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Contractivity and global stability

for discrete models of Lotka-Volterra type

Yoshiaki Muroya
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Abstract. Consider the following discrete model of nonautonomous Lotka-Volterra

type:
8
>>>>>><
>>>>>>:

Ni(p + 1) = Ni(p) exp

8
<
:ri(p)(ci(p)− bi(p)Ni(p)−

nX

j=1

mX

l=0

bl
ij(p)Nj(p− l))

9
=
; ,

p = 0, 1, 2, . . . , 1 ≤ i ≤ n,

Ni(0) = Ni0 > 0 and Ni(−l) = Ni(−l) ≥ 0, 1 ≤ i ≤ n, 1 ≤ l ≤ m,

where
(

ri(p) > 0, for p ≥ 0, lim inf
p→∞ ri(p) > 0,

bi(p) > 0, b0ii(p) = 0, 1 ≤ i ≤ n, bl
ij(p) ≥ 0, 1 ≤ i ≤ j ≤ n, 0 ≤ l ≤ m.

In this paper, to the above discrete system, we establish two type sufficient conditions

that ensure the ”contractivity” of solutions which are sufficient conditions of the global

asymptotic stability of system. This is an extension of the former work (2002, J. Math.

Anal. Appl. 270, 602–635) for n = 1 to n ≥ 2. In particular, for autonomous case of the

above system, the sufficient condition for the global asymptotic stability of the positive

equilibrium offered by Wang et al. (2002, J. Math. Anal. Appl. 264, 147–169), is proved

to satisfy this contractivity of the positive equilibrium.

Key words: contractivity; global asymptotic stability; discrete model of Lotka-Volterra

type.

1. Introduction

In this paper, we consider the following discrete model of nonautono-
mous Lotka-Volterra type:
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



Ni(p + 1) = Ni(p) exp
{

ri(p)
(

ci(p)− bi(p)Ni(p)

−
n∑

j=1

m∑

l=0

bl
ij(p)Nj(p− l)

)}
,

1 ≤ i ≤ n, p ≥ 0,

Ni(0) = Ni0 > 0 and Ni(−l) = Ni(−l) ≥ 0,

1 ≤ i ≤ n, 1 ≤ l ≤ m,

(1.1)

where 



ri(p) > 0 for p ≥ 0, lim inf
p→∞ ri(p) > 0,

bi(p) > 0, b0
ii(p) = 0, 1 ≤ i ≤ n, bl

ij(p) ≥ 0,

1 ≤ i ≤ j ≤ n, 0 ≤ l ≤ m.

(1.2)

For autonomous cases in the above discrete population models, there
are several literatures. Hofbauer, Hutson and Jansen [3] have shown that
the existence of positive equilibrium in the system guarantee its permanence
for the case of n = 2 and m = 0 that the system is a prey-predator system
or the two species are competitive. But if the system is cooperative, Lu and
Wang [4] showed that it can not be permanent in any case. Lu and Wang
[4] gave sufficient conditions for permarence for no delay case m = 0, and
later, Saito, Ma and Hara [10] and Saito, Hara and Ma [9] generalized them
and for the special system that n = 2 and any m ≥ 0, but for each j, there
is only one ji such that

bji
ij 6= 0, and bk

ij = 0, for k 6= ji, 1 ≤ i, j ≤ 2,

established necessary and sufficient conditions for permanence.
For n = 1 and m ≥ 1, Muroya [5, 7] established sufficient conditions of
”contractivity” (see Eq. (1.3)) for solutions of the positive equilibrium of
system (1.1).

On the other hand, for nonautonomous cases of n ≥ 2 under the as-
sumption that the system is persistent, Wang and Lu [12] for m = 0 and
Wang et al. [13] for m ≥ 0, established sufficient conditions that ensure
that the discrete system is globally asymptotically stable, and in the case
of prey-predator and competitive system for n = 2, they gave sufficient
conditions that the system is persistent. For the cases n ≥ 2 and m ≥ 0,
Muroya [6] established sufficient conditions for the persistence and global
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asymptotic stability of system (1.1) which improved the results of Wang
et al. [13]. Muroya [8] offered sufficient conditions for the permanence of
system (1.1).
For a discrete model of Lotka-Volterra competitive system for two species,
using some kind of contractivity conditions, Chen and Zhou [2] obtained
another type sufficient condition for global asymptotic stability of a positive
periodic solution for a discrete periodic Lotka-Volterra competitive system
(see Eq. (2.38)).

If for a solution {N∗
i (p)}n

i=1 of system (1.1), there exists a constant 0 ≤
k ≤ 1 such that for any solution {Ni(p)}n

i=1 of system (1.1) and a sufficiently
large p ≥ 0,

max
1≤i≤n

|Ni(p + 1)−N∗
i (p + 1)|

≤ k max
{|Nj(p− l)−N∗

j (p− l)|
∣∣ 1 ≤ j ≤ n, 0 ≤ l ≤ m

}
,

(1.3)

then we refer that for a sufficiently large p ≥ 0, solutions of system (1.1)
hold the contractivity to the solution {N∗

i (p)}n
i=1.

In particular, if k < 1, then we say that for a sufficiently large p ≥ 0, solu-
tions of system (1.1) hold the strong contractivity to the solution {N∗

i (p)}n
i=1.

