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On the new sequence spaces
which include the spaces ¢y and ¢
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Abstract. In the present paper, the sequence spaces af and al of non-absolute type
which are the BK-spaces including the spaces ¢g and ¢ have been introduced and proved
that the spaces afj and af are linearly isomorphic to the spaces ¢y and ¢, respectively.
Additionally, the a-, 8- and y-duals of the spaces af and af have been computed and

their basis have been constructed. Finally, the necessary and sufficient conditions on an

infinite matrix belonging to the classes (al : £5) and (al : ¢) have been determined and

the characterizations of some other classes have also been derived by means of a given
basic lemma, where 1 < p < co.

Key words: Sequence spaces of non-absolute type, duals and basis of a sequence space,
matrix transformations.

1. Preliminaries, background and notation

By w, we shall denote the space of all real valued sequences. Any vector
subspace of w is called as a sequence space. We shall write ¢, ¢ and ¢g
for the spaces of all bounded, convergent and null sequences, respectively.
Also by bs, cs, £1 and £,; we denote the spaces of all bounded, convergent,
absolutely and p-absolutely convergent series, respectively; where 1 < p <
co.

A sequence space A with a linear topology is called a K-space provided
each of the maps p; : A — C defined by p;(z) = z; is continuous for all
i € N; where C denotes the complex field and N = {0, 1, 2, ...}. A K-space
A is called an FK-space provided A is a complete linear metric space. An
FK-space whose topology is normable is called a BK-space (see Choudhary
and Nanda [5, pp. 272-273]).

Let A, u be two sequence spaces and A = (ant) be an infinite matrix of
real or complex numbers a,, where n, k € N. Then, we say that A defines a
matrix mapping from A into u, and we denote it by writing A : A — p, if for
every sequence = = (zx) € A the sequence Az = {(Az),}, the A-transform
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of z, is in w; where

(AZ)n = ampzr, (REN), (1.1)
k

For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to oo. By (A : u), we denote the class of all matrices A
such that A : A — pu. Thus, A € (A : p) if and only if the series on the
right side of (1.1) converges for each n € N and every « € A, and we have
Az = {(AZ)n}nen € pfor all z € A, A sequence z is said to be A-summable
to « if Az converges to o which is called as the A-limit of x.

For a sequence space A, the matriz domain Aa of an infinite matrix A
is defined by

Aa={z=(zx) €w: Az € A\}. (1.2)

We shall denote the collection of all finite subsets of N by F.

The approach constructing a new sequence space by means of the matrix
domain of a particular limitation method has been recently employed by
Wang [11], Ng and Lee [9], Malkowsky [8] and Altay and Bagar [2]. They
introduced the sequence spaces (¢,)n, in [11], (4p)c, = Xp in [9], (boo)rt =
i, cre = 7t and (co)gr = 7§ in [8] and (fp)pr = ep in [2]; where N,
Ci, R! and E” denote the Nérlund, arithmetic, Riesz and Euler means,
respectively and 1 < p < co. In the present paper, following [11], [9], [§]
and [2], we introduce the sequence spaces aj and a;, of non-absolute type and
derive some results related to those sequence spaces. Furthermore, we have
constructed the basis and computed the a-, 8- and y-duals of the spaces af
and af. Finally, we have essentially characterized the matrix classes (af, :
¢p), (af : c) and also derived the characterizations of some other classes by
means of a given basic lemma, where 1 < p < co.

2. The sequence spaces aj and af, of non-absolute type

We introduce the sequence spaces af, and af, as the set of all sequences
such that A"-transforms of them are in the spaces ¢y and ¢, respectively,
that is

n

. [ O 1 Ky, —
ao—{x—(xk)ew. ?}Lr{.lonJrlkZ_o(l—l—r ):L"k—-O}
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and

1 n
T = {:c = (zr) € w: lim . Z(l + *)ay, exists};

n—s00 7,
+ k=0

where A™ denotes the matrix A” = (a],) defined by

1 k
tr , (0<k<n)
Op = n+1
0, (k> n)

It is known by Bagar [3] that the method A" is regular for 0 < r» < 1 and
is stronger than the Cesaro method C;. We assume unless stated otherwise
that 0 < r < 1. With the notation of (1.2), we may redefine the spaces af)
and af as follows:

ag = (co) 4»r and a; =car. (2.1)

