A weighted weak type estimate with power weights for sublinear operators

Guoen Hu, Zhibo Lu and Ruirui YANG

(Received November 21, 2003; Revised June 3, 2004)

Abstract. A weighted weak type estimate with power weights is established for sub-linear operators which satisfy certain size condition.

Key words: sublinear operator, power weight, commutator.

1. Introduction

We will work on \mathbb{R}^n , $n \geq 1$. Let K(x) be a function on $\mathbb{R}^n \setminus \{0\}$. A well known result of Stein [9] states that if K satisfies the size condition

$$|K(x)| \le C|x|^{-n}, \ x \in \mathbb{R}^n \setminus \{0\}$$

and the operator

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} K(x-y)f(y)dy$$

is bounded on $L^p(\mathbb{R}^n)$ for some p with 1 , then <math>T is also bounded on $L^p(\mathbb{R}^n, |x|^{\alpha}dx)$ provided that $-n < \alpha < n(p-1)$, where $L^p(\mathbb{R}^n, |x|^{\alpha}dx)$ denotes the weighted Lebesgue space defined by

$$L^p(\mathbb{R}^n, |x|^{\alpha}dx) = \Big\{f \text{ is measurable on } \mathbb{R}^n \text{ and}$$

$$\|f\|_{L^p(\mathbb{R}^n, |x|^{\alpha}dx)}^p = \int_{\mathbb{R}^n} |f(x)|^p |x|^{\alpha}dx < \infty\Big\}.$$

Soria and Weiss [8] gave some beautiful generalizations of Stein's result. In particular, they obtained the result of Stein in the case p=1. However, either the result of Stein or the result of Soria and Weiss does not apply to the commutators of singular integral operators. Lu and Yang [4], Hu, Lu and Yang [3], and Hu [2] established some boundedness results for sublinear operators on weighted $L^p(\mathbb{R}^n)$ (1 spaces with power weights, and

these boundedness results are very suitable for the commutators of singular integral operators. The main purpose of this paper is to give a weighted weak type estimate with power weights for certain sublinear operators. Our main result can be stated as follows.

Theorem 1 Let m be a positive integer, $-n < \beta_1 < \beta_2 < \infty$, T be a sublinear operator which satisfies

$$|Tf(x)| \le \int_{\mathbb{R}^n} |b(x) - b(y)|^m |K(x, y)f(y)| dy,$$
 (2)

where $b \in BMO(\mathbb{R}^n)$, K(x, y) is a function on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) : x = y\}$. Suppose that

(i) for some $\gamma \geq m$, T is bounded from $L^1(\log L)^{\gamma}(\mathbb{R}^n)$ to weak- $L^1(\mathbb{R}^n)$, namely

$$\left|\left\{x \in \mathbb{R}^n \colon |Tf(x)| > \lambda\right\}\right| \le C \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^{\gamma} \left(2 + \frac{|f(x)|}{\lambda}\right) dx;$$

(ii) for any $0 < r < \infty$ and $\beta_1 < \beta < \beta_2$, the operator

$$S_r f(x) = \int_{r < |x-y| \le 2r} |K(x, y)| \log^m (2 + r^n |K(x, y)|) |f(y)| dy \quad (3)$$

is bounded on $L^1(\mathbb{R}^n, |x|^{\beta}dx)$ with bound B and B is independent of

Then T is also bounded from $L^1(\log L)^{\gamma}(\mathbb{R}^n, |x|^{\alpha}dx)$ to weak- $L^1(\mathbb{R}^n, |x|^{\alpha}dx)$ provided that $\beta_1 < \alpha < \beta_2$, that is,

$$\int_{\left\{x\in\mathbb{R}^n\colon |Tf(x)|>\lambda\right\}}|x|^\alpha dx \leq C\!\int_{\mathbb{R}^n}\!\frac{|f(x)|}{\lambda}\log^\gamma\!\left(2+\frac{|f(x)|}{\lambda}\right)\!|x|^\alpha dx,\ \, (4)$$

with the constant C independent of f and λ .