Note that the contractivity implies that the system is persistent and any
solution of system is uniformly stable. Moreover, the strong contractiv-
ity implies that any solution of system is globally attractive, and hence is
globally asymptotically stable.

In this paper, for the above discrete system, we establish sufficient con-
ditions that ensures the strong contractivity to some solution {N∗

i (p)}n
i=1

and hence global asymptotic stability of the system (see Theorem 1.1). In
particular, for autonomous case in (1.1), we show that for the condition
offered by Wang et al. [13], solutions of system (1.1) hold the strong con-
tractivity to the positive equilibrium of (1.1) (see Theorem 2.1). Moreover,
we obtain an extended result of Muroya [5] for n = 1 to n ≥ 2 (see Theorem
1.2) and Chen and Zhou [2] for n = 2 and m = 0 to n ≥ 2 and m ≥ 0 (see
Theorem 2.2).

For a given sequence {g(p)}∞p=0, we set
{

gM = sup{g(p) | p = 0, 1, 2, . . . .},
gL = inf{g(p) | p = 0, 1, 2, . . . .}. (1.4)

Put
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



ÃL = diag(b1L, b2L, . . . , bnL), B̃−
L = [b̃−ijL], ˆ̃BM = [ˆ̃bijM ], and

R̄ = diag(r̄1, r̄2, . . . , r̄n) are n× n matrices

with bl+
ij (p) = max(bl

ij(p), 0)bl−
ij (p) = min(bl

ij(p), 0),

b̃+
ij(p) =

m∑

l=0

bl+
ij (p), b̃−ij(p) =

m∑

l=0

bl−
ij (p), ˆ̃

bij(p) =
m∑

l=0

|bl
ij(p)|,

1≤ i, j ≤ n,

r̄i = sup
p≥0

ri(p), and ri = inf
p≥0

ri(p), 1≤ i≤ n, p≥ 0,

(1.5)

and




f̃(t; r) =
{

(ert − 1)/t, t 6= 0,

r, t = 0,

f(t; r) = (1− t)f̃(t; r).

(1.6)

For two solutions {Ni(p)}n
i=1 and {N∗

i (p)}n
i=1 of system (1.1), put





ti(p) = ci(p)− bi(p)Ni(p)−
n∑

j=1

m∑

l=0

bl
ij(p)Nj(p− l),

t∗i (p) = ci(p)− bi(p)N∗
i (p)−

n∑

j=1

m∑

l=0

bl
ij(p)N∗

j (p− l),

ki(p) = Ni(p)f̃(ti(p)− t∗i (p); ri(p)), 1 ≤ i ≤ n, p ≥ 0.

(1.7)

We shall establish the following results to the system (1.1).

Theorem 1.1 Assume that there exists a solution {N∗(p)}n
i=1 of (1.1) and

a positive constant k ≤ 1 such that for 1 ≤ i ≤ n,




c̄iM > 0, r̄ibiM N̄i ≤ 1, r̄i

(
ciM −

i−1∑

j=1

b̃−ijLN̄j − inf
p≥0

t∗i (p)
)
≤ 1,

and

N if̃(qi; ri) ≥ {1− k exp(−r̄it
∗
i (p))}

/ (
bi(p)−

n∑

j=1

ˆ̃
bij(p)

)
,

(1.8)

where for i = 1, 2, . . . , n,
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



c̄iM = ciM −
i−1∑

j=1

b̃−ijLN̄j , N̄i =
c̄iM

biL
,

b̃iM = biM +
m∑

l=1

bl
iiM exp

{
− klr̄i

(
ciL − biM N̄i

−
i−1∑

j=1

b−ijMN j −
n∑

j=1

b+
ijM N̄j

)}
,

Ñ i =
(

ciL −
i−1∑

j=1

b−ijMN j −
∑

j 6=i

b+
ijM N̄j

) /
b̃iM ,

N i = min
(

Ñ i, N̄i exp
{

r̄i

(
ciL −

i−1∑

j=1

b−ijMN j

−
∑

j 6=i

b+
ijM N̄j − b̃iM N̄i

)})
> 0,

qi = min
{

ciL − biM N̄i −
n∑

j=1

b+
ijN̄j − sup

p≥0
t∗i (p), 0

}
,

(1.9)

and

ÃL − ˆ̃BM is an M matrix. (1.10)

Then, for a sufficiently large p ≥ 0, solutions of system (1.1) hold the con-
tractivity to the solution {N∗

i (p)}n
i=1.

Moreover, if k < 1, then for a sufficiently large p ≥ 0, solutions of system
(1.1) hold the strong contractivity and

lim
p→∞(Ni(p)−N∗

i (p)) = 0, 1 ≤ i ≤ n. (1.11)

For nonautonomous case of (1.1), an example is given (see Example
2.1).

If each ci(p), bi(p) and bl
ij(p) in (1.1) are constants and there exists

a unique positive equilibrium N∗ = (N∗
1 , N∗

2 , . . . , N∗
n)T of (1.1), then for

{N∗
i (p)}n

i=1 = {N∗
i }n

i=1, t∗i (p) = 0 and the condition (1.8) becomes a simpler
condition as follows.

