 874]). Thus by Theorem 1, we have

Corollary 1 Let T be a sublinear operator which satisfies the size con-
dition (5). Suppose when q > 1, Q € LI(S™'); or when ¢ = 1, Q €
L(log LY™(S™ Y. IfT is bounded from L'(log L)™(R"™) to weak-L'(R™) and
—1—(n—-1)/¢' < a <0, then T is also bounded from L'(log L)™(R", |z|%dx)
to weak-L'(R", |z|%dx).
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