Throughout this paper, C denotes the constants that are independent of the main parameters involved but whose value may differ from line to line. For $r \geq 1$, r' is the dual exponent of r, i.e., r' = r/(r-1). For any $\gamma \geq 1$, the function Φ_{γ} is defined by

$$\Phi_{\gamma}(t) = t \log^{\gamma}(2+t), \quad t \ge 0.$$

2. Proof of Theorem 1

We begin with a preliminary lemma which will be important in the proof of Theorem 1 and has independent interest.

Lemma 1 Let m, l and k be nonnegative integers. Then there is a positive constant $C = C_{m,l,k}$ such that for any a > 0 and $t_1, t_2, t_3 \ge 0$,

$$\Phi_l(t_1 t_2^m) \Phi_k(t_3) \le C \Phi_l(a^{-1}) \left(\Phi_{l+m}(at_1) \Phi_{l+m+k}(t_3) + \exp t_2 \right).$$

Proof. At first we claim that there is a positive constant C such that for any $t_1, t_2, t_3 \geq 0$,

$$\Phi_l(t_1 t_2^m) \Phi_k(t_3) \le C(\Phi_{l+m}(t_1) \Phi_{l+m+k}(t_3) + \exp t_2).$$

In fact, if $0 < t_3 \le 1$, then we have

$$\Phi_l(t_1 t_2^m) \Phi_k(t_3) \le C \Phi_l(t_1 t_2^m) \le C \left(\Phi_{l+m}(t_1) + \exp t_2 \right)
\le C \left(\Phi_{l+m}(t_1) \Phi_{l+m+k}(t_3) + \exp t_2 \right),$$

where in the second inequality we have employed the inequality

$$\Phi_l(t_1 t_2^m) \le C(\Phi_{l+m}(t_1) + \exp t_2),$$

see [6] or [7] for details. On the other hand, if $t_3 > 1$, a trivial computation leads to that

$$\Phi_{l}(t_{1}t_{2}^{m}) \leq \Phi_{l}(\Phi_{k}(t_{3})^{-1})\Phi_{l}(\Phi_{k}(t_{3})t_{1}t_{2}^{m})
\leq C\Phi_{k}(t_{3})^{-1}(\Phi_{l+m}(t_{1}\Phi_{k}(t_{3})) + \exp t_{2})
\leq C\Phi_{k}(t_{3})^{-1}(\Phi_{l+m}(t_{1})\Phi_{l+m+k}(t_{3}) + \exp t_{2}).$$

Lemma 1 now follows from the fact that

$$\Phi_l(t_1 t_2^m) \Phi_k(t_3) \le \Phi_l(a^{-1}) \Phi_l(a t_1 t_2^m) \Phi_k(t_3).$$

Proof of Theorem 1. By the John-Nirenberg inequality, there are positive constants B_1 and B_2 such that

$$\sup_{Q\subset\mathbb{R}^n}\frac{1}{|Q|}\int_{Q}\exp\Bigl(\frac{|b(x)-m_Q(b)|}{B_2\|b\|_{\mathrm{BMO}(\mathbb{R}^n)}}\Bigr)dx\leq B_1,$$

where Q is a ball, $m_Q(b)$ is the mean value of b on Q, i.e., $m_Q(b) =$

 $|Q|^{-1}\int_{\Omega}b(y)dy$. By homogeneity, it suffices to prove that

$$\int_{\{x \in \mathbb{R}^n : |Tf(x)| > 7DB_1\}} |x|^{\alpha} dx \le C \int_{\mathbb{R}^n} |f(x)| \log^{\gamma} (2 + |f(x)|) |x|^{\alpha} dx,$$