Theorem 1.2 Assume that each ci(p), bi(p) and bl
ij(p) in (1.1) are con-

stants, that is, ci(p) = ci, bi(p) = bi and bl
ij(p) = bl

ij, and there exists the
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positive equilibrium N∗ = (N∗
1 , N∗

2 , . . . , N∗
n)T of (1.1) and suppose that

ci −
i−1∑

j=1

b̃−ijÑj > 0, and r̄i

(
ci −

i−1∑

j=1

b̃−ijÑj

)
≤ 1,

1 ≤ i ≤ n,

(1.12)

and

ÃL − ˆ̃BM is an M matrix. (1.13)

Then, for a sufficiently large p ≥ 0, solutions of system (1.1) hold the strong
contractivity and the positive equilibrium N∗ = (N∗

1 , N∗
2 , . . . , N∗

n)T of sys-
tem (1.1) is globally asymptotically stable.

Theorem 1.2 is an extension of Muroya [7, Theorem 1.1] for n = 1 to
n ≥ 1.
Under the strong persistence of system (1.1) (that is, lim infp→∞Ni(p) >

0, 1 ≤ i ≤ n), Wang et al. [13] proved that system (1.1) is globally asymp-
totically stable, and for autonomous case, the condition becomes Eq. (1.12),
but nothing says about the strong contractivity, because the proof depends
on Lyapunov-like function method (see also Muroya [6]).

Let r̂(α) be a strictly monotone increasing function of α on the interval
(−1, 1) such that there exists t̂(α) < 1 and

{
f(t̂(α); r̂(α)) = 2/(1− α),

f ′(t̂(α); r̂(α)) = 0.
(1.14)

The following theorem is an extension of Muroya [7, Theorem 2.1] for
n = 1 to the system (1.1) for n ≥ 1.

Theorem 1.3 Assume that each ci(p), bi(p) and bl
ij(p) in (1.1) are con-

statnts, that is, ci(p) = ci, bi(p) = bi, bl
ij(p) = bl

ij, and




bi >
n∑

j=1

ˆ̃
bij , and

r̄i ≤ r̂

(
−

( n∑

j=1

ˆ̃
bij

) /
bi

) / (
ci −

i−1∑

j=1

b̃−ijN̄j

)
, 1 ≤ i ≤ n,

(1.15)

where for −1 < α < 1, the function r̂(α) is defined in Muroya [5, Lemma
2.2] (see Lemmas 2.6 and 2.7). Then for a sufficiently large p ≥ 0, solutions
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of system (1.1) hold the contractivity.
Moreover, for a sufficiently large p ≥ 0, solutions of system (1.1) hold the
strong contractivity and the positive equilibrium N∗ = (N∗

1 , N∗
2 , . . . , N∗

n)T

of system (1.1) is globally asymptotically stable.

Since

lim
α→−1+0

r̂(α) = 0, r̂(0) = 2

and r̂(α) is a strictly monotone increasing function on (−1, 0] (see Muroya
[5, Lemma 2.2]), by

−1 < −
∑n

j=1
ˆ̃
bij

bi
≤ 0, 1 ≤ i ≤ n,

there are cases that

1 < r̂

(
−

∑n
j=1

ˆ̃
bij

bi

)
≤ 2

(see Uesugi et al. [11, Fig. 1]), which imply that there are cases such that
the condition (1.15) improve the condition (1.12) (see Example 2.2).
By using a Lyapunov-like discrete function, Muroya [6, 8] obtained sufficient
conditions that system (1.1) is globally asymptotically stable. But these
conditions are different from the condition (1.15) (see Muroya [8, Corollary
2.2 and Remark 2.4]).

The organization of this paper is as follows. In Section 2, we study con-
ditions of contractivity and give proofs of Theorems 1.1-1.3. Moreover, ap-
plying the same technique in Chen and Zhou [2] to (1.1), we obtain another
contractivity (see Theorem 2.1). Examples are also given (see Examples
2.1-2.3).

2. Conditions of contractivity

We get a basic lemma (see Muroya [5, Lemma 3.1]).

Lemma 2.1 For two solutions {Ni(p)}n
i=1 and {N∗

i (p)}n
i=1 of system (1.1),

we have
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Ni(p + 1)−N∗
i (p + 1)

=





exp(ri(p)t∗i (p))
{(

1− bi(p)Ni(p)
exp(ri(p)(ti(p)− t∗i (p)))− 1

ti(p)− t∗i (p)

)

×(Ni(p)−N∗
i (p))−Ni(p)

exp(ri(p)(ti(p)− t∗i (p)))− 1
ti(p)− t∗i (p)

×
n∑

j=1

m∑

l=0

bl
ij(p)(Nj(p− l)−N∗

j (p− l))
}

,

if ti(p)− t∗i (p) 6= 0,

exp(ri(p)t∗i (p))
{

(1− bi(p)Ni(p)ri(p))(Ni(p)−N∗
i (p))

−Ni(p)ri(p)
n∑

j=1

m∑

l=0

bl
ij(p)(Nj(p− l)−N∗

j (p− l))
}

,

if ti(p)− t∗i (p) = 0,

(2.1)

where ti(p) and t∗i (p) are defined by (1.7).

