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Lp-Lq estimate for wave equation

with bounded time dependent coefficient
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Abstract. The goal of the present paper is to derive Lp-Lq estimates for wave equations

with a bounded time dependent coefficient. A classification of the oscillating behaviour of

the coefficient is given. This classification determines in an essential way the possibility

of deriving Lp-Lq decay estimates.
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Fourier multipliers, Floquet’s theory.

1. Introduction and Main Results

Studying Lp-Lq decay estimates for solutions to hyperbolic problems
goes back to [15], where, for the solution of

∂2
t u(t, x)−∆xu(t, x) = 0, (t, x) ∈ [0, ∞)× Rn,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), x ∈ Rn, ϕ, ψ ∈ C∞0 ,

}
(1.1)

the following estimate was proved:

‖(ut(t, · ), ∇xu(t, · ))‖Lq ≤ C(1 + t)−
n−1

2

(
1
p
− 1

q

)
‖(∇xϕ, ψ)‖W Np,p .

Here n ≥ 2, 1/p + 1/q = 1, 1 < p ≤ 2 and Np ≥ n(1/p − 1/q). We shall
use C throughout to denote a positive constant which may differ at each
occurrence and W k,p = W k,p(Rn) to denote the standard Sobolev spaces.

More recently, the influence of a time-dependent coefficient on such de-
cay estimates was studied in a series of papers [11], [12], [13]. A classification
for decay estimates of solutions to the Cauchy problem

∂2
t u(t, x)− b(t)2λ(t)2∆xu(t, x) = 0, (t, x) ∈ [0, ∞)× Rn,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), x ∈ Rn, ϕ, ψ ∈ C∞0 ,

}
(1.2)

is given, where b(t) is a bounded function and λ(t) is a strictly increasing
function which satisfy, for some positive constants C0, C1, C, c, ck (k =
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0, 1, 2, . . .),

0 < C0 ≤ b(t)2 ≤ C1, for large t;

Λ(t) :=
∫ t

0
λ(s)ds→∞ as t→∞;

c(log Λ(t))−c ≤ c0 λ(t)
Λ(t)

≤ λ′(t)
λ(t)

≤ c1 λ(t)
Λ(t)

≤ C(log Λ(t))C ,

for large t;

|Dk
t λ(t)| ≤ ckλ(t)

(
λ(t)
Λ(t)

)k

, for k = 2, 3, . . . and t large.

This classification is based on the interplay between b(t) and λ(t), that is
the so-called speed of oscillations; more precisely, the condition

|Dk
t b(t)| ≤Cb,k

(
λ(t)
Λ(t)

(
logΛ(t)

)β
)k

, for all k∈N and large t, (1.3)

plays the fundamental rôle: if (1.3) holds for β ∈ [0, 1] then estimates of
the form

‖ut(t, · )‖Lq + ‖λ(t)∇xu(t, · )‖Lq

≤ C(1 + Λ(t))−
(
(n−1)/2

)
(1/p−1/q)+β0(‖ϕ‖W L+1

p
+ ‖ψ‖W L

p
) (1.4)

hold for the solution u = u(t, x) to (1.2) for some constant β0 which depends
on β; here L = n(1/p−1/q)+1, 1 < p < 2 and 1/p+1/q = 1. Furthermore,
if (1.3) does not hold for β = 1 then no such estimate can be found: a
counterexample is constructed in [11].
In [14] the Cauchy problem for general second order strictly hyperbolic
operators with increasing time-dependent coefficients is studied. That is,
the problem

∂2
t u(t, x) +

n∑

i=1

bi(t)∂2
xitu(t, x)−

n∑

i,j=1

aij(t)∂2
xixj

u(t, x) = 0,

u(0, x) = ϕ(x), ut(0, x) = ψ(x),

where the quadratic form
∑n

i,j=1 aij(t)ξiξj satisfies

d0ν(t)2|ξ|2 ≤
n∑

i,j=1

aij(t)ξiξj ≤ d1ν(t)2|ξ|2,
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for some positive function ν ∈ C∞(0, ∞) and positive constants d0, d1.
Also, the following conditions, which are analogous to those above for the
operator in (1.2), are assumed to hold:

c0
ν(t)
N(t)

≤ ν ′(t)
ν(t)

≤ c1 ν(t)
N(t)

and

|Dk
t ν(t)| ≤ ck

(
ν(t)
N(t)

)k

ν(t) for k = 2, 3, . . . and t large,

where N(t) :=
∫ t

0
ν(s)ds→∞ as t→∞.

For this problem, only the case which corresponds to that of β = 0 in (1.3)
is studied; that is, if the following conditions are assumed for the coefficients
for ξ ∈ Rn, large t, and each k = 0, 1, 2, . . .:

∣∣∣∣Dk
t

n∑

i=1

bi(t)ξi

∣∣∣∣ ≤ Ckν(t)
(
ν(t)
N(t)

)k

|ξ|,
∣∣∣∣Dk

t

n∑

i,j=1

aij(t)ξiξj

∣∣∣∣ ≤ Ckν(t)2
(
ν(t)
N(t)

)k

|ξ|2,

stabilization conditions: lim
t→∞

bi(t)
ν(t)

, lim
t→∞

aij(t)
ν(t)2

exist,

then an estimate of the form (1.4) with a, in general, nonnegative β0 holds.
However, in contrast to the problem (1.2), no classification involving the
“log-effect” (i.e. an analogue to the condition (1.3) for β ∈ (0, 1)) is cur-
rently known. A detailed representation of all these results with proofs can
be found in [10].
In this paper, we study the limiting case of (1.2) where λ(t) ≡ 1, which
is not covered by the above results. For this limiting case we will give
a more precise classification of oscillations and describe the corresponding
more precise classification of decay estimates. This case under consideration
corresponds in some sense (see Remark 4.5) to the case of strictly hyperbolic
equations with non-regular coefficients, a topic which has developed in the
last few years in an astonishing way (see [8] and references therein).

Indeed, we consider the following Cauchy problem for u = u(t, x):

∂2
t u− a(t)∆u = 0, (t, x) ∈ [0, ∞)× Rn,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), ϕ, ψ ∈ C∞0 (Rn), x ∈ Rn,

}
(1.5)
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where a = a(t) is a bounded, smooth function which satisfies a(t) ≥ C > 0
for all t ≥ 0, so the equation from (1.5) is strictly hyperbolic.

Definition 1.1 Classification of Oscillations
Let a = a(t) be a smooth function satisfying

|Dk
t a(t)| ≤ Ck

(
1

t+ e3

(
log(t+ e3)

)γ
)k

, k ∈ N. (1.6)

The parameter γ controls the oscillations of a. We say that the oscillations
of a are very slow, slow or fast if γ = 0, 0 < γ < 1 or γ = 1 respectively.
If (1.6) is not satisfied for γ = 1, then we say a has very fast oscillations.

We show that if we have very slow, slow or fast oscillations, then Lp-Lq

decay estimates can be proved for the solutions of (1.5):

Theorem 1.1 Consider the strictly hyperbolic Cauchy problem (1.5) where
the coefficient a = a(t) satisfies (1.6) with γ ∈ [0, 1]. Then there exists a
constant C such that the following Lp-Lq estimate holds for the solution
u = u(t, x):

‖(ut(t, · ), ∇xu(t, · ))‖Lq ≤C(1+ t)−
n−1

2

(
1
p
− 1

q

)
+s0‖(∇xϕ, ψ)‖W Np,p ,

where 1/p+ 1/q = 1, 1 < p ≤ 2, Np ≥ n(1/p− 1/q) and
• s0 = 0 if γ = 0; in this case C only depends on p, n;
• s0 = ε if γ ∈ (0, 1) for all ε > 0; in this case C depends on p, n and ε;
• s0 is a fixed constant (which can be determined) if γ = 1; in this case

C is independent of ϕ, ψ.

Remark 1.1 We may interpret the non-negative constant s0 as “loss of
derivatives”, that is, a number which explains how the decay rate differs
from the classical Strichartz’ decay rate −{(n − 1)/2}(1/p − 1/q). If the
oscillations are very slow, slow, fast, then no loss, arbitrary small loss,
finite loss of derivatives, respectively, appears. The same influence of such
oscillations on a loss of derivatives which really exists can be proved, e.g. in
[2]. Thus, the questions of Hs well-posedness for strictly hyperbolic Cauchy
problems of type (1.5) and Lp-Lq decay estimates for solutions of a strictly
hyperbolic wave equation with a bounded coefficient correspond to each other
from the point of view of the theory of degenerate hyperbolic problems [7].
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Example Let us consider the Cauchy problem

∂2
t u− (2 + sin(2π(log(t+ e3))α))∆u = 0,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x).

}
(1.7)

The coefficient is smooth and bounded. The oscillations are very slow, slow,
fast if α = 1, α ∈ (1, 2), α = 2, respectively. Consequently, Theorem 1.1
can be applied to (1.7).
If α > 2, then the oscillations in (1.7) are very fast. In Section 3 we show
that, from the point of view of Lp-Lq decay estimates, the behaviour of
solutions for (1.7) changes in a rigorous way from α = 2 to α > 2. The
main point is to understand how to describe such a change of behaviour.
For the moment, we restrict ourselves to formulating the main result.

Theorem 1.2 Let us consider the Cauchy problem

∂2
t u− (2 + sin(2π(log(t+ e3))α))2∆u = 0,

u(t0, x) = ϕ(x), ∂tu(t0, x) = ψ(x),

}
(1.8)

with α > 2. There do not exist constants p, q, M, C1, C2 such that, for all
initial times t0 and for all initial data ϕ, ψ ∈ C∞0 (Rn), the following Lp-Lq

estimate holds for all t ≥ t0:
E(u)(t)

∣∣
Lq≤ C1 exp(C2(log(t+ e3))r)E(u)(t0)

∣∣
W M,p , (1.9)

where r < α − 1. Here the (non-standard) energy E(u)(t)
∣∣
W M,p is defined

by

E(u)(t)
∣∣
W M,p := ‖σ(t)∇xu(t, · )‖W M,p +

∥∥∥∥
1

σ(t)2
∂t(u(t, · )σ(t))

∥∥∥∥
W M,p

with σ(t) :=
√
{α(log(t+ e3))α−1}/(t+ e3).

Remark 1.2 The heart of the proof of Theorem 1.2 is the use of Floquet’s
theory which is applied to, amongst other things, Hill’s equation wtt +
λb(t)2w = 0 (see [5]). The function b = b(t) is periodic; λ is a constant. In
the proof we show that there is a relation between the equation from (1.8)
and Hill’s equation. For this reason we use the square in the coefficient of
(1.8).
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2. Proof of Theorem 1.1

In order to prove this, we first derive a WKB representation for the
solution to the auxiliary problem

∂2
t v + a(t)|ξ|2v = 0, v(0, ξ) = ϕ̂(ξ), ∂tv(0, ξ) = ψ̂(ξ), (2.1)

which is obtained from (1.5) by partial Fourier transformation with respect
to x. Then we use standard techniques from the theory of Fourier multipliers
to obtain Lp-Lq estimates.

2.1. WKB representation of solution
2.1.1. Division of phase space into zones To find a WKB repre-
sentation for the solution of (2.1) we divide the phase space [0, ∞) × Rn

ξ

into two zones, the hyperbolic zone and the pseudodifferential zone, denoted
Zhyp(N), Zpd(N) respectively. These enable us to use the hyperbolicity
of our starting problem (1.5) and tools from hyperbolic theory only in the
hyperbolic zone.