where $D = D_1 + D_2 + D_3$ with D_1 , D_2 , D_3 positive constants which depend only on B_2 , m and n, and will be chosen later. For each $k \in \mathbb{Z}$, set $C_k = \{x \in \mathbb{R}^n : 2^k < |x| \le 2^{k+1}\}$. Denote by χ_j the characteristic function of C_j . For each fixed $f \in L^1(\log L)^{\gamma}(\mathbb{R}^n, |x|^{\alpha}dx)$, write

$$f(x) = \sum_{j=-\infty}^{\infty} f(x)\chi_j(x) = \sum_{j=-\infty}^{\infty} f_j(x)$$

and

$$\int_{\{x \in \mathbb{R}^n : |Tf(x)| > 7DB_1\}} |x|^{\alpha} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \left| \left\{ x \in C_k : T\left(\sum_{j=k+3}^{\infty} f_j\right)(x) > 3DB_1 \right\} \right|$$

$$+ C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \left| \left\{ x \in C_k : \left| T\left(\sum_{j=k-2}^{k+2} f_j\right)(x) \right| > DB_1 \right\} \right|$$

$$+ C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \left| \left\{ x \in C_k : \left| T\left(\sum_{j=k-2}^{k-3} f_j\right) \right| > 3DB_1 \right\} \right|$$

$$= E_1 + E_2 + E_3.$$

Since T is bounded from $L^1(\log L)^{\gamma}(\mathbb{R}^n)$ to weak- $L^1(\mathbb{R}^n)$, it follows that

$$E_{2} \leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \sum_{j=k-2}^{k+2} \int_{\mathbb{R}^{n}} |f_{j}(x)| \log^{\gamma}(2 + |f_{j}(x)|) dx$$
$$\leq C \int_{\mathbb{R}^{n}} |f(x)| \log^{\gamma}(2 + |f(x)|) |x|^{\alpha} dx.$$

To estimate the term E_1 , we choose a number α_1 such that $\beta_1 < \alpha_1 < \alpha$ and write

$$E_1 \le C \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_1} \int_{\left\{x \in C_k : \left| T\left(\sum_{j=k+3}^{\infty} f_j\right)(x) \right| > 3DB\right\}} |x|^{\alpha_1} dx.$$

Let $A_j = \{x \in \mathbb{R}^n : |x| \le 2^{j+1}\}$ and b_j be the mean value of b on A_j . By the John-Nirenberg inequality, we know that for any $k, j \in \mathbb{Z}, |b_j - b_k| \le C|k-j|$. Note that for $x \in C_k$,

$$\begin{split} &T\Big(\sum_{j=k+3}^{\infty}f_j\Big)(x)\\ &\leq \sum_{j=k+3}^{\infty}\int_{2^{j-2}\leq |x-y|\leq 2^{j+2}}|K(x,y)||b(x)-b(y)|^m|f_j(y)|dy\\ &\leq \sum_{l=0}^{m}\binom{m}{l}\sum_{j=k+3}^{\infty}|b(x)-b_j|^l\int_{2^{j-2}\leq |x-y|\leq 2^{j+2}}|b(y)-b_j|^{m-l}|K(x,y)f_j(y)|dy\\ &\leq C\sum_{l=0}^{m}\sum_{j=k+3}^{\infty}|b(x)-b_k|^l\int_{2^{j-2}\leq |x-y|\leq 2^{j+2}}|b(y)-b_j|^{m-l}|K(x,y)f_j(y)|dy\\ &+C\sum_{l=0}^{m}\sum_{j=k+3}^{\infty}(j-k)^l\int_{2^{j-2}\leq |x-y|\leq 2^{j+2}}|b(y)-b_j|^{m-l}|K(x,y)f_j(y)|dy\\ &= \mathrm{U}_kf(x)+\mathrm{V}_kf(x). \end{split}$$