Proof. From Eqs. (1.1) and (1.7), we have
{

Ni(p + 1) = Ni(p) exp(ri(p)ti(p)),

N∗
i (p + 1) = N∗

i (p) exp(ri(p)t∗i (p)).

Then, for ti(p)− t∗i (p) 6= 0,

Ni(p + 1)−N∗
i (p + 1)

= exp(ri(p)t∗i (p)){(Ni(p)−N∗
i (p))

+ Ni(p)
exp(ri(p)(ti(p)− t∗i (p)))− 1

ti(p)− t∗i (p)
(ti(p)− t∗i (p))}

= exp(ri(p)t∗i (p))
{(

1−Ni(p)
exp(ri(p)(ti(p)− t∗i (p)))− 1

ti(p)− t∗i (p)
bi(p)

)

× (Ni(p)−N∗
i (p))−Ni(p)

exp(ri(p)(ti(p)− t∗i (p)))− 1
ti(p)− t∗i (p)

×
n∑

j=1

m∑

l=0

bl
ij(p)(Nj(p− l)−N∗

j (p− l))
}

.

Similarly, for ti(p)− t∗i (p) = 0, we have Eq. (2.1). ¤
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Applying Lemma 2.1, we obtain the following basic result on the con-
tractivity for solutions of system (1.1).

Lemma 2.2 If for any solution {Ni(p)}n
i=1, there exists a solution

{N∗
i (p)}n

i=1, a positive constant k ≤ 1 and a nonnegative integer p0 such
that for p ≥ p0, and 1 ≤ i ≤ n,





(
bi(p)−

n∑

j=1

ˆ̃
bij(p)

)
ki(p) ≥ 1− k exp (−ri(p)t∗i (p)),

if bi(p)ki(p) ≤ 1,(
bi(p) +

n∑

j=1

ˆ̃
bij(p)

)
ki(p) ≤ k exp (−ri(p)t∗i (p)) + 1,

if bi(p)ki(p) ≥ 1,

(2.2)

then solutions of system (1.1) hold the contractivity to the solution
{N∗

i (p)}n
i=1 for p ≥ p0.

Moreover, if k < 1, then for p ≥ p0, solutions of system (1.1) hold the strong
contractivity and

lim
p→∞(Ni(p)−N∗

i (p)) = 0, 1 ≤ i ≤ n.

Proof. By (2.1) and (2.2), we have that for any solution {Ni(p)}n
i=1 and

p ≥ p0,

|Ni(p + 1)−N∗
i (p + 1)|

≤ exp (ri(p)t∗i (p))
(
|1− bi(p)ki(p)|+

n∑

j=1

ˆ̃
bij(p)ki(p)

)

×max
{|Nj(p− l)−N∗

j (p− l)|
∣∣ 1 ≤ j ≤ n, 0 ≤ l ≤ m

}

≤ k max
{|Nj(p− l)−N∗

j (p− l)|
∣∣ 1 ≤ j ≤ n, 0 ≤ l ≤ m

}
,

from which we obtain the conclusion. ¤

For the permanence of the system (1.1)-(1.2), Theorem 2.1 in Muroya
[8] offer upper bounds N̄i of lim supp→∞Ni(p), 1 ≤ i ≤ n and lower bounds
N i > 0 of lim infp→∞Ni(p), 1 ≤ i ≤ n.

Lemma 2.3 (See Muroya [8, Theorem 2.1]) Under the condition

(ÃL + B̃−
L )−1cM > 0, (2.3)
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for any solutions {Ni(p)}n
i=1 of the system (1.1)-(1.2), it holds that

lim sup
p→∞

Ni(p) ≤ N̄i, 1 ≤ i ≤ n, (2.4)

where




for i = 1, 2, . . . , n,

c̄iM = ciM −
i−1∑

j=1

b̃−ijLN̄j ,

N̄i =

{
c̄iM/biL, r̄ic̄iM ≤ 1,

er̄ic̄iM−1/(r̄ibiL), r̄ic̄iM > 1,

and cM = [c1M , c2M , . . . , cnM ]T .

(2.5)

Moreover, if

ciL −
i−1∑

j=1

b−ijMN j −
∑

j 6=i

b+
ijM N̄j > 0, 1 ≤ i ≤ n, (2.6)

then

lim inf
p→∞ Ni(p) ≥ N i, 1 ≤ i ≤ n, (2.7)

where




b̃iM = biM +
m∑

l=1

bl
iiM

× exp
{
−klr̄i

(
ciL − biM N̄i −

i−1∑

j=1

b−ijMN j −
n∑

j=1

b+
ijM N̄j

)}
,

Ñ i =
(

ciL −
i−1∑

j=1

b−ijMN j −
∑

j 6=i

b+
ijM N̄j

) /
b̃iM ,

N i = min
(

Ñ i, N̄i exp
{

r̄i

(
ciL −

i−1∑

j=1

b−ijMN j

−
∑

j 6=i

b+
ijM N̄j − b̃iM N̄i

)})
> 0, 1≤ i≤ n.