Definition 2.1 Several Zones
For a given N > 0, define the zones Zhyp(N) and Zpd(N) of the phase space
[0, ∞)× Rn by

Zhyp(N) := {(t, ξ) ∈ [0, ∞)× Rn : |ξ|(t+ e3) ≥ N(log(t+ e3))γ},
Zpd(N) := {(t, ξ) ∈ [0, ∞)× Rn : |ξ|(t+ e3) ≤ N(log(t+ e3))γ}.

Here γ is the parameter from (1.6).

We shall denote the line that separates these zones by tξ = t(|ξ|) which is
defined for {ξ : |ξ| ≤ p0}, p0 := Ne−33γ , implicitly by the formula

|ξ|(tξ + e3) = N(log(tξ + e3))γ .

Lemma 2.1 For tξ as defined above we have, for all multi-indices α with
|α| ≥ 1, the inequality

|∂α
ξ tξ| ≤ Cα,N |ξ|−1−|α|(log(tξ + e3))γ .

We also subdivide Zhyp(N) into two smaller zones, the oscillations subzone
Zosc(N) and the regular subzone Zreg(N).
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Definition 2.2 Several Subzones
For a given N > 0 define the subzones Zosc(N) and Zreg(N) of Zhyp(N)

by

Zosc(N) :=

{
(t, ξ) :

N(log(t+ e3))γ ≤ |ξ|(t+ e3)

≤ 2N(log(t+ e3))2γ

}
,

Zreg(N) := {(t, ξ) : |ξ|(t+ e3) ≥ 2N(log(t+ e3))2γ}.
We denote the separating line by t̃ξ = t̃(|ξ|) which is defined for {ξ : |ξ| ≤
p1}, p1 := 2Ne−332γ , implicitly by the formula

|ξ|(t̃ξ + e3) = 2N(log(t̃ξ + e3))2γ .

Lemma 2.2 For t̃ξ as defined above we have, for all multi-indices α with
|α| ≥ 1, the inequalities

|∂α
ξ t̃ξ| ≤ Cα,N |ξ|−1−|α|(log(t̃ξ + e3))2γ .

2.1.2. Representation in the pseudodifferential zone In Zpd(N)
it is straightforward to get a representation for the solution; observe that
(2.1) can be written as the first order system

DtU =
(

0 |ξ|
a(t)|ξ| 0

)
U, U(0, ξ) = U0(ξ) :=

(|ξ|ϕ̂(ξ)
ψ̂(ξ)

)
,

where Dt = (1/
√−1)∂t and

U = U(t, ξ) :=
(|ξ|v(t, ξ)
Dtv(t, ξ)

)
.

Hence, we can write U(t, ξ) = E(t, 0, ξ)U0(ξ) where E = E(t, s, ξ), 0 ≤
s ≤ t, solves

DtE =
(

0 |ξ|
a(t)|ξ| 0

)
E, E(s, s, ξ) = I :=

(
1 0
0 1

)
.

Naturally, this can be written as an infinite sum via the matrizant repre-
sentation:

E(t, s, ξ) = I +
∞∑

j=1

∫ t

s
A(t1, ξ)

∫ t1

s
A(t2, ξ)

· · ·
∫ tj−1

s
A(tj , ξ)dtj · · · dt1, (2.2)
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where A(t, ξ) =
√−1

( 0 |ξ|
a(t)|ξ| 0

)
. Observing that ‖A(t, ξ)‖ ≤ Ca(t)|ξ|, we

see

‖E(t, s, ξ)‖ ≤ exp
(∫ t

s
‖A(r, ξ)‖dr

)
≤ eCaN(log(t+e3))γ

,

with Ca := C supt a(t), for 0 ≤ s ≤ t ≤ tξ. Later we need, for special
representations of solutions to (2.1) in subzones of the phase space, the
behaviour of ‖∂α

ξ E(tξ, 0, ξ)‖.
Lemma 2.3 The following estimates hold for all multi-indices α:

‖∂α
ξ E(tξ, 0, ξ)‖ ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γeCaN(log(tξ+e3))γ

.

Proof. The proof follows from the representation (2.2) and from the state-
ment of Lemma 2.1. ¤

Summarising all the above information we have

Proposition 2.4 For 0 ≤ t ≤ tξ the following representation holds:

|ξ|v(t, ξ) = E11(t, 0, ξ)|ξ|ϕ̂(ξ) + E12(t, 0, ξ)ψ̂(ξ),

Dtv(t, ξ) = E21(t, 0, ξ)|ξ|ϕ̂(ξ) + E22(t, 0, ξ)ψ̂(ξ),

and

|∂α
ξ Ekl(tξ, 0, ξ)| ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γeCaN(log(tξ+e3))γ

,

for each multi-index α, for all 0 ≤ t ≤ tξ and for all k, l = 1, 2.

2.1.3. Symbol classes in the hyperbolic zone The hyperbolic zone
Zhyp(N) consists of two parts Z(1)

hyp(N) := {(t, ξ) ∈ [tξ, ∞)× {ξ : |ξ| ≤ p0}}
and Z(2)

hyp(N) := {(t, ξ) ∈ [0, ∞)× {ξ : |ξ| ≥ p0}}. In what follows, we shall

restrict our considerations to Z(1)
hyp(N). In order to give a representation for

the solution to (2.1) in Zhyp(N), we carry out a diagonalisation procedure
with suitable remainder at each step. The following definition of symbol
classes exactly characterises the necessary properties of the remainders.

Definition 2.3 For each m1 ∈ R and m2, N ≥ 0 we define SN{m1, m2}
to be the set of functions σ = σ(t, ξ) ∈ C∞(Z(1)

hyp(N)) such that for all

(t, ξ) ∈ Z(1)
hyp(N), multi-indices α and k ∈ N
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|Dk
tD

α
ξ σ(t, ξ)| ≤ Ck,α|ξ|m1−|α|

(
1

t+ e3
(
log(t+ e3)

)γ
)m2+k

,

with nonnegative constants Ck,α depending only on k and α.

Lemma 2.5 The classes SN{m1, m2} have the following properties:
i) if σ ∈ SN{m1, m2} then Dα

ξ σ ∈ SN{m1 − |α|, m2} and
Dk

t σ ∈ SN{m1, m2 + k};
ii) if σ1 ∈ SN{m1, m2}, σ2 ∈ SN{p1, p2} then

σ1σ2 ∈ SN{m1 + p1, m2 + p2};
iii) for all r ≥ 0 we have SN{m1, m2} ⊂ SN{m1 + r, m2 − r}.
Proof. Properties i) and ii) are clear by the definition of SN{m1, m2}. To
show iii), simply observe that, by the definition of Zhyp(N),

(log(t+ e3))γ

|ξ|(t+ e3)
≤ 1
N
.

Hence, if σ ∈ SN{m1, m2} then

|Dk
tD

α
ξ σ(t, ξ)| ≤Ck,α|ξ|m1+r−|α|

(
1

t+ e3
(log(t+ e3))γ

)m2−r+k

× (log(t+ e3))γr

(|ξ|(t+ e3))r

≤Ck,αN
−r|ξ|m1+r−|α|

(
1

t+ e3
(log(t+ e3))γ

)m2−r+k

,

so σ ∈ SN{m1 + r, m2 − r}. ¤

2.1.4. Diagonalisation modulo SN{0, 1} The equation from (2.1) is
equivalent to the first order system

DtV =
(

0
√
a(t)|ξ|√

a(t)|ξ| 0

)
V +

Dta(t)
2a(t)

(
1 0
0 0

)
, (2.3)

where

V = V (t, ξ) =
(√

a(t)|ξ|v(t, ξ)
Dtv(t, ξ)

)
for t ≥ tξ.

Note that the leading matrix is in SN{1, 0}, and the remainder lies in
SN{0, 1}. In order to have a useful representation for the solution to (2.1)
in Z

(1)
hyp(N), we must diagonalise this system. Since the eigenvalues of the
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first matrix are τ1 = τ1(ξ) = −
√
a(t)|ξ| and τ2 = τ2(ξ) =

√
a(t)|ξ|, it is

simple to show that

M

(
τ1 0
0 τ2

)
M−1 =

(
0

√
a(t)|ξ|√

a(t)|ξ| 0

)
,

where

M =
(

1 1
−1 1

)
and M−1 =

1
2

(
1 −1
1 1

)
.

Setting V0 = V0(t, ξ) := M−1V (t, ξ), we obtain the following system for V0:

DtV0 =
(
τ1(ξ) +Dta(t)/4a(t) 0

0 τ2(ξ) +Dta(t)/4a(t)

)
V0

+
Dta(t)
4a(t)

(
0 1
1 0

)
V0. (2.4)

We shall use the notation:

D :=
(
τ1(ξ) +Dta(t)/4a(t) 0

0 τ2(ξ) +Dta(t)/4a(t)

)
,

R0 :=
Dta(t)
4a(t)

(
0 1
1 0

)
.

(2.5)

The system (2.4) has diagonal leading part D ∈ SN{1, 0} with remainder
R0 ∈ SN{0, 1}. Thus, we have obtained in Z

(1)
hyp(N) the diagonalisation of

the system (2.3) modulo remainder R0 ∈ SN{0, 1}.
2.1.5. Further considerations in the oscillations subzone: Diag-
onalisation modulo SN{−1, 2} The oscillations subzone Zosc(N) con-
sists of two parts

Z(1)
osc(N) := {(t, ξ) ∈ [tξ, t̃ξ]× {ξ : |ξ| ≤ p0}}

and

Z(2)
osc(N) := {(t, ξ) ∈ [0, t̃ξ]× {ξ : p0 ≤ |ξ| ≤ p1}}.

In what follows, we restrict our considerations to Z
(1)
osc(N) if we have in

mind the oscillations subzone. In Z
(1)
hyp(N) we carry out one more step of

the diagonalisation procedure. Let
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N (1) = N (1)(t, ξ)

:= −Dta(t)
4a(t)

(
0 1/(τ1 − τ2)

1/(τ2 − τ1) 0

)
∈ SN{−1, 1}.

Now set N1 = N1(t, ξ) := I +N (1); this is invertible since

‖N (1)‖ ≤ C (log(t+ e3))γ

|ξ|(t+ e3)
≤ C/N by definition of Zhyp(N),

and we choose N in the definition of Zhyp(N), Zpd(N) large enough so that
C/N < 1/2 here. Let V1 = V1(t, ξ) := N−1

1 M−1V ; then we obtain the
following equivalent problem to (2.3) for V1 for t ≥ tξ:

(Dt −D −R1)V1 = 0,

V1(tξ, ξ) = V1,0(ξ) := N−1
1 (tξ, ξ)M−1V (tξ, ξ),

(2.6)

where R1 ∈ SN{−1, 2}. This is a consequence of

Lemma 2.6 Let R1 := −N−1
1 (DtN (1) − R0N (1)). Then in Z

(1)
hyp(N) the

following identity holds:

(Dt −D −R0)N1 = N1(Dt −D −R1),

where D, R0 are as in (2.5).