It is trivial that af C af. Define the sequence y = {yx(r)}, which will be
frequently used, as the A"-transform of a sequence = = (zy), i.e.,

.
() =3 kiqj z; (EEN). (2.2)

J=0

—

Now, we may begin with the following theorem which is essential in the
text:

Theorem 2.1 The sets af), and a] are the linear spaces with the co-ordi-
natewise addition and scalar multiplication which are the BK-spaces with
the norm ||zllay = lzllay = [|A"2 e -

Proof.  The first part of the theorem is a routine verification and so we omit
it. Furthermore, since (2.1) holds and ¢y, ¢ are the BK-spaces with respect
to their natural norms (see Maddox (7, pp. 217-218]), and the matrix A"” =
(al,) is normal, Theorem 4.3.2 of Wilansky [12, p. 61] gives the fact that
the spaces af, a. are the BK-spaces. O

Therefore, one can easily check that the absolute property does not hold
on the spaces af and aj, since ||z(la; # || | ar and ||z|la; # || |2| o for at
least one sequence in the spaces af and af; where |z| = (|zg|). This says
that afy and af, are the sequence spaces of non-absolute type.
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Theorem 2.2 The sequence spaces aj and aj, of non-absolute type are

linearly isomorphic to the spaces co and c, respectively, i.e., aj = co and
al =c.

Proof. To prove this, we should show the existence of a linear bijection
between the spaces aj and cg. Consider the transformation 7' defined, with
the notation of (2.2), from aj to ¢y by x — y = Tz. The linearity of T
is clear. Further, it is trivial that z = 0 whenever T2z = 0 and hence T is
injective.

Let y € ¢p and define the sequence z = {zx(r)} by

k .
i1+
j=k—1
Then, we have

. 1 < 5 1+7 .
{0 3 07} - -0

which says us that x € af. Additionally, we observe that

n i

||$||aT—iuP ntl Z(l—i_r%)j;l(_l) 1%
=sup ‘yn‘ = [|yllep < 00
neN

Consequently, we see from here that 7" is surjective and is norm preserving.
Hence, T is a linear bijection which therefore shows us that the spaces ag
and ¢g are linearly isomorphic, as was desired.

It is clear here that if the spaces aj and ¢y are respectively replaced by
the spaces af, and c, then we obtain the fact that a] = c. This completes
the proof. O

Now, we may give the theorem on the inclusion relations concerning
with the spaces aj and ag.

Theorem 2.3 Although the inclusions co C aj and ¢ C ai, strictly hold,
neither of the spaces aj and £, includes the other one.

Proof. 'To prove the validity of the inclusion co C af, let us take any y €
cp. Then, bearing in mind the regularity of the method A™ we immediately
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observe that A"y € co which means that y € afj. Hence, the inclusion ¢y C
af holds. Furthermore, let us consider the gap sequence u = {uy(r)} defined
by

3
J@p (k=m% m=0,1,2,..)
up(r) = 147 (2.3)
0, (k#m3, m=0,1,2,...)

for all £ € N. Then, since

n

> @+ rFyu(r)
k=0

(4 u)‘n:n +1
1 ~ m(m+1)

3 3
= =——— (m°<n<(m+1)°, meN),
nt 14" 2nt 1)

ATu € co which implies that v is in af but not in ¢g. This shows that the
inclusion cg C af is strict. By the similar discussion, one can see that the
strict inclusion ¢ C af, also holds.

To establish the second part of Theorem, let us consider the sequences
v = {ug(r)} defined by (2.3) and z = e = (1,1, 1,...). Then, since
(A"z)p, = 1+ (1 — ") /[(1 = r)(n + 1)), one can easily see that z is in
¢+ but not in af and v is in aj but not in ¢. Hence, the sequence spaces

ap and £ overlap but neither contains the other. This completes the proof.
O

3. The basis for the spaces aj and a,

In the present section, we give two sequences of the points of the spaces
af, and ag which form the basis for the spaces aj and af.