(2.8)

Note that if (1.8) holds, then

r̄ic̄iM ≤ r̄biM N̄i ≤ 1, 1 ≤ i ≤ n, (2.9)
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and N̄i = Ñi, 1 ≤ i ≤ n, where Ñi, i = 1, 2, . . . , n are defined by

c̄iM = ciM −
i−1∑

j=1

b̃−ijLN̄j , N̄i =
c̄iM

biL
, i = 1, 2, . . . , n, (2.10)

that is, for n-dimensional vectors Ñ = [Ñi] and cM = [ciM ],

Ñ = (ÃL + B̃−
L )−1cM . (2.11)

Now, we have the following lemma (cf. the proof of Wang and Lu [12,
Theorem 2] and Wang et al. [13]).

Lemma 2.4 Assume (2.3) and (2.6) and suppose that there exists a solu-
tion {N∗

i (p)}n
i=1 of (1.1) such that (1.8) holds. Then, it holds that for any

solution {Ni(p)}n
i=1 of (1.1) and a sufficiently large p ≥ 0,

bi(p)ki(p) ≤ 1, 1 ≤ i ≤ n. (2.12)

Proof. Consider the function

g(x) =

{
(ex − 1)/x, x 6= 0,

1, x = 0.

Then,

g′(x) =

{
(1/x2){(x− 1)ex + 1}, x 6= 0,

1/2, x = 0,

and for

h(x) = (x− 1)ex + 1, h′(x) = xex.

Then, h(x) ≥ h(0) = 0, g′(x) ≥ 0 and hence, g(x) is positive and a strictly
monotone increasing function of x on (−∞, +∞).
On the other hand, put t̄i(p) = 1− ri(p)bi(p)Ni(p). Then by Eqs. (1.7) and
(1.8), for a sufficiently large p ≥ 0,

1≥ t̄i(p)≥ 1− r̄ibiM N̄i≥ 0, ri(p)(ci(p)−
i−1∑

j=1

b̃−ij(p)N̄j − t∗i (p))≤ 1,

1≤ i≤n,

and
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ri(p)(ti(p)− t∗i (p))− t̄i(p)≤
{

ri(p)(ci(p)−
i−1∑

j=1

b̃−ij(p)N̄j− t∗i (p))−1
}

− ri(p)
i−1∑

j=1

m∑

l=0

bl−
ij (p)(Nj(p− l)− N̄j)

≤0.

Thus,

bi(p)ki(p)=ri(p)bi(p)Ni(p)g(ri(p)(ti(p)− t∗i (p)))

=(1− t̄i(p))g(t̄i(p))

+ (1− t̄i(p))
{
g
(
ri(p)(ti(p)− t∗i (p))

)− g(t̄i(p))
}

≤(1− t̄i(p))g(t̄i(p)).

Now, consider the following function

p(x) = (1− x)
ex − 1

x
, for 0 < x ≤ 1.

Because p′(x) = (1/x2){1− (x2 − x + 1)ex} and for q(x) = (x2 − x + 1)ex,
q′(x) = x(x + 1)ex, we have that sup0<x≤1 p(x) = 1. Thus, we obtain that
for a sufficiently large p ≥ p0, (2.12) holds. Hence, we complete the proof.

¤

On the contractivity for solutions of system (1.1), we offer the following
sufficient conditions for (2.2) in Lemma 2.2.

Lemma 2.5 In addition to the conditions in Lemma 2.4, assume that
there exists a solution {N∗

i (p)}n
i=1 such that for any solution {Ni(p)}n

i=1 of
(1.1), (1.8) and (1.10) hold. Then, for a sufficiently large p ≥ 0, solutions of
system (1.1) hold the contractivity to the solution {N∗

i (p)}n
i=1. Moreover, if

k < 1, then for p ≥ p0, solutions of system (1.1) hold the strong contractivity
and limp→∞(Ni(p)−N∗

i (p)) = 0, 1 ≤ i ≤ n.

Proof. Since by (1.10), ÃL− ˆ̃BM is an M matrix, we may assume, without

loss of generality, that ÃL− ˆ̃BM is diagonally dominant matrix. Therefore,
we may assume that for any p ≥ 0,

bi(p) >
n∑

j=1

ˆ̃
bij(p), 1 ≤ i ≤ n. (2.13)
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By Lemma 2.4, bi(p)ki(p) ≤ 1. If t∗i (p) ≤ 0, then 1− exp(−ri(p)t∗i (p)) ≤ 0.
Thus, by (2.13), the first equation of (2.2) holds for some constant k ≤ 1.
Suppose that t∗i (p) > 0. Since

ki(p) = Ni(p)f̃(ti(p)− t∗i (p); ri(p)) ≥ N if̃(q̄i; ri),

by (1.8), we have
(

bi(p)−
n∑

j=1

ˆ̃
bij(p)

)
ki(p)≥

(
bi(p)−

n∑

j=1

ˆ̃
bij(p)

)
N if̃(q̄i; ri)

≥ 1− k exp(−r̄it
∗
i (p)).

Thus, the first equation of (2.2) holds and hence, by Lemmas 2.2 and 2.4,
we obtain the conclusion. ¤

From Lemmas 2.4 and 2.5, we establish sufficient conditions that so-
lutions of (1.1) have the contractivity and the positive equilibrium N∗ =
(N∗

1 , N∗
2 , . . . , N∗

n)T of (1.1) is globally asymptotically stable.