Proof. Follows immediately from the observation that [N (1), D] = R0. ¤

Thus, we have obtained in Z(1)
hyp(N) the diagonalisation of the system (2.3)

modulo remainder R1 ∈ SN{−1, 2}.
2.1.6. Further considerations in regular subzone: Diagonalisa-
tion modulo SN{−m, m + 1} In Z

(1)
osc(N) there is no point in carry-

ing out any more steps of diagonalisation since there is no useful improve-
ment of regularity between amplitudes from the classes SN{−(l−1), l} and
SN{−l, l + 1} when l ≥ 2. However, we get such an improvement of regu-
larity in the regular subzone Zreg(N). There we carry out m steps of the
diagonalisation procedure. The number m is chosen and motivated in Sec-
tion 2.2. The step depends on the next result, which generalises Lemma 2.6.

Proposition 2.7 For each m ∈ N there exist matrix-valued functions

Nm = Nm(t, ξ) ∈ SN{0, 0}, Fm = Fm(t, ξ) ∈ SN{−1, 2},
and Rm = Rm(t, ξ) ∈ SN{−m, m+ 1}
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such that Fm is diagonal, Nm is invertible and its inverse also lies in
SN{0, 0}, and the following identity holds in Z

(1)
hyp(N):

(Dt −D −R0)Nm = Nm(Dt −D + Fm −Rm),

where D, R0 are as in (2.5). Also, for N (in the definition of Zhyp(N))
chosen large enough, Nm is invertible and its inverse also lies in SN{0, 0}.
Proof. We seek representations for Nm, Fm in the form

Nm =
m∑

r=0

N (r), Fm =
m−1∑

r=0

F (r).

To do this, define inductively the matrix-valued functionsB(r) =
(

B
(r)
11 B

(r)
12

B
(r)
21 B

(r)
22

)
,

N (r) and F (r) in the manner below:

N (0) := I, B(0) := R0, F (r) := diagB(r),

N (r+1) :=

(
0 B

(r)
12 /(τ1 − τ2)

B
(r)
21 /(τ2 − τ1) 0

)
,

B(r+1) := (D1 −D −R0)
(r+1∑

ρ=0

N (ρ)

)

−
(r+1∑

ρ=0

N (ρ)

)(
Dt −D +

r∑

ρ=0

F (ρ)

)
.

We claim that N (r) ∈ SN{−r, r} and B(r) ∈ SN{−r, r+ 1}. For r = 1 this
is clear from Lemma 2.6. Assume it holds for r = k; then, observing that
τ2−τ1 = 2

√
a(t)|ξ| ∈ SN{1, 0} and noting by the induction hypothesis that

B
(k)
12 , B

(k)
21 ∈ SN{−k, k + 1}, we see that N (k+1) ∈ SN{−(k + 1), k + 1}.

Also,

B(k+1) =B(k) + (Dt −D −R0)N (k+1) −
k∑

ρ=0

N (ρ)F (k)

−N (k+1)

(
Dt −D +

k∑

ρ=0

F (ρ)

)

=B(k) −F (k) − [D, N (k+1)] + S,
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where S = DtN (k+1) − R0N (k+1) − N (k+1)
∑k

ρ=0F (ρ) −∑k
ρ=1N (ρ)F (k),

which lies in SN{−(k+1), k+2} by the induction hypothesis and the rules
of the symbolic calculus of Lemma 2.5. Furthermore, by definition of F (k)

and N (k+1),

B(k) −F (k) − [D, N (k+1)] = 0.

Therefore, B(k+1) = S proving the induction step. So the claim is proved.
Now we claim that Nm :=

∑m
r=0N (r) is invertible; this is true because

‖N (r)‖ ≤ Cr

((
log(1/(t+ e3))

)γ

(t+ e3)|ξ|
)r

≤ Cr

N r
,

by the definition of Zhyp(N). Choose N in the definition of Zhyp(N) so that

Cr

N r
≤ 1

2r+1
for r = 1, . . . , m.

The value of m shall be chosen later, but since it is fixed, this fixes N .
Hence,

‖Nm − I‖ ≤
m∑

r=1

‖N (r)‖ ≤
m∑

r=1

1
2r+1

<
1
2
,

thus proving the invertibility of Nm. Finally, noting that F (0) = 0, so
F (m) ∈ SN{−1, 2}, and setting Rm := −N−1

m B(m) ∈ SN{−m, m + 1}
completes the proof of the proposition. ¤

The regular subzone Zreg(N) consists of three parts Z(1)
reg(N) := {(t, ξ) ∈

[t̃ξ, ∞)× {ξ : |ξ| ≤ p0}}, Z(2)
reg(N) := {(t, ξ) ∈ [t̃ξ, ∞)× {ξ : p0 ≤ |ξ| ≤ p1}}

and Z(3)
reg(N) := {(t, ξ) ∈ [0, ∞)×{ξ : |ξ| ≥ p1}}. In what follows we restrict

our considerations to Z(1)
reg(N) if we have in mind the regular subzone. Now

we set Vm = Vm(t, ξ) := N−1
m V0 for t ≥ t̃ξ and see that the system (2.4) for

V0 is equivalent in Z(1)
reg(N) to

(Dt −D + Fm −Rm)Vm = 0,

Vm(t̃ξ, ξ) = Vm, 0(ξ) := N−1
m (t̃ξ, ξ)N1(t̃ξ, ξ)V1(t̃ξ, ξ).

(2.7)

Thus, we have obtained in Z
(1)
reg(N) the diagonalisation of the system (2.3)

modulo remainder Rm ∈ SN{−m, m + 1}, while in Z
(1)
osc(N) it is sufficient

to carry out the diagonalisation of the system (2.3) modulo remainder R1 ∈
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SN{−1, 2}.
2.1.7. Fundamental solutions and their properties Now let us con-
struct representations for the fundamental solutions to the matrix-valued
operators appearing in (2.6) and (2.7). First, let E2 = E2(t, s, ξ) solve

DtE2 −DE2 = 0, E2(s, s, ξ) = I,

where t, s ≥ tξ and the matrix D is as in (2.5). We see that

E2(t, s, ξ) =
(
a(t)
a(s)

)1/4
(
ei

R t
s τ1(r, ξ)dr 0

0 ei
R t

s τ2(r, ξ)dr

)
.

Hence, by the strict hyperbolicity of our starting Cauchy problem (1.5) we
get

‖E2(t, s, ξ)‖ ≤
(
a(t)
a(s)

)1/4

≤ Ca for all t, s ≥ tξ. (2.8)

Later we need, for special representations of solutions to (2.1) in Z
(1)
osc(N)

and in Z(1)
reg(N), the behaviour of ‖∂α

ξ E2(tξ, 0, ξ)‖ and of ‖∂α
ξ E2(t̃ξ, tξ, ξ)‖.

Lemma 2.8 The following estimates hold for all multi-indices α:

‖∂α
ξ E2(tξ, 0, ξ)‖ ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γ ,

‖∂α
ξ E2(t̃ξ, tξ, ξ)‖ ≤ Cα,N |ξ|−|α|(log(t̃ξ + e3))2|α|γ .

Proof. Follows immediately from Lemmas 2.1 and 2.2 together with as-
sumption (1.6) and estimate (2.8). ¤

Now we define Eosc = Eosc(t, s, ξ), tξ ≤ s ≤ t ≤ t̃ξ to be the fundamen-
tal solution to (2.6) in Z

(1)
osc(N). This can be written in the form Eosc =

E2(t, s, ξ)Q1(t, s, ξ) where Q1 = Q1(t, s, ξ) solves

DtQ1 = E2(s, t, ξ)R1(t, ξ)E2(t, s, ξ)Q1, Q1(s, s, ξ) = I.

Letting P1 = P1(t, s, ξ) :=
√−1E2(s, t, ξ)R1(t, ξ)E2(t, s, ξ), we have the

matrizant representation for Q1:

Q1(t, s, ξ) = I +
∞∑

j=1

∫ t

s
P1(t1, s, ξ) · · ·

∫ tj−1

s
P1(tj , s, ξ)dtj · · ·dt1.
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Now R1 ∈ SN{−1, 2}; therefore, using (2.8), we see that

‖P1(t, s, ξ)‖ ≤ C|ξ|−1

(
(log(t+ e3))γ

t+ e3

)2

.

Hence,

‖Q1(t, s, ξ)‖ ≤ exp
(∫ t

s
‖P1(r, s, ξ)‖ dr

)
≤ eCN,γ(log(tξ+e3))γ

for all tξ ≤ s, t ≤ t̃ξ.
We need, for a special representation of solution to (2.1) in Z(1)

osc(N) and in
Z

(1)
reg(N), the behaviour of ‖∂α

ξ Q1(t, tξ, ξ)‖ for t ∈ [tξ, t̃ξ].

Lemma 2.9 The following estimate holds for all multi-indices α and for
all t ∈ [tξ, t̃ξ]:

‖∂α
ξ Q1(t, tξ, ξ)‖ ≤ Cα,N |ξ|−|α|(log(t+ e3))2|α|γeCN,γ(log(tξ+e3))γ

.

Proof. Follows immediately from the above representation and estimate
for Q1 = Q1(t, s, ξ), and from Lemma 2.1 together with assumption (1.6)
and estimate (2.8). ¤

Similarly, in Z
(1)
reg(N) we define Ereg = Ereg(t, s, ξ), t̃ξ ≤ s, t, to be the

fundamental solution to (2.7). We write this in the form Ereg(t, s, ξ) =
Ẽ2(t, s, ξ)Qm(t, s, ξ), where Qm = Qm(t, s, ξ) solves

DtQm = Ẽ2(s, t, ξ)Rm(t, ξ)Ẽ2(t, s, ξ)Qm, Qm(s, s, ξ) = I.

Here we define for t̃ξ ≤ s, t,

Ẽ2(t, s, ξ) =
(
a(t)
a(s)

)1/4

×
(
ei

R t
s τ1(r, ξ)dr−R t

s f
(1)
m (r, ξ)dr 0

0 ei
R t

s τ2(r, ξ)dr−R t
s f

(2)
m (r, ξ)dr

)
,

where Fm :=
(

f
(1)
m 0

0 f
(2)
m

)
. Using Fm ∈ SN{−1, 2} we have

∣∣∣∣
∫ t

s
f (l)

m (r, ξ)dr
∣∣∣∣ ≤ Cm for all t̃ξ ≤ s, t and for l = 1, 2.

Then, observing that Rm ∈ SN{−m, m + 1}, we see that the following
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estimate holds:

‖Qm(t, s, ξ)‖ ≤ Cm for all t̃ξ ≤ s, t.

We also need, for a special representation of solution to (2.1) in Z
(1)
reg(N),

the behaviour of ‖∂α
ξ Qm(t, t̃ξ, ξ)‖ for t ≥ t̃ξ.

Lemma 2.10 The following estimate holds for all multi-indices α with
|α| ≤ (m− 1)/2 and for all t̃ξ ≤ t:

‖∂α
ξ Qm(t, t̃ξ, ξ)‖ ≤ Cα,m|ξ|−|α| for all t̃ξ ≤ t.

Proof. It is sufficient to discuss the derivatives with respect to ξ of the
term

g(t, ξ) := a(t̃ξ)−1/4 exp
{
i

t∫

t̃ξ

√
a(r)dr|ξ| −

t∫

t̃ξ

f (1)
m (r, ξ)dr

}
rm(t, ξ)

with rm ∈ SN{−m, m+ 1}. Such terms appear in the matrizant represen-
tation for Qm. We have

|g(t, ξ)| ≤ Cm|ξ|−m

(
1

t+ e3
(log(t+ e3))2γ

)m+1

.