By Lemma 1 (with $t_1 = |b(y) - b_j|^{m-l} |K(x, y)| / (B_2 ||b||_{BMO(\mathbb{R}^n)})^{m-l}$, $t_2 = |b(x) - b_k| / (B_2 ||b||_{BMO(\mathbb{R}^n)})$, $t_3 = 1$, and $a = 2^{(k-j)\alpha_1} |C_k|$) we have

$$\leq C \sum_{l=0}^{m} \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|} \exp\left(\frac{|b(x)-b_{k}|}{B_{2}||b||_{BMO(\mathbb{R}^{n})}}\right) ||f_{j}||_{1}
+ C \sum_{l=0}^{m} \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|}
\times \int_{2^{j-2} \leq |x-y| \leq 2^{j+2}} \Phi_{l}\left(\frac{|b(y)-b_{j}|^{m-l}|C_{k}|}{2^{(j-k)\alpha_{1}}(B_{2}||b||_{BMO(\mathbb{R}^{n})})^{m-l}} \right)
\times |K(x,y)|\right) ||f_{j}(y)||dy
\leq C \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|} \exp\left(\frac{|b(x)-b_{k}|}{B_{2}||b||_{BMO(\mathbb{R}^{n})}}\right) ||f_{j}||_{1}
+ C \sum_{l=0}^{m} \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|}$$

$$\times \int_{2^{j-2} \le |x-y| \le 2^{j+2}} \Phi_l \left(\frac{|b(y) - b_j|^{m-l} |C_k|}{2^{(j-k)\alpha_1} (B_2 ||b||_{\text{BMO}(\mathbb{R}^n)})^{m-l}} \right) \\
\times |K(x, y)| \left(|f_j(y)| \right) |K(x, y)| + |K(x, y)| \left(|f_j(y)| \right) |K(x, y)| \right) |K(x, y)| + |K(x, y)|$$

A standard computation leads to that

$$\sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_1} \int_{\{C_k : U_k^I f(x) > DB_1\}} |x|^{\alpha_1} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_1} \sum_{j=k+3}^{\infty} ||f_j||_1 \frac{2^{(j-k)\alpha_1}}{|C_k|}$$

$$\times \int_{C_k} \exp\left(\frac{|b(x) - b_k|}{B_2 ||b||_{\text{BMO}(\mathbb{R}^n)}}\right) |x|^{\alpha_1} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_1} \sum_{j=k+3}^{\infty} ||f_j||_1 \frac{2^{-j\alpha_1}}{|A_k|} \int_{A_k} \exp\left(\frac{|b(x) - b_k|}{B_2 ||b||_{\text{BMO}(\mathbb{R}^n)}}\right) dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_1} \sum_{j=k+3}^{\infty} ||f_j||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)} 2^{j(\alpha_1 - \alpha)}$$

$$\leq C \sum_{j=-\infty}^{\infty} ||f_j||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)} 2^{j(\alpha_1 - \alpha)} \sum_{k=-\infty}^{j-3} 2^{k(\alpha - \alpha_1)}$$

$$\leq C ||f||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)}.$$

Let $a_{k,j} = |C_j||C_k|^{-1}2^{j-k}2^{(j-k)\alpha_1}$. It is obvious that for $k, j \in \mathbb{Z}$ with $j \ge k+3$, $a_{k,j} > 1$. Another application of Lemma 1 with $a = a_{k,j}$ yields

$$\begin{aligned} & \mathbf{U}_{k}^{\Pi}f(x) \\ & \leq C \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|a_{k,j}} \int_{C_{j}} \exp\left(\frac{|b(y)-b_{j}|}{B_{2}||b||_{\mathrm{BMO}(\mathbb{R}^{n})}}\right) dy \\ & + C \sum_{j=k+3}^{\infty} \frac{2^{(j-k)\alpha_{1}}}{|C_{k}|a_{k,j}} \\ & \times \int_{2^{j-2} < |x-y| < 2^{j+2}} \Phi_{m}\left(\frac{a_{k,j}|C_{k}|}{2^{(j-k)\alpha_{1}}}|K(x,y)|\right) \Phi_{m}(|f_{j}(y)|) dy \end{aligned}$$