Proof of Theorem 1.1. By Lemmas 2.4 and 2.5, we get the conclusion. ¤

An example of nonautonomous case in (1.1) which satisfies condition
(2.2), is given in Example 2.1.

Proof of Theorem 1.2. We take N∗
i (p) = N∗

i , 1 ≤ i ≤ n. Then, each

t∗i (p) = 0. Since we may assume biL >
∑n

j=1
ˆ̃
bij and qi > −∞, 1 ≤ i ≤ n,

there exists a positive constant k < 1 such that




N if̃(qi; ri) ≥ (1− k)
/ (

bi(p)−
n∑

j=1

ˆ̃
bij(p)

)
,

qi = min
{

ciL − biM N̄i −
n∑

j=1

b+
ijN̄j , 0

}
.

Hence, (1.8) becomes (1.12), and by Theorem 1.1, we obtain the conclusion.
¤

Theorem 1.2 is an extension of Muroya [7, Theorem 1.1] for n = 1 to
n ≥ 1.

For preparations to prove Theorem 1.3, we provide more three lemmas
(see Muroya [5, Lemmas 2.1, 2.2 and 2.7] and their proofs).
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Lemma 2.6 Under the conditions that 0 < Ŷ < α for 0 < α < 1, and
α < Ŷ < 0 for −1 < α < 0, there exists a unique solution Ŷ = Ŷ (α) of the
following equation:

1
1− Ŷ 2

= g(Ŷ ;α), −1 < α < 1, (2.14)

where

g(Y ;α) =





1
2(α + Y )

ln
(1 + α)(1 + Y )
(1− α)(1− Y )

, Y 6= −α

1
1− α2

, Y = −α.

(2.15)

In particular, Ŷ (0) = 0 and

lim
α→0

Ŷ (α) = Ŷ (0). (2.16)

Remark 2.1 Note that for 0 < |α| < 1, the equation 1/(1−Y 2) = g(Y ;α)
has another solution Ŷ = −α, but this solution does not satisfy the condi-
tions 0 < Ŷ < α for 0 < α < 1, and α < Ŷ < 0 for −1 < α < 0.

Lemma 2.7 For −1 < α < 1, let Ŷ (α) be defined in Lemma 2.6 and put

r̂(α) =
2(1 + α)

1− Ŷ 2(α)
and t̂(α) =

α + Ŷ (α)
1 + α

. (2.17)

Then, r̂(α) is a strictly monotone increasing function of α on the interval
(-1, 1), and

lim
α→−1+0

r̂(α) = 0 and lim
α→1−0

r̂(α) = +∞, (2.18)

and hence,

lim
α→−1+0

Ŷ (α) = −1 and lim
α→1−0

Ŷ (α) = 1. (2.19)

Moreover,




t̂(α) < 1, f ′(t̂(α); r̂(α)) = 0,

f ′(t; r̂(α)) > 0, for −∞ < t < t̂(α) and

f ′(t; r̂(α)) < 0, for t̂(α) < t < 1.
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Hence, for any 0 < r ≤ r̂(α), we have
{

f(t; r) ≤ f(t; r̂(α)) ≤ f(t̂(α); r̂(α)) = 2/(1− α), for t < 1,

f(t; r̂(α)) < 2/(1− α), for t < 1 and t 6= t̂(α).
(2.20)

Note that for −1 < α < 1, r̂(α) is defined by (1.14).

Lemma 2.8 For βγ > 0, put

˜̃
f(x; r, β, γ) = x

er(β−γx) − 1
β − γx

. (2.21)

Then, for t = 1− (γ/β)x and r̃ = βr, we have

˜̃
f(x; r, β, γ) =

1
γ

f(t; r̃). (2.22)

Proof of Theorem 1.3. Put

r = ri(p), β = ci −
i−1∑

j=1

b̃−ijN̄j , γ = bi and r̃ = βr.

Then, by (1.15),

r̃ ≤ r̂

(
−

( n∑

j=1

ˆ̃
bij

) /
γ

)
, and r̂−1(r̃) ≤ −

( n∑

j=1

ˆ̃
bij

) /
γ.

Since

ti(p) ≤
(

ci −
i−1∑

j=1

b̃−ijN̄j

)
− biNi(p) = β − γNi(p)

and by Lemma 2.7,

f(t, r̃) ≤ 2
1− r̂−1(r̃)

, for any t < 1,

by Lemma 2.8, we have that

ki(p)=Ni(p)f̃(ti(p); ri(p)) ≤ ˜̃
f(Ni(p); r, β, γ)

=
1
γ

f

(
1− γ

β
Ni(p); r̃

)
≤ 1

γ

2
1− r̂−1(r̃)

≤2
/ (

bi +
n∑

j=1

ˆ̃
bij

)
.
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Thus, for t∗i (p) = 0 and k = 1, we obtain the second part of (2.2) in Lemma
2.2. Moreover, if (1.15) holds, then by the assumptions, there is a positive

constant k = 1 such that for p ≥ p0, |1 − biki(p)| + (
∑n

j=1
ˆ̃
bij)ki(p) ≤ k.

Then, by (2.2),

|Ni(p + 1)−N∗
i | ≤ k max

{|Nj(p− l)−N∗
j |

∣∣ 1≤ j ≤ n, 0≤ l≤m
}
,

1≤ i≤ n.