Derivatives of rm with respect to ξ generate |ξ|−|α|. By Lemma 2.2, as-
sumption (1.6) and the definition of Zreg(N) we conclude that

|∂ξ1a(t̃ξ)
−1/4| ≤ C (log(t̃ξ + e3))3γ

|ξ|2(t̃ξ + e3)
≤ CN (log(t̃ξ + e3))γ .

In the same way one can show

|∂α
ξ a(t̃ξ)

−1/4| ≤ Cα,N (log(t̃ξ + e3))2|α|γ .

Differentiating
∫ t
t̃ξ
f

(1)
m (r, ξ)dr with respect to ξ1 gives

∫ t

t̃ξ

∂ξ1f
(1)
m (r, ξ)dr − f (1)

m (t̃ξ, ξ)
∂t̃ξ
∂ξ1

.

The integral can be estimated by Cm|ξ|−1. Taking account of f (1)
m ∈

SN{−1, 2} gives the estimate
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∣∣∣∣f (1)
m (t̃ξ, ξ)

∂t̃ξ
∂ξ1

∣∣∣∣ ≤ Cm
(log(t̃ξ + e3))4γ

|ξ|3(t̃ξ + e3)2
≤ Cm,N |ξ|−1.

Higher derivatives of t̃ξ give rise to log terms. Thus, we get

∣∣∣∣∂α
ξ exp

{
−

t∫

t̃ξ

f (1)
m (r, ξ)dr

}∣∣∣∣ ≤ Cα,N (log(t̃ξ + e3))2|α|γ .

The main problem arises from
∫ t
t̃ξ

√
a(r)dr|ξ|. Differentiation ∂ξ1 allows

only an estimate like
∣∣∣∣∂ξ1

(∫ t

t̃ξ

√
a(r)dr|ξ|

)∣∣∣∣ ≤ Ca(t+ e3).

But now we can use that rm ∈ SN{−m, m+1}. If we differentiate α times,
then for all t ≥ t̃ξ we have

|(t+ e3)|α|rm(t, ξ)| ≤Cm
(log(t+ e3))γ(m+1)

|ξ|m(t+ e3)m+1−|α|

≤ Cm

|ξ||α|
(log(t+ e3))γ(m+1)

|ξ|m−|α|(t+ e3)m+1−|α|

≤ Cm

|ξ||α|
(log(t+ e3))γ(m−1)(log(t+ e3))2γ

(|ξ|(t+ e3))m−1−|α||ξ|(t+ e3)2

≤ Cm,N

|ξ||α|
(log(t+ e3))2γ

|ξ|(t+ e3)2

if |α| ≤ (m − 1)/2. Consequently we earn |ξ|−|α| and a term which is
integrable over [t̃ξ, t] for all t. It remains to explain how we proceed with
the terms (log(t̃ξ + e3))2|α|γ arising in the above estimates. These terms we
couple with rm also and get, for |α| ≤ (m− 1)/2,

|(log(t̃ξ + e3))2|α|γrm(t, ξ)|

≤ Cm

∣∣∣∣(log(t+ e3))(m−1)γ (log(t+ e3))(m+1)γ

|ξ|m(t+ e3)m+1

∣∣∣∣

≤ Cm
(log(t+ e3))2(m−1)γ

(|ξ|(t+ e3))m−1

(log(t+ e3))2γ

|ξ|(t+ e3)2
.
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Using the definition of Zreg(N), the first factor is uniformly bounded. The
second one is integrable over [t̃ξ, t]. This completes the proof of our lemma.

¤

2.1.8. Representation of solutions in subzones Now we are in po-
sition to give representations for the solution to (2.1) in Z(1)

osc and Z(1)
reg. The

vector-function V = V (t, ξ) is a solution of (2.3).

In Z
(1)
osc(N): For tξ ≤ t ≤ t̃ξ we have

V (t, ξ) = MN1(t, ξ)E2(t, 0, ξ)E2(0, tξ, ξ)

·Q1(t, tξ, ξ)N1(tξ, ξ)−1M−1

·
(√

a(tξ) 0
0 1

)
E(tξ, 0, ξ)U0(ξ), (2.9)

where we recall E(tξ, 0, ξ) is obtained in the representation of the solution
in the pseudodifferential zone.

In Zreg(N): For t ≥ t̃ξ we have

V (t, ξ) = MNm(t, ξ)E2(t, 0, ξ)E2(0, t̃ξ, ξ)F̃m(t, t̃ξ, ξ)

·Qm(t, t̃ξ, ξ)Nm(t̃ξ, ξ)−1N1(t̃ξ, ξ)

· E2(t̃ξ, tξ, ξ)Q1(t̃ξ, tξ, ξ)N1(tξ, ξ)−1M−1

·
(√

a(tξ) 0
0 1

)
E(tξ, 0, ξ)U0(ξ),

with

F̃m(t, t̃ξ, ξ) =


e

− R t
t̃ξ

f
(1)
m (r, ξ)dr

0

0 e
− R t

t̃ξ
f
(2)
m (r, ξ)dr


 ,

where we have used the representation (2.9) at t = t̃ξ.

Before we discuss the representation of the solution to (2.1) we collect
together some useful estimates.

Lemma 2.11 The following estimates hold for all multi-indices α:

‖∂α
ξ N1(tξ, ξ)‖ ≤ Cα|ξ|−|α|(log(tξ + e3))|α|γ ,

‖∂α
ξ Nm(t̃ξ, ξ)‖ ≤ Cα|ξ|−|α|(log(t̃ξ + e3))2|α|γ ,
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‖∂α
ξ F̃m(t, t̃ξ, ξ)‖ ≤ Cα|ξ|−|α|(log(t̃ξ + e3))2|α|γ , for all t ≥ t̃ξ.

Proof. Follows immediately from the above representation for
F̃m = F̃m(t, t̃ξ, ξ), from Lemmas 2.1 and 2.2 together with assumption (1.6)
and the definition of zones. ¤

Summarising all the above results we have

Proposition 2.12 The following WKB representations hold for the solu-
tion to (2.1):

|ξ|v(t,ξ) = b
(1)
11 (t,ξ)exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+b(1)
12 (t,ξ)exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

+b(1)
21 (t,ξ)exp

{
i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+b(1)
22 (t,ξ)exp

{
i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ),

Dtv(t,ξ) = b
(2)
11 (t,ξ)exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+b(2)
12 (t,ξ)exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

+b(2)
21 (t,ξ)exp

{
i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+b(2)
22 (t,ξ)exp

{
i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ).

Here the amplitudes b(p)
kl (t, ξ), p, k, l = 1, 2, satisfy the following estimates:

• in Zpd(N) ∪ Z(1)
osc(N) : |b(p)

kl (t, ξ)| ≤ CN,a,γe
CN,a,γ(log(t+e3))γ

;
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• in Z
(1)
reg(N) : |∂α

ξ b
(p)
kl (t, ξ)| ≤ CN,a,γ,α|ξ|−|α|(log(t+ e3))2|α|γ

× exp{CN,a,γ(log(t + e3))γ} for all |α| ≤ (m − 1)/2, where m is the
number of steps of diagonalisation in Z

(1)
reg(N).

We obtain similar representations in the other parts of the phase space. The
amplitudes satisfy at worst the estimates above.

2.2. Lp-Lq estimates for Fourier multipliers
Using Proposition 2.12 we can write down the following Fourier multi-

plier representation for the solution u = u(t, x) to (1.5):

|Dx|u(t, x) =F−1

(
b
(1)
11 (t, ξ) exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+ b
(1)
12 (t, ξ) exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

+ b
(1)
21 (t, ξ) exp

{
i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+ b
(1)
22 (t, ξ) exp

{
i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

)
, (2.10)

Dtu(t, x) =F−1

(
b
(2)
11 (t, ξ) exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+ b
(2)
12 (t, ξ) exp

{
−i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

+ b
(2)
21 (t, ξ) exp

{
i|ξ|

t∫

0

√
a(s)ds

}
|ξ|ϕ̂(ξ)

+ b
(2)
22 (t, ξ) exp

{
i|ξ|

t∫

0

√
a(s)ds

}
ψ̂(ξ)

)
, (2.11)
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where F−1 denotes the inverse to the partial Fourier transform with respect
to x. Here the amplitudes b(p)

kl (t, ξ), p, k, l = 1, 2, satisfy the following
estimates:
• in Zpd(N) ∪ Zosc(N) : |b(p)

kl (t, ξ)| ≤ CN,a,γe
CN,a,γ(log(t+e3))γ

;
• in Zreg(N) : |∂α

ξ b
(p)
kl (t, ξ)| ≤ CN,a,γ,α|ξ|−|α|(log(t+ e3))2|α|γ

× exp{CN,a,γ(log(t + e3))γ} for all |α| ≤ (m − 1)/2, where m is the
number of steps of diagonalisation in Z(1)

reg(N).
Our next goal is to estimate these Fourier multipliers. We use the approach
from [10] and from [13].

2.2.1. Lp-Lq estimates for Fourier multipliers with amplitudes
vanishing in regular subzone Let us choose a function ψ ∈ C∞(Rn)
satisfying ψ(ξ) ≡ 0 for |ξ| ≤ 1, ψ(ξ) ≡ 1 for |ξ| ≥ 2 and 0 ≤ ψ(ξ) ≤ 1.
Further, denote K(t) := N(log(t+ e3))2γ/(t+ e3).

Theorem 2.13 Let us consider Fourier multipliers which are defined by

F−1

(
e
i|ξ|

tR
0

√
a(s)ds(

1− ψ(ξ/K(t))
)|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)
.

Suppose that a = a(t, ξ) satisfies the following assumption:
• in Zpd(N) ∪ Zosc(N) : |a(t, ξ)| ≤ CN,a,γ exp{CN,a,γ(log(t+ e3))γ}.

Then we have the Lp-Lq estimate

∥∥∥∥F−1

(
e
i|ξ|

tR
0

√
a(s)ds(

1− ψ(ξ/K(t))
)|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥∥
Lq

≤ CN,a,γK(t)−2r+n(1/p−1/q) exp
{
CN,a,γ(log(t+ e3))γ

}‖ϕ‖Lp ,

provided that 0 ≤ 2r ≤ n(1/p− 1/q), 1 < p ≤ 2, 1/p+ 1/q = 1.

Proof. Let us consider

I0 :=
∥∥∥∥F−1

(
e
i|ξ|

tR
0

√
a(s)ds(

1−ψ(ξ/K(t))
)|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥∥
q

Lq

.

Using the transformations ξ = K(t)η and z = K(t)x we conclude

I0 = K(t)nq−2rq−n
∥∥∥F−1

(
e
iK(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2r

· a(t, K(t)η)F(ϕ)(K(t)η)
)∥∥∥

q

Lq
.
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The point (t, K(t)η) with |η| ≤ 2 (support of 1 − ψ) belongs to Zpd(N) ∪
Zosc(N). Therefore |a(t, K(t)η)| ≤ CN,a,γ exp(CN,a,γ(log(t+ e3))γ). For I0
we obtain

I
1/q
0 ≤K(t)n−2r−n/q

·
∥∥∥∥F−1

(
e
iK(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2ra(t, K(t)η)
)

∗F−1(F(ϕ)(K(t)η))
∥∥∥∥

Lq

.

Now let us denote

Tt :=F−1

(
e
iK(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2ra(t, K(t)η)
)

· exp(−CN,a,γ(log(t+ e3))γ).

We have, together with the estimate for a(t, K(t)η),

meas{η : |F(Tt)| ≥ l} ≤ meas{η : |η| ≤ Cl−1/(2r)} ≤ Cl−n/(2r).