Firstly, we define the Schauder basis of a normed space. If a normed
sequence space A contains a sequence (b, ) with the property that for every
x € X there is a unique sequence of scalars (o) such that

lim Hx — (apbo + a1b1 + -+ + anbn)H =0

n—oQ
then (by) is called a Schauder basis (or briefly basis) for A. The series

> agby which has the sum z is then called the expansion of  with respect
to (by), and written as ¢ = > agby.
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Theorem 3.1 Define the sequence bt {b )}nEN of the elements
of the space agy by
14k
(=1)n* , k<n<k+1)
P (r) = 1+ (3.1)
0, (n<korn>k+1)

for every fixed k € N. Then,
(2) The sequence {b)(r)}ren is a basis for the space af and any z € af
has a unique representation of the form

z=Y M(rp®(r). (3.2)
k

(b) The set {b, b(k) (r)} is a basis for the space af and any z € af, has a
unique representation of the form

x—lb+2)\k )y = 10p® (r); (3.3)

where b= (1/(1+ %)) and \g(r) = (A"x); for all k € N, and
I = lim (A"2)y. (3.4)

k—oo
Proof. (a) It is clear that {b®*)(r)} C af, since
Ap®(ry = e ey, (B=0,1,2,...); (3.5)

where e(® is the sequence whose only non-zero term is a 1 in k™ place for
each k € N,
Let x € aj be given. For every non-negative integer m, we put

2 = Z A ()b
k=0

Then, we obtain by applying A" to zI™ that

m

Azl =" () AP (r) = > (A7) ke®)

k=0 k=0

and

<i<m) .
ATz — ™Y = ; m € N).
{ ( )}’ { (ATz)i, (1> m) i (i,meN)
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Given € > 0, then there is an integer mg such that
€
(A7), [ <5

for all m > myg. Hence,

[m]

H:C——:Z? a6=§121§1|(14r$)n‘

<sup [(A7z)s| < S <e
n2mo 2
for all m > mg which proves that x € a is represented as in (3.2).

Let us show that the uniqueness of the representation for x € ajj given
by (3.2). Suppose, on the contrary, that there exists a representation z =
Sk 1k (r)b®) (7). Since the linear transformation 7', from afj to co, used in
the proof of Theorem 2.2 is continuous we have at this stage that

(Amz), = > () (A6 (1) =" pe(r)el) = pn(r); (neN)
k k

which contradicts the fact that (A"z), = A,(r) for all n € N. Hence, the
representation (3.2) of z € af) is unique. Thus, the proof of the first part of
theorem is completed.

(b) Since {6(¥)(r)} C afj and b € ¢, the inclusion {b, ¥*)(r)} C a7 trivially
holds. Let us take x € al,. Then, there uniquely exists an [ satisfying (3.4).
We thus have the fact that u € aj whenever we set u = x — lb. Therefore,
we deduce by the part (a) of the present theorem that the representation of
u is unique. This leads us to the fact that the representation of z given by
(3.3) is unique and this step concludes the proof. O

4. The a-, 8- and ~-duals of the spaces aj and a,

In this section, we state and prove the theorems determining the o-, 3-
and 7-duals of the sequence spaces aj and a, of non-absolute type.
For the sequence spaces A and p, define the set S(\, u) by

S\, p)={z=(2) ew:zz=(zpz) Ep forall z €I} (4.1)

With the notation of (4.1), the a-, §- and -duals of a sequence space A,
which are respectively denoted by A%, A and A7, are defined by

A% =8\ £y), M =5(\cs) and A =S(A, bs).
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We shall begin with to quote the lemmas, due to Stieglitz and Tietz
[10], which are needed in proving Theorems 4.3-4.5, below.

Lemma 4.1 A€ (co: 41) = (c:¥1) if and only if
oup 3|3 ene| <
Ker 7 ek

Lemma 4.2 A€ (c:c) if and only if

hm ank = ax; (k€ N), (4.2)
supz |ank| < oo, (4.3)
neN

nll{%o;ank exists. (4.4)

Theorem 4.3 The a-dual of the spaces ag and al, is the set

7 x1+k
dlz{a—(ak)Ew supzz " k1+rnan

KeF " ek

<o},

Proof. Let a = (an) € w and define the matrix B = (b7, ) via the sequence
a = (an) by

) n —_ —_—
nk = 1+rn o ;. (n, keN).
0, (0<k<n-—1lork>n)

Bearing in mind the relation (2.2) we immediately derive that

n

1+k
anTyn = Z (=" kl—I— o anyk = (BY)n, (n€N). (4.5)
k=n—1

We therefore observe by (4.5) that az = (anzy,) € £1 whenever = € af) or af,
if and only if By € ¢ whenever y € ¢y or ¢. Then, we derive by Lemma 4.1
that

1+k
Z n k]_ 7 n < 00
keK T

sup Z

KeF <,

which yields the consequence that {aj}* = {af}* = df. O
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Theorem 4.4 Define the sets dy, ds and dj by

(o<

k

ak
(1—}—7““) Ecs}
k+1
= = l—l—T'kak Egoo ,

A( %k ) % U+l forall keN.