The remained parts of theorem are similar to the proof of Theorem 3.5 in
Muroya [5]. Hence, we get the conclusion. ¤

Now, we give another contractivity condition which is an extended re-
sult of Chen and Zhou [2]. Let

Ni(p) = N∗
i (p) exp(xi(p)), 1 ≤ i ≤ n. (2.23)

then, Eq. (1.1) is equivalent to

xi(p + 1) = xi(p)− bi(p)N∗
i (p)f(xi(p))

−
n∑

j=1

m∑

l=0

bl
ij(p)N∗

j (p)f(xj(p− l)),
(2.24)

where

f(x) = ex − 1. (2.25)

Therefore,

xi(p + 1)=(1− bi(p)N∗
i (p) exp(θi(p)xi(p)))xi(p)

−
n∑

j=1

m∑

l=0

bl
ij(p)N∗

j (p) (2.26)

× exp(θj(p− l)xj(p− l)))xj(p− l),

where θi(p) ∈ [0, 1], 1 ≤ i ≤ n. Thus, similar to the proof of Theorem 3 in
Chen and Zhou [2], we obtain the following theorem.

Theorem 2.1 Assume that (2.3) and (2.6) and suppose that there exist a
solution {N∗

i (p)}n
i=1 of (1.1) and a constant λ such that

|1− bi(p)N∗
i (p)|+

n∑

j=1

m∑

l=0

|bl
ij(p)|N∗

j (p) ≤ λ < 1, 1 ≤ i ≤ n. (2.27)
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Then, for any solution {Ni(p)}n
i=1 of (1.1), solutions {ln(Ni(p)/N∗

i (p))}n
i=1

of (2.24) hold the strong contractivity to zero solution, that is,

max
1≤i≤n

∣∣∣∣ln
Ni(p + 1)
N∗

i (p + 1)

∣∣∣∣

≤ λ max
{∣∣∣∣ln

Ni(p− l)
N∗

i (p− l)

∣∣∣∣
∣∣∣∣ 1 ≤ i ≤ n, 0 ≤ l ≤ m

}
,

(2.28)

and we have

lim
p→∞(Ni(p)−N∗

i (p)) = 0, 1 ≤ i ≤ n. (2.29)

Example 2.1 Consider

N1(p + 1) = N1(p) exp{r1(p)(c1(p)− b1(p)N1(p))}, (2.30)

where

r1(p) = r1, c1(p) = 1, b1(2p) =
15
16

, b1(2p + 1) =
17
16

e−r1/16,

p = 0, 1, 2, . . ..

Assume 0 < r1 ≤ 15/17. Clearly,

r̄1 = r1 = r1, c̄1M = 1, b1L =
15
16

< b1M =
17
16

e−r1/16.

Let N∗
1 (0) = 1; then

N∗
1 (2p) = 1, N∗

1 (2p + 1) = er1/16, p = 0, 1, 2, . . . .

Then,




c̄1M = c1M = 1 > 0,

N̄1 = 1/b1L,

r̄1

(
1− inf

p≥0
t∗1(p)

)
≤ r̄1b1M N̄1 < 1,

N1 = min(1/b1M , N̄1 exp{r1(1− b1M N̄1)}),
q1 = min(1− b1M N̄1 − (1− b1L), 0) = min(b1L − b1M/b1L, 0).

By elementary caluculations, we can easily prove that there is a positive
constant k < 1 such that
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N1f̃(q1, r1) ≥
{

1− k exp
(
− r1

16

)} /
b1L.

Therefore, (1.8) with k < 1 and (1.10) hold. Hence, by Theorem 1.1, we
conclude that limp→∞(N1(p)−N∗

1 (p)) = 0.

Example 2.2 If n = 1 and r1(p) = 1, p ≥ 0, then Eq. (1.1) become the
following form:

N1(p + 1) = N1(p) exp
{

c1 − b1N1(p)−
m∑

l=1

bl
11N1(p− l)

}
,

p ≥ 0.

(2.31)

Assume bl
11 ≥ 0, 1 ≤ l ≤ m, b1 >

∑m
l=1 bl

11 ≥ 0, and

0 < c1 ≤ 1, or 0 < c1 < r̂

(
−

( m∑

l=1

bl
11

) /
b1

)
. (2.32)

Then, N∗
1 = (c1)/(b1 +

∑m
l=1 bl

11) > 0, (2.3) and (2.6) are satisfies. Thus,
by Lemma 2.3, lim supp→∞N1(p) ≤ c1/b1, and since (1.12) and (1.13) in
Theorem 1.2 or (1.15) in Theorem 1.3 are satisfied. Thus, by Theorems 1.2
or 1.3, the positive equilibrium N∗

1 of Eq. (2.31) is globally asymptotically
stable.
Note that since limα→−1+0 r̂(α) = 0, r̂(0) = 2 and r̂(α) is a strictly mono-
tone increasing function on (−1, 0] (see Muroya [5, Lemma 2.2]), by −1 <

−(
∑m

l=1 bl
11)/b1 ≤ 0, there are cases that 1 < r̂(−(

∑m
l=1 bl

11)/b1) ≤ 2, which
imply that there are cases such that the condition 0<c1 < r̂(−(

∑m
l=1 bl

11)/b1)
improves the condition 0 < c1 ≤ 1. For example, if bl

11 = 0, 1 ≤ l ≤ m,
then the former condition becomes 0 < c1 < r̂(0) = 2.
For the periodic case that m = 0 and b1 = b1(p) and c1 = c1(p) are positive
and periodic with a common positive period ω in (2.31), using a similar con-
tractivity condition, Zhou and Zou [14] obtained another sufficient condition
that a periodic solution is globally asymptotically stable if

sup
p≥0

c1(p) ≤ 1 + ln
{

2
infp≥0(c1(p)/b1(p))
supp≥0(c1(p)/b1(p))

}
≤ 1 + ln 2 < 2.