Due to Theorem 1.11 from [3] we have F(Tt) ∈ M q
p for all 2r ≤ n(1/p −

1/q). Here M q
p denotes the set of Fourier transforms F(T ) of distributions

T ∈ Lq
p, where Lq

p denotes the space of tempered distributions such that
‖T ∗ u‖Lq ≤ C‖u‖Lp with a constant C independent of u. Hence Tt ∈ Lq

p

and

‖Tt ∗ F−1(F(ϕ)(K(t)η))‖Lq ≤ CpK(t)−n+n/p‖ϕ‖Lp .

Thus, we have proved

I
1/q
0 ≤ CK(t)−2r+n(1/p−1/q)eCN,a,γ(log(t+e3))γ‖ϕ‖Lp ,

and

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

(1− ψ(ξ/K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

≤ CK(t)−2r+n(1/p−1/q)eCN,a,γ(log(t+e3))γ‖ϕ‖Lp ,

respectively. Thus, we have derived the statement of our theorem. ¤
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2.2.2. Lp-Lq estimates for Fourier multipliers with amplitudes
supported in regular subzone

Theorem 2.14 Let us consider Fourier multipliers which are defined by

F−1

(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)
.

Suppose that a = a(t, ξ) satisfies the following assumption:
• in Zreg(N) : |∂α

ξ a(t, ξ)| ≤CN,a,γ,α|ξ|−|α|(log(t+ e3))2|α|γ

× exp(CN,a,γ(log(t+ e3))γ)
for all |α| ≤ (m− 1)/2.

Then we have the Lp-Lq estimate

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

≤ CK(t)−2r+n(1/p−1/q)(log(t+ e3))2MγeCN,a,γ(log(t+e3))γ‖ϕ‖Lp

provided that 1 < p ≤ 2, 1/p + 1/q = 1,
(
(n + 1)/2

)
(1/p − 1/q) ≤ 2r ≤

n(1/p− 1/q) and with a suitable positive constant M .

Proof. We generalize the proof of [6] to Fourier multipliers depending on a
parameter. If (t, ξ) ∈ suppψ(ξ/(2K(t))), then (t, ξ) ∈ Zreg(N). We choose
a nonnegative function φ = φ(ξ) having compact support in {ξ ∈ Rn : 1/2 ≤
|ξ| ≤ 2}. We set

φk(ξ) := φ(2−kξ) for k ∈ N while φ0(ξ) := 1−
∞∑

k=1

φk(ξ).

The function φ0 has its support in {ξ ∈ Rn : |ξ| ≤ 2}.
The Lq-norm of

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φ0(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

can be estimated as in Theorem 2.13. Thus we can restrict ourselves to
considering the integral

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq
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with k ∈ N. First we study this integral for t ≥ t0, t0 large.

a) L1-L∞ continuity : To estimate

Ik :=
∥∥∥F−1

(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

we set ξ/(2K(t)) = 2kη. We are going to apply Lemma 3 from [1]. For this
reason we use the inequality

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)
)∥∥∥

L∞

≤ C2k(n−2r)(2K(t))n−2r
∥∥∥F−1

(
e
i2k2K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)

· |η|−2ra(t, 2k+1K(t)η)
)∥∥∥

L∞
.

Let us denote vk(t, η) := φ(η)ψ(2kη)a(t, 2k+1K(t)η). These function have
their supports in {η ∈ Rn : 1/2 ≤ |η| ≤ 2}. According to [4] (see also [1] or
[6]) we have (here we need t0 large)

∥∥∥F−1
(
e
i2k+1K(t)|η|

tR
0

√
a(s)ds

|η|−2rvk(t, η)
)∥∥∥

L∞

≤ C
(
2k+1K(t)

∫ t

0

√
a(s)ds

)−(n−1)/2 ∑

|α|≤M

‖Dα
η (|η|−2rvk(t, η))‖L∞ .

According to the assumption for a = a(t, ξ) we have

‖Dα
η (|η|−2rvk(t, η))‖L∞≤CN,a,γ,M (log(t+e3))2|α|γeCN,a,γ(log(t+e3))γ

for all |α| ≤ (m− 1)/2. If we use m = 2M + 1 steps in our diagonalisation
procedure in Zreg(N), then the last inequality holds for all |α| ≤M . Hence,

∥∥∥F−1
(
e
i2k+1K(t)|η|

tR
0

√
a(s)ds

|η|−2rvk(t, η)
)∥∥∥

L∞

≤ CN,a,γ,M2−(k/2)(n−1)
(
K(t)

∫ t

0

√
a(s)ds

)−(n−1)/2

· (log(t+ e3))2MγeCN,a,γ(log(t+e3))γ
.
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All together we have shown

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

L∞

≤ CN,a,γ,M2k
(
(n+1)/2−2r

)
K(t)n−2r

(
K(t)

∫ t

0

√
a(s)ds

)−(n−1)/2

· (log(t+ e3))2MγeCN,a,γ(log(t+e3))γ‖ϕ‖L1 .

b) L2-L2 continuity : To estimate L2–norms we apply Lemma 3 from [1].
To this end we take into consideration

∥∥∥e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)
∥∥∥

L∞

≤ sup
2k−1≤|ξ|/(2K(t))≤2k+1

|ξ|−2r|a(t, ξ)|

≤ CN,a,γ,02−2krK(t)−2reCN,a,γ(log(t+e3))γ
.

Hence,

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

L2

≤ CN,a,γ,02−2krK(t)−2reCN,a,γ(log(t+e3))γ‖ϕ‖L2 .

c) Interpolation argument : An interpolation argument between L1-L∞ and
L2-L2 estimates from a) and b) yields

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

≤ CN,a,γ,M2k
(
((n+1)/2)(1/p−1/q)−2r

)
K(t)n(1/p−1/q)−2r

· (log(t+ e3))2MγeCN,a,γ(log(t+e3))γ‖ϕ‖Lp

for t ≥ t0, t0 large, provided 1 < p ≤ 2, 1/p + 1/q = 1,
(
(n + 1)/2

)
(1/p −

1/q) ≤ 2r ≤ n(1/p−1/q). Applying Lemma 2 from [1] proves the statement
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of the theorem for t ≥ t0, t0 large.

d) Estimates for small t: It remains to estimate the Lq–norms of

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

for t ∈ [0, t0]. Here we will not use the stationary phase method, the
key tool to get the above estimates for t ≥ t0. Instead we apply the
Hardy–Littlewood inequality as we did to get the estimates in Theorem 2.13.
Let us sketch the differences in the proof. Using the transformations ξ =
2k+1K(t)η and z = 2k+1K(t)x we conclude for k ∈ N

Ik := (2k+1K(t))nq−2rq−n

·
∥∥∥F−1

(
e
i K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2r

· a(t, 2k+1K(t)η)F(ϕ)(2k+1K(t)η)
)∥∥∥

q

Lq
.

The point (t, 2k+1K(t)η) with |η| ∈ [1/2, 2] (support of φ) belongs to
Zreg(N). Therefore |a(t, 2k+1K(t)η)| ≤ CN,a,γ,0 exp(CN,a,γ(log(t + e3))γ).
For Ik we obtain

I
1/q
k ≤ (2k+1K(t))n−2r−n/q

·
∥∥∥F−1

(
e
iK(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2ra(t, 2k+1K(t)η)
)

∗ F−1(F(ϕ)(2k+1K(t)η))
∥∥∥

Lq
.

Now let us denote

Tt,k :=F−1
(
e
iK(t)|η|

tR
0

√
a(s)ds

ψ(2kη))φ(η)|η|−2ra(t, 2k+1K(t)η)
)

· exp(−CN,a,γ(log(t+ e3))γ).

Then Tt,k has the same properties as described for Tt in the proof to Theo-
rem 2.13. Thus we can derive

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq
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≤ C(2kK(t))−2r+n(1/p−1/q)eCN,a,γ(log(t+e3))γ‖ϕ‖Lp .

Lemma 2 from [1] proves with 2r ≥ n(1/p − 1/q) the statement of the
theorem for t ∈ [0, t0]. This completes the proof. ¤

2.3. End of the proof

Proof. The statements of Theorems 2.13 and 2.14 applied to the represen-
tations (2.10) and (2.11) enable us to derive the estimates from Theorem 1.1.
If t ∈ (0, t0], then we choose in the estimates from Theorems 2.13 and 2.14
the parameter 2r = n(1/p− 1/q). This fixes the necessary regularity Np =
n(1/p−1/q). If t ∈ [t0, ∞), then we choose in Theorem 2.14 the parameter
2r =

(
(n+ 1)/2

)
(1/p− 1/q). Now let us distinguish the different cases for

γ. If γ = 0, then we directly obtain the classical Strichartz’ Lp-Lq decay
estimate from Theorem 1.1 with s0 = 0. If γ ∈ (0, 1), then the main influ-
ence on changes to the classical Strichartz’ decay rate comes from the term
exp(CN,a,γ(log(t + e3))γ in Theorems 2.13 and 2.14. For each ε this term
can be estimated by Cε(1 + t)ε. Thus s0 = ε for all ε > 0. Finally, if γ = 1,
then this term produces, together with the log terms, a factor like (1+ t)s0 ,
where s0 eventually becomes a large positive constant. ¤

Let us formulate a corollary of Theorem 1.1. At first sight, the statement
of this corollary does not seem to be very surprising, but its meaning lies in
a comparison of the cases γ ∈ [0, 1] and γ > 1 in (1.6).

Corollary 2.15 Consider the strictly hyperbolic Cauchy problem

∂2
t u− a(t)∆u = 0, (t, x) ∈ [0, ∞)× Rn,

u(t0, x) = ϕ(x), ∂tu(t0, x) = ψ(x), t0 ≥ T,
}

(2.12)

where T is large and the coefficient a = a(t) satisfies (1.6) with γ ∈ [0, 1].
Then there exists a constant C which is independent of t0 ≥ T and t ≥ t0
such that the following Lp-Lq estimate holds for the solution u = u(t, x):

‖(ut(t, · ), ∇xu(t, · ))‖Lq ≤ C(1 + t)s0‖(∇xϕ, ψ)‖W Np,p ,

where 1/p+ 1/q = 1, 1 < p ≤ 2, Np ≥ n(1/p− 1/q) and
• s0 = 0 if γ = 0; in this case C only depends on p, n;
• s0 = ε if γ ∈ (0, 1) for all ε > 0; in this case C depends on p, n and ε;
• s0 is a fixed constant (which can be determined) if γ = 1; in this case

C is independent of ϕ, ψ.
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Proof. The transformation t := t0 + τ transfers the above Cauchy problem
to

∂2
τu− at0(τ)∆u = 0, u(0, x) = ϕ(x), ∂τu(0, x) = ψ(x),

where at0(τ) := a(t0 + τ). The coefficients at0(τ) satisfy, for all t0 ≥ T , the
estimates (1.6) with the same constants Ck. Thus we can follow the proof
of Theorem 1.1 and obtain the Lp-Lq estimate

‖(uτ (τ, · ), ∇xu(τ, · ))‖Lq

≤ C(1 + τ)−
(
(n−1)/2

)
(1/p−1/q)+s0‖(∇xϕ, ψ)‖W Np,p .