$$\leq C \sum_{j=k+3}^{\infty} \frac{2^{k-j}}{|A_j|} \int_{A_j} \exp\left(\frac{|b(y) - b_j|}{B_2 ||b||_{\text{BMO}(\mathbb{R}^n)}}\right) dy$$

$$+ C \sum_{j=k+3}^{\infty} \frac{2^{k-j}}{|C_j|}$$

$$\times \int_{2^{j-2} \leq |x-y| \leq 2^{j+2}} \Phi_m \Big(|C_j| 2^{j-k} |K(x, y)|\Big) \Phi_m (|f_j(y)|) dy$$

$$\leq D_1 B_1 + C \sum_{j=k+3}^{\infty} \frac{(j-k)^m}{|C_j|}$$

$$\times \int_{2^{j-2} \leq |x-y| \leq 2^{j+2}} \Phi_m \Big(|C_j| |K(x, y)|\Big) \Phi_m (|f_j(y)|) dy.$$

This in turn implies that

$$\sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_{1}} \int_{\{x \in C_{k} : U_{k}^{\Pi}f(x) > 2DB_{1}\}} |x|^{\alpha_{1}} dx$$

$$\leq \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_{1}} \int_{\{x \in C_{k} : \sum_{j=k+3}^{\infty} \frac{(j-k)^{m}}{|C_{j}|}} \sum_{x \in C_{k} : \times \int_{2^{j-2} \le |x-y| \le 2^{j+2}} \Phi_{m}(|C_{j}||K(x,y)|) \}^{|x|^{\alpha_{1}}} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha - k\alpha_{1}} \sum_{j=k+3}^{\infty} (j-k)^{m} \|S_{2^{j}}(\Phi_{m}(|f_{j}|))\|_{L^{1}(\mathbb{R}^{n}, |x|^{\alpha_{1}}dx)}$$

$$\leq C \sum_{j=-\infty}^{\infty} \|\Phi_{m}(|f_{j}|)\|_{L^{1}(\mathbb{R}^{n}, |x|^{\alpha}dx)} \sum_{k=-\infty}^{j-3} (j-k)^{m} 2^{(k-j)(\alpha-\alpha_{1})}$$

$$\leq C \|\Phi_{m}(|f|)\|_{L^{1}(\mathbb{R}^{n}, |x|^{\alpha}dx)}.$$

Similarly, for each fixed $k \in \mathbb{Z}$ and $x \in C_k$, we can easily deduce that

$$\begin{aligned} & \mathbf{V}_{k}f(x) \\ & \leq C \sum_{l=0}^{m} \sum_{j=k+3}^{\infty} (j-k)^{l} \frac{2^{k-j}}{|C_{j}|} \int_{C_{j}} \exp\left(\frac{|b(y)-b_{j}|}{B_{2}||b||_{\mathrm{BMO}(\mathbb{R}^{n})}}\right) dy \\ & + C \sum_{l=0}^{m} \sum_{j=k+3}^{\infty} (j-k)^{l} \frac{2^{k-j}}{|C_{j}|} \end{aligned}$$

$$\times \int_{2^{j-2} \le |x-y| \le 2^{j+2}} \Phi_{m-l} (|C_j| 2^{(j-k)} | K(x,y) || f_j(y) |) dy$$

$$\le D_2 B_1 + C \sum_{j=k+3}^{\infty} (j-k)^{2m} \frac{1}{|C_j|}$$

$$\times \int_{2^{j-2} \le |x-y| \le 2^{j+2}} \Phi_m (|C_j| |K(x,y)|) \Phi_m (|f_j(y)|) dy.$$