For the case that m = 0 and b1 and c1 are constants, the condition of Zhou
and Zou [14] becomes b1 > 0 and 0 < c1 ≤ 1 + ln 2. In Eq. (2.32), there are
cases that 1 + ln 2 < c1 < r̂(0) = 2 (see Uesugi et al. [11, Fig. 1]).
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Example 2.3 If n = 2, r1(p) = r2(p) = 1, p ≥ 0, and m = 0, then Eq.
(1.1) becomes the following form:

{
N1(p + 1) = N1(p) exp{c1 − b1N1(p)− b0

12N2(p)},
N2(p + 1) = N2(p) exp{c2 − b0

21N1(p)− b2N2(p)}, p ≥ 0.
(2.33)

Assume that

b1, b2 > 0, b0
12 ≥ 0, b2c1 − b0

12c2 > 0,

−b0
21c1 + b1c2 > 0 and c1, c2 > 0.

(2.34)

Then, b1b2 − b0
12b

0
21 > 0 and

N∗
1 =

b2c1 − b0
12c2

b1b2 − b0
12b

0
21

> 0, N∗
2 =

−b0
21c1 + b1c2

b1b2 − b0
12b

0
21

> 0, (2.35)

Eqs. (2.3) and (2.6) are satisfied. Hence, by Lemma 2.3, lim supp→∞Ni(p) ≤
N̄i. Moreover, since b1, b2 > 0, b1b2 − b0

12b
0
21 > 0 and r1(p) = r2(p) = 1

imply (1.12) and (1.13), by Theorem 1.2, the positive equilibrium N∗ =
(N∗

1 , N∗
2 )T is globally asymptotically stable.

Note that the necessary and sufficient conditions of permanence in Saito,
Ma and Hara [10, Corollary 1.1], are equal to Eq. (2.35).
Note that if

b1, b2 > 0 and





i) b0
12, b0

21 ≥ 0 and 0 < ci ≤ 1, i = 1, 2,

or

ii) b0
12 ≥ 0 ≥ b0

21, b1b2 > |b0
21b

0
12|,

0 < c1 ≤ 1 and − (b0
21/b1)c1 + c2 ≤ 1,

(2.36)

then Eqs. (2.34) and (2.35) are satisfied. For the system (2.33), the condi-
tions of Theorem 2 in Wang and Lu [12], are equal to Eq. (2.34) and i) of
Eq. (2.36), and the conditions of Corollary 4 in Wang and Lu [12], are equal
to Eq. (2.34) and ii) of Eq. (2.36), and hence these satisfy just the above
conditions Eqs. (2.34) and (2.36).
If

{
b1 > |b0

12|,
b2 > |b0

21|,
and

{
c1 < r̂(−|b0

12|/b1),

c2 − b0−
21 N̄1 < r̂(−|b0

21|/b2),
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where N̄1 =

{
c1/b1, c1 ≤ 1,

ec1−1/b1, c1 > 1,
(2.37)

then Eqs. (1.14) is satisfied and hence, by Theorem 1.3, we have that the
positive equilibrium N∗ of Eq. (2.33) is globally asymptotically stable.

Examples 2.2 and 2.3 show us that for the autonomous case of system (1.1),
Theorems 1.2 and 1.3 are some extended results of Muroya [5, 7], and Wang
and Lu [12, Theorem 2 and Corollary 4], and Wang et al. [13] to the cases
n ≥ 2 and m ≥ 0.
For the periodic case that ci = ci(p), bi = bi(p) and bij = bij(p), 1 ≤
i, j ≤ 2 are positive and periodic with a common positive period ω in Eq.
(2.33), Chen and Zhou [2] obtained another sufficient condition (10) in Chen
and Zhou [2, Theorem 3], which is an extension of the result of Zhou and
Zou [14] to this system. For a solution N(p) = (N1(p), N2(p))T and a
periodic solution N∗(p) = (N∗

1 (p), N∗
2 (p))T of this system, the condition

(10) in Chen and Zhou [2] implies that for some constant 0 ≤ λ < 1 and
nonnegative integer p0, it holds that for any p ≥ p0,

max
1≤i≤2

∣∣∣∣ln
Ni(p + 1)
N∗

i (p + 1)

∣∣∣∣ ≤ λ max
1≤i≤2

∣∣∣∣ln
Ni(p)
N∗

i (p)

∣∣∣∣ , (2.38)

which denotes that for p ≥ p0, solutions {ln(Ni(p)/N∗
i (p))}2

i=1 hold the
strong contractivity to zero solution of (2.24).
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