Setting τ = t− t0 in the last inequality gives the statement of the corollary.
¤

3. Proof of Theorem 1.2

The proof is based on an application of Floquet’s theory, an idea used
in [16] to show that the Cauchy problem for ∂2

t −exp(−2t−α)b(t−1)∂2
x is not

C∞ well-posed when 0 < α < 1/2, where b = b(t) is a positive, smooth,
1-periodic function. A similar idea is used in [11] to study Lp-Lq estimates
for hyperbolic equations with increasing coefficients.

Proof. In order to apply Floquet’s theory, it is necessary to first transform
(1.8) so that the coefficient is periodic. This idea is used in [2] when studying
the C∞ well-posedness of strictly hyperbolic equations with non-Lipschitz
coefficients. Then, a lower bound is found for a suitable energy of the
solution of the transformed problem via estimates for an auxiliary problem.
Finally, we derive a contradiction to (1.7) by obtaining a lower bound for
the non-standard energy of Theorem 1.2 of the solution to (1.8).

3.1. Transformation of the Cauchy problem (1.8)
Let

s = s(t) := (log(t+ e3))α, (with inverse t(s) := es
1/α − e3),

w = w(s, x) :=
√
τ(s)u(t(s), x),

where τ(s) := (ds/dt)(t(s)) = αs1−(1/α)e−s1/α
, and, instead of (1.8), con-

sider the Cauchy problem obtained after this transformation. By simple
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calculations, we have

ws(s, x) =
1
2
τ ′(s)
τ(s)

w(s, x) +
1√
τ(s)

ut(t(s), x);

wss(s, x) =
1
4

(
2τ ′′(s)τ(s)− τ ′(s)2

τ(s)2

)
w(s, x)

+
1

τ(s)2
(2 + sin(2πs))2∆w(s, x)

=
1

4α2s2
(s2/α − α2 + 1)w

+
1
α2
e2s1/α

s(2/α)−2(2 + sin(2πs))2∆w,

since t′(s) = 1/τ(s). Transforming the initial data, we obtain the following
conditions for w(s, x) at s = s0:

w(s0, x) =
√
τ(s0)ϕ(x) =: ϕ̃(x),

ws(s0, x) =
1
2
τ ′(s0)√
τ(s0)

ϕ(x) +
1√
τ(s0)

ψ(x) =: ψ̃(x).





(3.1)

The problem is now in the form

wss − ν(s)2b(s)2∆w + µ(s)w = 0,
w(s0, x) = ϕ̃(x), ws(s0, x) = ψ̃(x),

}
(3.2)

where

ν(s) := es
1/α
s(1/α)−1, b(s) := (2 + sin(2πs))/α,

µ(s) :=
1

4α2s2
(α2 − 1− s2/α) = O(s(2/α)−2) as s→∞.

Note that b(s) is a non-constant, smooth, positive, periodic function with
period 1. This is now in a form where the application of Floquet’s theory
is possible.

3.2. Application of Floquet’s theory
Consider the second order ordinary differential equation for v = v(s),

vss + λb(s)2v = 0.

Let X be the fundamental matrix corresponding to this problem. That is,
X = X(s, s0) solves the first order system of ordinary differential equations
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dsX =
(

0 −λb(s)2
1 0

)
X, X(s0, s0) =

(
1 0
0 1

)
. (3.3)

We recall the following lemma from Floquet’s theory (see for example [5],
[16]):

Lemma 3.1 Suppose b(s) is a 1-periodic, non-constant, positive and
smooth function on R and s0 ∈ N ∪ {0}. Then there exists λ0 > 0 such
that the fundamental matrix X(s, s0) corresponding to vss + λ0b(s)2v = 0
evaluated at s = s0 + 1 (i.e. X(s0 + 1, s0)) has eigenvalues µ0, µ

−1
0 and

|µ0| > 1.

We use this to approximate the solution to the ordinary differential equation

vss + λ(s, ξ)b(s)2v = 0, (3.4)

with suitable Cauchy data, where λ(s, ξ) = λ1(s, ξ) + λ2(s) and

λ1(s, ξ) := |ξ|2ν(s)2 = |ξ|2s(2/α)−2e2s1/α
,

λ2(s) :=
µ(s)
b(s)2

=
α2 − 1− s2/α

4α2s2b(s)2
.

Observe that ∂sλ1(s, ξ) = |ξ|2e2s1/α(
((2/α)−2)s(2/α)−3+(2/α)s(3/α)−3

)
> 0

for s > T0 for large enough T0. Henceforth, we shall always assume s > T0.
So, for each ξ ∈ Rn, λ1(s, ξ) is a monotonically increasing function in s on
its domain [s0, ∞). Also, it is clear that λ2(s)→ 0 as s→∞.
We also define sξ ∈ N implicitly by the formula λ(sξ, ξ) = λ0, where λ0

is from Lemma 3.1. In addition, we require that sξ > T where T is large
enough to ensure that sξ →∞ as |ξ| → 0:

Lemma 3.2 There exists T > 0 such that for sξ as defined

sξ →∞ as |ξ| → 0.

Proof. Since λ2(s)→ 0 as s→∞, we can choose T1 > 0 such that s > T1

implies that |λ2(s)| < λ0/2. Then, by definition, as we insist sξ > T1,

λ1(sξ, ξ)
|ξ|2 =

λ0

|ξ|2 −
λ2(sξ)
|ξ|2 ≥ λ0

2|ξ|2 →∞ as |ξ| → 0.

Now, since λ1(s, ξ)/|ξ|2 is monotonically increasing for s > T0, by setting
T := max{T0, T1} it follows that lim|ξ|→0 sξ =∞. ¤
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We remark that this result allows us to take sξ ∈ N for any (large) integer—
simply choose |ξ| appropriately small enough.

3.3. Properties of λ(s, ξ) and X(sξ + 1, sξ)
For the function λ(s, ξ) we have the following result.

Lemma 3.3 There exist constants 0 < ρ < 1 and K > 0 such that if
0 ≤ δ ≤ ρs−K then

|λ1(s, ξ)− λ1(s− δ, ξ)| ≤ Cδλ1(s, ξ)s(1/α)−1

and |λ2(s)− λ2(s− δ)| ≤ Cs(1/α)−1,

for some positive constant C.

Proof. For the first part we apply the mean value theorem; this implies
that there exists a constant s̃ ∈ (s− δ, s) such that

|λ1(s, ξ)− λ1(s− δ, ξ)|
= |ξ|2

∣∣s(2/α)−2e2s1/α − (s− δ)(2/α)−2e2(s−δ)1/α∣∣

≤ 2
α
|ξ|2δe2s̃1/α

s̃3((1/α)−1)
∣∣1 + (1− α)s̃−1/α

∣∣

≤ Cδs(1/α)−1λ1(s, ξ)e2(s̃1/α−s1/α)(s/s̃)3(1−(1/α))

≤ Cδs(1/α)−1λ1(s, ξ),

since e2s1/α
s−3(1−(1/α)) is monotonically increasing for large s (we define K

so that this is for s > K) and s− δ > K by hypothesis.
For the second part, simply observe that, with b0 := mins b(s),

|λ2(s)− λ2(s− δ)|

≤ 1
4α2b20

(
(α2 − 1)|s−2 − (s− δ)−2|+ |s(2/α)−2 − (s− δ)(2/α)−2|)

≤ Cs(2/α)−2
(
(α2 − 1)s−2/α

∣∣∣1−
( s

s− δ
)2∣∣∣ +

∣∣∣1−
( s

s− δ
)2−(2/α)∣∣∣

)

≤ Cs(1/α)−1,

when 0 ≤ δ ≤ ρs−K for some 0 < ρ < 1. ¤

Now consider the fundamental matrix X(s, s0), which was defined as the
solution of the system of ordinary differential equations (3.3), evaluated at
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the point s = sξ + 1, s0 = sξ. We write this matrix as

X(sξ + 1, sξ) =
(
x11 x12

x21 x22

)
.

By Lemma 3.1 this matrix has eigenvalues µ0, µ
−1
0 where |µ0| > 1. Observe

that

µ0 + µ−1
0 = trX(sξ + 1, sξ) = x11 + x22,

and so,

|µ−1
0 − µ0| ≤ |x11 − µ0|+ |x22 − µ0|.

Hence,

max{|x11 − µ0|, |x22 − µ0|} ≥ 1
2
|µ−1

0 − µ0| > 0.

The last inequality follows from |µ0| > 1. We can assume, without loss of
generality, that

|x11 − µ0| ≥ 1
2
|µ−1

0 − µ0|, (3.5)

and then we also have

|x22 − µ−1
0 | ≥

1
2
|µ−1

0 − µ0|. (3.6)

3.4. Auxiliary family of ODEs
Consider the family of ODEs

vss + λ(sξ − k + s, ξ)b(sξ + s)2v = 0, k ∈ N ∪ {0},
where sξ ∈ N is as in Section 3.2 and λ0 is as given in Lemma 3.1. Here we
are using the 1-periodicity of b(s).
To each problem associate the fundamental matrix Xk(s, s1) which satisfies

dsXk =
(

0 −λ(sξ − k + s)b(sξ + s)2

1 0

)
Xk, Xk(s1, s1) =

(
1 0
0 1

)
.

We study these matrices evaluated at (s, s1) = (1, 0); write

Xk(1, 0) =
(
x11(k) x12(k)
x21(k) x22(k)

)
. (3.7)
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Denote the eigenvalues of this matrix by µk, µ
−1
k where |µk| ≥ 1 (in fact,

later we see that |µk| > 1 for all suitable k). That this matrix has determi-
nant 1 is an immediate consequence of the formula for the derivative of the
determinant of a matrix and the fact that tr(Ak(s, ξ)) = 0 where

Ak(s, ξ) =
(

0 −λ(sξ − k + s, ξ)b(sξ + s)2

1 0

)
. (3.8)

The matrices Xk(1, 0) are uniformly bounded for suitably large k:

Lemma 3.4 Let F (s) be a function satisfying

lim
s→∞ s

(1/α)−1F (s) = 0. (3.9)

Then we have

max
s, s1∈[0, 1]

‖Xk(s, s1)‖ ≤ eCλ0

for 1 ≤ k ≤ cF (sξ) and some positive constants C, c.

Remark 3.1 Note that F (s) := sβ, where β < 1−(1/α), satisfies require-
ment (3.9).

Proof. We have the following representation for Xk(s, s1):

Xk(s, s1) = I +
∞∑

j=1

∫ s

s1

Ak(r1, ξ)
∫ r1

s1

Ak(r2, ξ)

· · ·
∫ rj−1

s1

Ak(rj , ξ)drj · · · dr2dr1,

where Ak(s, ξ) is as in (3.8). Now, by Lemma 3.3,

‖Ak(s, ξ)‖ ≤ 1 + b21 sup
s∈[0, 1]

|λ(sξ − k + s, ξ)|

≤ 1 + b21

∣∣∣λ1(sξ − k + 1, ξ) + sup
s>s0

λ2(s)
∣∣∣

= 1 + b21

∣∣∣λ1(sξ − k + 1, ξ)− λ1(sξ, ξ)− λ2(sξ) + λ0 + sup
s>s0

λ2(s)
∣∣∣

≤ 1 + b21

(
C(k − 1)λ1(sξ, ξ)s

(1/α)−1
ξ + λ0 + 2 sup

s>s0

|λ2(s)|
)

provided 0 ≤ k − 1 ≤ ρsξ − K; here b1 = maxs b(s). So, by (3.9),
‖Ak(s, ξ)‖ ≤ 1 +C1b

2
1λ0 for large sξ when 1 ≤ k ≤ cF (sξ); here c is chosen
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to ensure that k − 1 ≤ ρsξ −K is satisfied when k ≤ cF (sξ). Therefore,

max
s, s1∈[0, 1]

‖Xk(s, s1)‖ ≤ exp
(∫ s

s1

‖Ak(r, ξ)‖dr
)
≤ C0e

C1b21λ0 = eCλ0 ,

provided 1 ≤ k ≤ cF (sξ). The lemma is proved. ¤

The next lemma shows that in some sense X(sξ + 1, sξ) is “near” to the
Xk(1, 0) for suitable k.