Therefore,

$$\sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_1)} \int_{\{x \in C_k : V_k f(x) > 2DB_1\}} |x|^{\alpha_1} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_1)} \sum_{j=k+3}^{\infty} (j-k)^{2m} ||S_{2^j}(\Phi_m(|f_j|))||_{L^1(\mathbb{R}^n, |x|^{\alpha_1} dx)}$$

$$\leq C ||\Phi_m(|f|)||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)}.$$

Now we turn our attention to the term E₃. Take α_2 such that $\alpha < \alpha_2 < \beta_2$ and write

$$E_{3} \leq \sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_{2})} \int_{\left\{x \in C_{k}: \left|T\left(\sum_{j=-\infty}^{k-3} f_{j}\right)(x)\right| > 3DB_{1}\right\}} |x|^{\alpha_{2}} dx.$$

A familiar argument involving Lemma 1 tells us that for each fixed $k \in \mathbb{Z}$ and $x \in C_k$,

$$\left| T \left(\sum_{j=-\infty}^{k-3} f_j \right)(x) \right|$$

$$\leq \sum_{j=-\infty}^{k-3} \int_{2^{k-2} \le |x-y| \le 2^{k+2}} |K(x, y)| |b(x) - b(y)|^m |f_j(y)| dy$$

$$\leq C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} |b(x) - b_k|^l$$

$$\times \int_{2^{k-2} \le |x-y| \le 2^{k+2}} |b(y) - b_k|^{m-l} |K(x, y) f_j(y)| dy$$

$$\leq C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} \frac{2^{(j-k)\alpha_2}}{|C_k|} \exp\left(\frac{|b(x) - b_k|}{B_2 ||b||_{\text{BMO}(\mathbb{R}^n)}}\right) ||f_j||_1$$

$$+ C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} \frac{2^{(j-k)\alpha_2}}{|C_k|}$$

$$\times \int_{2^{k-2} \le |x-y| \le 2^{k+2}} \Phi_l \left(\frac{|b(y) - b_k|^{m-l} |C_k|}{2^{(j-k)\alpha_2} (B_2 ||b||_{BMO(\mathbb{R}^n)})^{m-l}} |K(x, y)| \right)$$

$$\times |f_j(y)| dy$$

$$\le C \sum_{j=-\infty}^{k-3} \frac{2^{(j-k)\alpha_2}}{|C_k|} \exp\left(\frac{|b(x) - b_k|}{B_2 ||b||_{BMO(\mathbb{R}^n)}} \right) ||f_j||_1$$

$$+ C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} \frac{2^{(j-k)\alpha_2}}{|C_k|}$$

$$\times \int_{2^{k-2} \le |x-y| \le 2^{k+2}} \Phi_l \left(\frac{|b(y) - b_k|^{m-l} |C_k|}{2^{(j-k)\alpha_2} (B_2 ||b||_{BMO(\mathbb{R}^n)})^{m-l}} |K(x, y)| \right)$$

$$\times |f_j(y)| dy$$

$$= W_k^I f(x) + W_k^{II} f(x).$$

For W_k^I , we have

$$\sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_2)} \int_{\{x \in C_k : |W_k^I f(x)| > DB_1\}} |x|^{\alpha_2} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_2)} \sum_{j=-\infty}^{k-3} 2^{j\alpha_2} ||f_j||_{L^1(\mathbb{R}^n)}$$

$$\leq C \sum_{j=-\infty}^{\infty} ||f_j||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)} \sum_{k=j+3}^{\infty} 2^{(k-j)(\alpha-\alpha_2)}$$

$$\leq C ||f||_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)}.$$

Applying Lemma 1 with $\widetilde{a_{k,j}} = 2^{k-j} 2^{(j-k)\alpha_2}$, we have that

$$\begin{aligned} & \mathbf{W}_{k}^{\mathrm{II}}f(x) \\ & \leq C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} \frac{\Phi_{l}(\widetilde{a_{k,j}}^{-1})2^{(j-k)\alpha_{2}}}{|C_{k}|} \int_{C_{k}} \exp\left(\frac{|b(y) - b_{k}|}{B_{2}||b||_{\mathrm{BMO}(\mathbb{R}^{n})}}\right) dy \\ & + C \sum_{l=0}^{m} \sum_{j=-\infty}^{k-3} \frac{\Phi_{l}(\widetilde{a_{k,j}}^{-1})2^{(j-k)\alpha_{2}}}{|C_{k}|} \end{aligned}$$

$$\begin{split} & \times \int_{C_k} \Phi_m \Big(\frac{\widetilde{a_{k,j}} |C_k|}{2^{(j-k)\alpha_2}} |K(x,\,y)| \Big) \Phi_m(|f_j(y)|) dy \\ \leq D_3 B_1 + C \sum_{j=-\infty}^{k-3} \frac{(k-j)^{m(1+\max(0,\,\alpha_2-1))}}{|C_k|} \\ & \qquad \qquad \times \int_{C_k} \Phi_m \Big(|C_k| |K(x,\,y)| \Big) \Phi_m(|f_j(y)|) dy. \end{split}$$

This together with our hypothesis states that

$$\sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_2)} \int_{\{x \in C_k : W_k^{\text{II}} f(x) > 2DB_1\}} |x|^{\alpha_2} dx$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k(\alpha-\alpha_2)} \sum_{j=-\infty}^{k-3} (k-j)^{2m} \left\| S_{2^k} \left(\Phi_m(|f_j|) \right) \right\|_{L^1(\mathbb{R}^n, |x|^{\alpha_2} dx)}$$

$$\leq C \sum_{j=-\infty}^{\infty} \| \Phi_m(|f_j|) \|_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)} \sum_{k=j+3}^{\infty} (k-j)^{2m} 2^{(j-k)(\alpha_2-\alpha)}$$

$$\leq C \| \Phi_m(f) \|_{L^1(\mathbb{R}^n, |x|^{\alpha} dx)}.$$

Remark Repeating the proof of Theorem 1, we can obtain

Theorem 2 Let $-n < \beta_1 < \beta_2 < \infty$, T be a sublinear operator which satisfies

$$|Tf(x)| \le \int_{\mathbb{R}^n} |K(x, y)| \frac{R_{m+1}(A; x, y)}{|x - y|^m} |f(y)| dy$$

where K(x, y) is a function on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) : x \neq y\}$, m is a positive integer, $R_{m+1}(A; x, y) = A(x) - \sum_{|\alpha| \leq m} \{\partial^{\alpha} A(y)/\alpha!\}(x-y)^{\alpha}$, and A has derivatives of order m in $BMO(\mathbb{R}^n)$. Suppose that

- (i) for some $\gamma \geq 1$, T is bounded from $L^1(\log L)^{\gamma}(\mathbb{R}^n)$ to weak- $L^1(\mathbb{R}^n)$;
- (ii) for any $0 < r < \infty$ and $\beta_1 < \beta < \beta_2$, the operator

$$S_r f(x) = \int_{r < |x-y| \le 2r} \Phi(r^n |K(x, y)|) |f(y)| dy$$

is bounded on $L^1(\mathbb{R}^n, |x|^{\beta}dx)$ with bound Br^n and B is independent of r.

Then T is also bounded from $L^1(\log L)^{\gamma}(\mathbb{R}^n, |x|^{\alpha}dx)$ to weak- $L^1(\mathbb{R}^n, |x|^{\alpha}dx)$ provided that $\beta_1 < \alpha < \beta_2$.