Lemma 3.5 Under the assumptions of Lemma 3.4 we have

‖Xk(1, 0)−X(sξ + 1, sξ)‖ ≤ Cλ0s
(1/α)−1
ξ F (sξ)

for 1 ≤ k ≤ cF (sξ) and some positive constants C, c.

Proof. First, note that X(sξ + s, sξ) = X(s, 0), since sξ ∈ N and b(s) is
1-periodic. Now, Xk(s, 0) satisfies

dsXk(s, 0)=
(

0 −λ(sξ, ξ)b(s)2

1 0

)
Xk(s, 0)

+
(

0
(
λ(sξ, ξ)− λ(sξ − k + s, ξ)

)
b(s)2

0 0

)
Xk(s, 0),

with Xk(0, 0) = I. Thus,

ds

(
Xk(s, 0)−X(s, 0)

)
=

(
0 −λ(sξ, ξ)b(s)2

1 0

)(
Xk(s, 0)−X(s, 0)

)

+
(

0
(
λ(sξ, ξ)− λ(sξ − k+ s, ξ)

)
b(s)2

0 0

)

×Xk(s, 0),

with initial data Xk(0, 0) − X(0, 0) = 0; here 0 denotes the zero matrix.
Now, by Lemma 3.3,

|λ1(sξ, ξ)− λ1(sξ − k+ s, ξ)| ≤ C(k− s)λ1(sξ, ξ)s
(1/α)−1
ξ

and |λ2(sξ)− λ2(sξ − k+ s)| ≤ Cs(1/α)−1
ξ ≤ Cλ−1

0 ks
(1/α)−1
ξ λ(sξ, ξ)

for 0 ≤ k − s ≤ ρsξ −K. Therefore,

|λ(sξ, ξ)− λ(sξ − k + s, ξ)| ≤ Ckλ0s
(1/α)−1
ξ
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for 0 ≤ k − s ≤ ρsξ −K. Hence,

‖Xk(s, 0)−X(s, 0)‖≤
∫ s

0
Cλ0‖Xk(r, 0)−X(r, 0)‖dr

+
∫ s

0
Ckλ0s

(1/α)−1
ξ ‖Xk(r, 0)‖dr.

So, by Lemma 3.4, Gronwall’s inequality and the hypotheses on k,

‖Xk(1, 0)−X(1, 0)‖ ≤ Ckλ0s
(1/α)−1
ξ eCλ0 ≤ Cλ0s

(1/α)−1
ξ F (sξ),

where 1 ≤ k ≤ cF (sξ); c here is chosen as in the proof of Lemma 3.4. This
completes the proof of the lemma. ¤

Also, the Xk(1, 0) are, in a similar sense, “near” to each other.

Lemma 3.6 The following inequality holds for all 1 ≤ k ≤ cF (sξ), with c
as in Lemma 3.4,

‖Xk+1(1, 0)−Xk(1, 0)‖ ≤ Cλ0s
(1/α)−1
ξ ,

where C is a positive constant and F (s) satisfies (3.9).

Proof. Observe

ds

(
Xk(s, 0)−Xk+1(s, 0)

)

=
(

0 −λ(sξ − (k + 1) + s, ξ)b(s)2

1 0

) (
Xk(s, 0)−Xk+1(s, 0)

)

+
(

0
(
λ(sξ − (k + 1) + s, ξ)− λ(sξ − k + s, ξ)

)
b(s)2

0 0

)
Xk(s, 0).

By Lemma 3.3,

|λ1(sξ − (k + 1) + s, ξ)− λ1(sξ − k + s, ξ)|
≤ Cλ1(sξ − k + s, ξ)(sξ − k + s)(1/α)−1

and |λ2(sξ − (k + 1) + s)− λ2(sξ − k + s)| ≤ C(sξ − k + s)(1/α)−1

for 1 ≤ ρ(sξ − k + s) − K. This latter condition is satisfied when 1 ≤
k ≤ cF (sξ), where c is as in Lemma 3.4, for sξ chosen large enough. Now,
λ1(t, ξ)t(1/α)−1 is increasing for large t (see the proof of Lemma 3.3); in
particular, it is increasing for t ≥ sξ − k+ s when sξ is chosen large enough
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since

sξ − k + s ≥ sξ − cF (ξ) ≥ sξ − 1
2
s
1−(1/α)
ξ ≥ 1

2
sξ

by the hypotheses on k and F (s). Also, using the argument above and the
hypothesis on F (s),

(sξ − k + s)(1/α)−1 ≤
( 2
sξ

)1−(1/α)
≤ Cλ0s

(1/α)−1
ξ

when k ≤ cF (sξ). Thus,

|λ(sξ − (k + 1) + s, ξ)− λ(sξ − k + s, ξ)| ≤ Cλ0s
(1/α)−1
ξ

for 1 ≤ k ≤ cF (sξ). So, by a similar argument to that used in the proof of
Lemma 3.5,

‖Xk+1(1, 0)−Xk(1, 0)‖ ≤ Cλ0s
(1/α)−1
ξ eCλ0 ≤ Cλ0s

(1/α)−1
ξ

for 1 ≤ k ≤ cF (sξ), as required. ¤

These “nearness” lemmas give information about the relations of the eigen-
values of these matrices.

Corollary 3.7 For 1 ≤ k ≤ cF (sξ), where F (s) satisfies (3.9) and c > 0
is as in Lemma 3.4, the following relations hold for suitably large sξ:
1. for each ε > 0, we can choose sξ large enough so that

|µk − µ0| < ε, (3.10)

hence, for suitably chosen ε,

|µk| ≥ |µ0| − ε > 1; (3.11)

2. there exists C > 0 such that

|µk − µk−1| ≤ Cλ0s
(1/α)−1
ξ ; (3.12)

3. there exists C > 0 such that

|µk − µ−1
k | ≥ C; (3.13)

4. there exist constants C1, C2 > 0 such that

|µk − x11(k)| ≥ C1, (3.14)

|µ−1
k − x22(k)| ≥ C2. (3.15)
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Proof. to 1. By Lemma 3.5,

|µk + µ−1
k − µ0 − µ−1

0 |= |x11(k) + x22(k)− x11 − x22|
≤ |x11(k)− x11|+ |x22(k)− x22|
≤Cλ0s

(1/α)−1
ξ F (sξ)→ 0 as sξ →∞.

On the other hand

|µk + µ−1
k − µ0 − µ−1

0 | = |(µk − µ0)(1− (µkµ0)−1)| ≥ C|µk − µ0|,
where C > 0, since |µ0| > 1. Combining these two observations proves
(3.10).
to 2. By Lemma 3.6

|µk − µk−1 + µ−1
k − µ−1

k−1|
= |x11(k)− x11(k − 1) + x22(k)− x22(k − 1)| ≤ Cλ0s

(1/α)−1
ξ .

Choosing sξ large enough so that (3.11) holds, we see, by a similar argument
to 1., that (3.12) also holds.
to 3. This is clear since (3.11) holds for large enough sξ.
to 4. By (3.5), Lemma 3.5 and part 1. of this corollary we have the follow-
ing for large enough sξ:

|µk − x11(k)| = |µk − µ0 + µ0 − x11 + x11 − x11(k)|
≥ |µ0 − x11| − |µk − µ0| − |x11 − x11(k)|

≥ 1
2
|µ0 − µ−1

0 | −
1
8
|µ0 − µ−1

0 | −
1
8
|µ0 − µ−1

0 |

=
1
4
|µ0 − µ−1

0 | > 0.

This proves (3.14). The proof of (3.15) is similar, but we use (3.6) in place
of (3.5). ¤

Henceforth, we assume that sξ is chosen large enough so that all of the
inequalities in Corollary 3.7 hold.

3.5. Lower bound for solution to auxiliary Cauchy problem
We are now in a position to give a lower bound for the solution to a

Cauchy problem for (3.4).
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Proposition 3.8 Consider the Cauchy problem

vss + λ(s, ξ)b(s)2v = 0,

v(sξ − n0, ξ) = 1, vs(sξ − n0, ξ) =
x12(n0)

µn0 − x11(n0)
,



 (3.16)

where csβ
ξ − 1 ≤ n0 ≤ csβ

ξ for 1/α < β < 1 − 1/α and c is some positive
constant. Then the following estimate holds for the solution v = v(s, ξ) at
s = sξ:

|v(sξ, ξ)|+ |vs(sξ, ξ)| ≥ C exp
(
a
(
log

∣∣∣1
ξ

∣∣∣
)γ

)
,

where γ = αβ ∈ (1, α− 1) and C, a are positive constants.

Proof. Throughout this proof we assume that k ≤ n0 at each occurrence
of k.

Observe that
(
vs(sξ, ξ)
v(sξ, ξ)

)
= X1(1, 0)X2(1, 0)

· · ·Xn0(1, 0)
(
vs(sξ − n0, ξ)
v(sξ − n0, ξ)

)
, (3.17)

where Xk(1, 0) is as in (3.7). Now,

Bk =
(
x12(k)/

(
µk − x11(k)

)
1

1 x21(k)/
(
µ−1

k − x22(k)
)
)
,

is a diagonaliser for Xk(1, 0). This is a consequence of the facts that
detXk(1, 0) = 1 and trXk(1, 0) = x11(k) + x22(k) = µk + µ−1

k .
Observe that

‖Bk‖ ≤ C, (3.18)

for some constant C independent of k; this follows from Lemma 3.4 and
inequalities (3.14) and (3.15). Furthermore, Bk is invertible for each k since

detBk =
µk − µ−1

k

µ−1
k − x22(k)

,

and (3.13) ensures that this is non-zero, together with Lemma 3.4 and
|µ−1

k | < 1. From this and (3.18), it follows that, in addition, ‖B−1
k ‖ ≤ C for

some constant independent of k.
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Also, by (3.14), (3.15), Lemma 3.4 and (3.12),

‖Bk+1 −Bk‖
≤ max

1≤k≤n0

‖Xk(1, 0)‖(C1|µk − µk+1|+ C2|µ−1
k − µ−1

k+1|)

≤ Cλ0s
(1/α)−1
ξ . (3.19)

Hence, (3.17) can be rewritten as
(
vs(sξ, ξ)
v(sξ, ξ)

)
=B1

(
µ1 0
0 µ−1

1

)
B−1

1 B2

(
µ2 0
0 µ−1

2

)
B−1

2

· · ·Bn0

(
µn0 0
0 µ−1

n0

)(
1
0

)

=B1

(
y11 y12

y21 y22

)(
1
0

)
.

Set B−1
k Bk+1 = I +Gk. So,

(
y11 y12

y21 y22

)
=

(
µ1 0
0 µ−1

1

)
(I +G1)

(
µ2 0
0 µ−1

2

)

· · · (I +Gn0−1)
(
µn0 0
0 µ−1

n0

)
(3.20)

=
(∏n0

k=1 µk 0
0

∏n0
k=1 µ

−1
k

)
+M1 + · · ·+Mn0−1,

where Ml is the matrix which is the sum of all the products of matrices
from (3.20) containing exactly l of the Gk matrices; observe

‖Ml‖ ≤
(

n0∏

k=1

|µk|
)

 ∑

1≤i1<···<il≤n0−1

l∏

j=1

‖Gij‖

 .

By (3.18) and (3.19)

‖Gk‖ = ‖B−1
k Bk+1 − I‖= ‖B−1

k (Bk+1 −Bk)‖
≤ ‖B−1

k ‖‖Bk+1 −Bk‖ ≤ Cλ0s
(1/α)−1
ξ .

Therefore,

‖Ml‖ ≤
( n0∏

k=1

|µk|
)(

n0 − 1
l

)
(Cλ0s

(1/α)−1
ξ )l.
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Thus,

|y11| ≥
( n0∏

k=1

|µk|
)(

2− (
1 + Cλ0s

(1/α)−1
ξ

)csβ
ξ

)
.

Taking account of β < 1− 1/α gives immediately

|y11| ≥ 1
2

( n0∏

k=1

|µk|
)
.

On the other hand, |y21| is very small—it is less than ν
∏n0

k=1|µk|, where we
can take ν as small as we like. Hence, using

(
vs(sξ, ξ)
v(sξ, ξ)

)
=

(
x12(1)/

(
µ1−x11(1)

)
1

1 x21(1)/
(
µ−1

1 −x22(1)
)
)(

y11

y21

)

and (3.11), it follows that

|vs(sξ, ξ)|+ |v(sξ, ξ)| ≥ C(|µ0| − ε)n0 ≥ Ceasβ
ξ ,

for some positive constants a, C. Finally, for large sξ,

sξ ∼
(

log
1
|ξ|

)α
, (3.21)

and so we have the desired inequality. The proposition is proved. ¤

3.6. Lower bound for the energy of w(sξ, x)
We return to the transformed Cauchy problem (3.2) with initial time

chosen as s0 = sξ − n0 and seek a representation for the solution at time
s = sξ in the unit ball B1(0). By the existence of a cone of dependence,
this only depends on the initial data in the ball BR(0) at s = sξ−n0, where
R = R(n0, b) ≤ Cn0 mins b(s). Set

ϕ̃(x) = eix·ξχ(x/R2), ψ̃(x) =
x12(n0)

µn0 − x11(n0)
eix·ξχ(x/R2) (3.22)

to be the data at s = s0, where χ(x) is a smooth cut-off function which is
identically 1 on |x| < 1. By the uniqueness of solutions to strictly hyperbolic
equations, the solution can be represented in the cone of dependence, and
therefore in B1(0) at s = sξ, by

w = w(s, x) = eix·ξv(s, ξ);
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here v(s, x) is the solution to (3.16) at time s. Use w(sξ, x, ξ) = eix·ξv(sξ, ξ)
to denote this solution. Then the following lower bound holds for w:

‖∇xw(sξ, ·)‖Lq + ‖ws(sξ, ·)‖Lq

≥ ‖∇xw(sξ, ·)‖Lq(B1(0)) + ‖ws(sξ, ·)‖Lq(B1(0))

= (|ξ||v(sξ, ξ)|+ |vs(sξ, ξ)|)meas(B1(0))1/q

≥ C|ξ| exp
(
a
(
log

1
|ξ|

)γ
)
, (3.23)

where Lq = Lq(Rn).

3.7. Lower bound for the energy of u(τξ, x)
Finally, we return to the original problem (1.8).

Set t0 = t(s0) = t(sξ−n0) = e(sξ−n0)1/α−e3 and choose the following initial
data:

ϕ(x)=
1√

τ(s(t0))
eix·ξχ(x/R2) =

1
σ(t0)

eix·ξχ(x/R2), (3.24)

ψ(x)=
(√

τ(s(t0))
x12(n0)

µn0 − x11(n0)
− τ ′(s(t0))

2
√
τ(s(t0))

)
eix·ξχ(x/R2)

=
(
σ(t0)

x12(n0)
µn0 − x11(n0)

− σ′(t0)
σ(t0)2

)
eix·ξχ(x/R2), (3.25)

where σ(t) is as in Theorem 1.2. Here we have taken into account (3.1) and
(3.22). Now, by (3.23), the energy defined in Theorem 1.2 for u = u(t, x)

at t = τξ := t(sξ) = es
1/α
ξ − e3 can be estimated as follows:

E(u)(τξ)
∣∣
Lq =

∥∥∥σ(τξ)∇xu(τξ, ·)
∥∥∥

Lq
+

∥∥∥ 1
σ(τξ)2

∂t

(
u(t, ·)σ(t)

)∣∣
t=τξ

∥∥∥
Lq

=‖∇xw(sξ, ·)‖Lq +‖ws(sξ, ·)‖Lq

≥C|ξ|exp
(
a
(
log

1
|ξ|

)γ
)

≥C exp
[−c1s1/α

ξ +ac2s
β
ξ

]

=C exp
[−c1 log(τξ +e3)+ac2

(
log(τξ +e3)

)γ]
, (3.26)

and 1 < γ < α− 1; here we have used (3.21) in the final equality. If we now
assume (1.9) holds with the initial data (3.24), (3.25), then, for 1 < r <

γ < α− 1,
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E(u)(τξ)
∣∣
Lq ≤ C1 exp

(
C2(log(τξ + e3))r

)
E(u)(t0)

∣∣
W M,p

= C1e
C2(log(τξ+e3))r

(
1 +

x12(n0)
µn0 − x11(n0)

)
‖eix·ξχ(x/R2)‖W M+1,p ,

which contradicts (3.26) since r < γ. The proof of Theorem 1.2 is complete.
¤

4. Concluding remarks

Remark 4.1 We observe that the Lp-Lq estimate from Corollary 2.15
derived for the cases very slow, slow, fast oscillations is of the form

E(u)(t)
∣∣
Lq ≤ C(1 + t)s0E(u)(t0)

∣∣
W Np,p (4.1)

with a positive constant C independent of t0 ≥ T and t ≥ t0. However,
Theorem 1.2 states that in the case of very fast oscillations we cannot have
an estimate of the form

E(u)(t)
∣∣
Lq ≤ C1 exp(C2(log(t+ e3))r)E(u)(t0)

∣∣
W Np,p (4.2)

for 1 < r < α− 1 with positive constants C1 and C2 independent of t0 ≥ T
and t ≥ t0. Comparing (4.1) with (4.2) we have indeed an essential change
in the behaviour of solutions to (1.5) from fast to very fast oscillations.

Remark 4.2 A special case of (4.2) is the L2-L2 estimate

E(u)(t)
∣∣
L2 ≤ C1 exp(C2(log(t+ e3))r)E(u)(0)

∣∣
L2

which cannot hold for 1 < r < α− 1. But the critical case r = α− 1 cannot
be excluded. In the case of very fast oscillations this critical L2-L2 estimate
is much better than the L2-L2 estimate we obtain by applying Gronwall’s
inequality.

Remark 4.3 If we apply the change of variables t̃ = Λ(t) :=
∫ t
0

√
a(τ)dτ

to (1.5), then we obtain the damped wave equation

∂2
t̃
u−∆u+ b(t̃)∂t̃u = 0 with b(t̃) =

(
√
a)′(Λ−1(t̃))
a(Λ−1(t̃))

.

Choosing a(t) = 2 + sin((log(t+ e3))α) with α ∈ [1, 2] we get

∂2
t̃
u−∆u+ b(t̃)∂t̃u = 0
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with b(t̃) =
α cos((log(Λ−1(t̃) + e3))α)(log(Λ−1(t̃) + e3))α−1

a3/2(Λ−1(t̃))(Λ−1(t̃) + e3)
.

The term b(t̃) represents an oscillating dissipation with changing sign and
with asymptotic behaviour O((log(t̃+ e3))α−1/t̃) for t̃→∞. Here we have
used t̃ ∼ t. The Lp-Lq decay estimate from Theorem 1.1 implies that

‖(ut̃(t̃, · ), ∇xu(t̃, · ))‖Lq ≤ C(1 + t̃)−
n−1

2
( 1

p
− 1

q
)+s0‖(∇xϕ,ψ)‖W Np,p

for the solution to the Cauchy problem

∂2
t̃
u−∆u+ b(t̃)∂t̃u = 0, u(0, x) = ϕ(x), ∂t̃u(0, x) = ψ(x).

Thus, we have an example for Lp-Lq decay estimates for solutions to the
Cauchy problem for damped wave equations with non-monotone weak dis-
sipation changing its sign. This result stimulates further considerations,
generalizing the results of [17] and [9] for damped wave equations with
monotone weak dissipation.

Remark 4.4 More general models which will be considered in forthcom-
ing papers are utt− a(t)∆u+m(t)u = 0 or utt− a(t)∆u+ b(t)ut = 0, where
a = a(t) is a bounded coefficient. The following questions appear:
• How do the mass or dissipation change the classification of oscillations?
• How can we derive statements like those of Theorems 1.1 and 1.2 for

solutions to more general models? How do we feel weak damping or
overdamping?

Remark 4.5 The results of this paper complete the picture about the
theory of degenerate hyperbolic problems [7]. This picture can be presented
now in the following form:

strictly hyperbolic theory
with non-Lipschitz continuous

coefficients
←→

Lp-Lq decay estimates
for wave equations with

bounded speed of propagation

l l

weakly hyperbolic theory ←→
Lp-Lq decay estimates
for wave equations with

increasing in time coefficients
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Remark 4.6 The construction of counterexamples via Floquet’s theory,
as used in the proof of Theorem 1.2, can be adapted to constructing blow-up
solutions for related nonlinear Cauchy problems. This is done in [18], where
it is shown that, for carefully chosen initial data, no global solution exists
to the Cauchy problem (α ∈ (−∞, −1))

∂2
t u− exp(2tα)b(t)2∆u+ (∂tu)2 − exp(2tα)b(t)2

n∑

j=1

(∂xju)
2 = 0,

u(1, x) = ϕ(x), ut(1, x) = ψ(x).





(Here b(t) is as in the Introduction.)
This result shows us that it is reasonable to use the results of the present
paper to study the global existence of small data solutions. We have the
following two conjectures:
• Conjecture 1 (Floquet effect).

In general, we have no global existence of small data solutions for the
Cauchy problem

∂2
t u− (2 + sin(2π(log(t+ e3))α))2∆u+ (∂tu)2−

(2 + sin(2π(log(t+ e3))α))2
n∑

j=1

(∂xju)
2 = 0,

u(1, x) = ϕ(x), ut(1, x) = ψ(x),





when α > 2.
• Conjecture 2 (Lp-Lq decay estimates).

We have the global existence of small data solutions for the Cauchy
problem

∂2
t u− (2 + sin(2π(log(t+ e3))α))2∆u+ (∂tu)2−

(2 + sin(2π(log(t+ e3))α))2
n∑

j=1

(∂xju)
2 = 0,

u(1, x) = ϕ(x), ut(1, x) = ψ(x),





when α ≤ 2; or, more generally, for the Cauchy problem

∂2
t u− a(t)∆u+ (∂tu)2 − a(t)

n∑

j=1

(∂xju)
2 = 0,

u(1, x) = ϕ(x), ut(1, x) = ψ(x),
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when a(t) satisfies the assumption (1.6) for γ ∈ [0, 1].
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