3. Application

This section is devoted to an application of Theorem 1. We consider the sublinear operator which satisfies the size condition

$$|Tf(x)| \le \int_{\mathbb{R}^n} |b(x) - b(y)|^m \frac{|\Omega(x-y)|}{|x-y|^n} |f(y)| dy,$$
 (5)

where m is a positive integer and $b \in BMO(\mathbb{R}^n)$, Ω is homogeneous of degree zero. Note that if $\Omega \in L^q(S^{n-1})$ for some q > 1, then $\Phi_m(|\Omega|) \in L^{q-\epsilon}(S^{n-1})$ for any positive integer m and ϵ with $0 < \epsilon < q$, and in this case, the operator

$$R_r f(x) = \frac{1}{r^n} \int_{r < |x-y| \le 2r} \Phi_m(|\Omega(x-y)|) |f(y)| dy$$

is bounded on $L^1(\mathbb{R}^n, |x|^{\alpha} dx)$ with bound independent of r provided that $-1 - (n-1)/q' < \alpha < 0$ (this can be proved, using the estimate

$$\left(\int_{S^{n-1}} \left(r^{-1} \int_{x}^{2r} |y - su|^{\alpha} ds\right)^{q'} d\sigma(u)\right)^{1/q'} \le C|y|^{\alpha},$$

cf. [1, page 874]). On the other hand, if $\Omega \in L(\log L)^m(S^{n-1})$, i.e.

$$\int_{S^{n-1}} |\Omega(x)| \log^m (2 + |\Omega(x)|) dx < \infty,$$

then the operator R_r is bounded on $L^1(\mathbb{R}^n, |x|^{\alpha}dx)$ provided that $-1 < \alpha \le 0$ (this can be proved, using the estimate $r^{-1} \int_r^{2r} |y - su|^{\alpha} ds \le C|y|^{\alpha}$, cf. [1, page 874]). Thus by Theorem 1, we have

Corollary 1 Let T be a sublinear operator which satisfies the size condition (5). Suppose when q > 1, $\Omega \in L^q(S^{n-1})$; or when q = 1, $\Omega \in L(\log L)^m(S^{n-1})$. If T is bounded from $L^1(\log L)^m(\mathbb{R}^n)$ to weak- $L^1(\mathbb{R}^n)$ and $-1-(n-1)/q' < \alpha < 0$, then T is also bounded from $L^1(\log L)^m(\mathbb{R}^n, |x|^{\alpha}dx)$ to weak- $L^1(\mathbb{R}^n, |x|^{\alpha}dx)$.

Acknowledgment The authors would like to thank the referee for some valuable suggestions and corrections.

References

- Duoandikoetxea J., Weighted norm inequalities for homogeneous singular integrals.
 Trans. Amer. Math. Soc. 336 (1993) 869–880.
- [2] Hu G., Boundedness of sublinear operators on the homogeneous Herz spaces. Publ. Mat. 47 (2003) 143–158.
- [3] Hu G., Lu S. and Yang D., Boundedness of rough singular integral operators on homogeneous Herz spaces. J. Austral. Math. Soc. Ser. A 66 (1999), 201–223.
- [4] Lu S. and Yang D., The continuity of commutators on Herz spaces. Michigan Math. J. 44 (1997), 255–281.
- Pérez C., Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185.
- [6] Pérez C. and Pradolini G., Sharp weighted endpoint estimates for commutators of singular integral. Michigan Math. J. 49 (2001), 23–37.
- [7] Rao M.M. and Ren Z.D., Theory of Orlicz spaces. Monographs and Text Books in Pure and Applied Mathematics, vol. 140, Marcel Dekker, Inc., New York, 1991.
- [8] Soria F. and Weiss G., A remark on singular integrals and power weights. Indiana Univ. Math. J. 43 (1994), 187–204.
- Stein E.M., Note on singular integrals. Proc. Amer. Math. Soc. 8 (1957), 250-254.

G. Hu

Department of Applied Mathematics University of Information Engineering P. O. Box 1001-747 Zhengzhou 450002 People's Republic of China huguoen@eyou.com

Z. Lu

Department of Applied Mathematics University of Information Engineering P. O. Box 1001-747 Zhengzhou 450002 People's Republic of China

R. Yang

Department of Applied Mathematics University of Information Engineering P. O. Box 1001-747 Zhengzhou 450002 People's Republic of China