I

and

dgz{az( ) € w
ds {az(ak)ew:
dy {a—(ak)Ew:

where

T4rk) " Tqrk T pkt
Then, {a5}P = d5Nd} and {al}® = df N dj.

Proof. Because of the proof may also be obtained for the space af, in the
similar way, we omit it and give the proof only for the space af. Consider
the equation

7
> awrim

NE

k .
k—7 j+1
> i e

k=0 k=0 Sj=k—1
n—1
. Ak n+1 _ R
_k:0A<1+Tk>(k+1)yk+ 7 ontin = (Tt)n;
(neN),  (4.6)
where T = (1] ,) is defined by
Al =2 Vk+1), 0<k<n—1)
147k ’ SE=n
nk 1+,rnan’ (k:n) ( ) ( )
0, (k>n)

Thus, we deduce from Lemma 4.2 with (4.6) that az = (axx) € cs whenever
z = (z) € al, if and only if Ty € ¢ whenever y = (yx) € c. It is obvious
that the columns of that matrix T are in the space ¢. Therefore, we derive
the consequences from (4.3) and (4.4) that
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) g
k-+1
<1 T T’kak> €l (4.9)
and
a
<1—+kﬁ> € cs, (4.10)

respectively. But the condition (4.9) is redundant, since it may be obtained
by combining the conditions (4.8) and (4.10). This shows that {al}* = djn
s, 0

Theorem 4.5 The y-dual of the spaces af and af, is the set dy N dj.

Proof. This is obtained in the similar way used in the proof of Theorem
4.4 and so we leave the detail to the reader. a

5. Some matrix mappings related to the space a,

In this section, we characterize the matrix mappings from a/ into some
of the known sequence spaces and into the Euler, difference, Riesz, Cesaro
sequence spaces. We directly prove the theorems characterizing the classes
(al : £p), (al : c) and derive the other characterizations from them by means
of a given basic lemma, where 1 < p < oo.

We shall write throughout for brevity that

~ Ank . Unk Qn, k+1
Gnk :A<1+T’“)(k+1) - <1+rk - 1+7"k"‘1>(k+1)

for all n, k € N. We will also use the similar notation with other letters
and use the convention that any term with negative subscript is equal to
naught. We shall begin with two lemmas due to Wilansky [12, p. 57 and p.
128] which are needed in the proof of our theorems.

Lemma 5.1 The matriz mappings between the BK-spaces are continuous.

Lemma 5.2 A€ (c:¥,) if and only if

p
sup Z Z Ank

<oo, (1<p<o). (5.1)
FeFr ™, kcF
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Theorem 5.3 A€ (a; : ¢p) if and only if
(i) Forl<p < oo,

P
sup Z Z ank| < 00, (5.2)
Fer =, keF
Z |Gnk] < oo forall neN, (5.3)
k
nk
€cs forall neN. 5.4
{ 147k }keN f (54)
(ii) Forp= oo, (5.4) holds, and
supz |G| < o0 . (5.5)
neN &

Proof. Suppose the conditions (5.2)-(5.4) hold and take any « € af. Then,
{ank }ren € {al}? for all n € N and this implies that Az exists. Let us define
the matrix B = (bp) with byr = @ng for all n, k € N. Then, since (5.1) is
satisfled for that matrix B we have B € (c: £p). Let us now consider the
following equality obtained from the m*™ partial sum of the series >k Ok

m m—1 1+m
Zankmk = Z dnkyk + 1+ rm AnmYm; (’I’L, me N) (56)
k=0 k=0

Following the way that used in the proof of Theorem 4.4, one can derive by
combining the conditions (5.3) and (5.4) that {(1+m)anm/(1+7™)}men €
¢o for each n € N. Thus, bearing in mind this fact if we pass to limit in
(5.6) as m — oo then the second term on the right hand tends to zero and
we derive that

> Gnkth =) dnkyrs (nEN) (5.7)
P p

which yields by taking £,-norm that
| Az|g, = [|Bylle, < oo

This means that A € (af, : £p).
Conversely, suppose that A € (ay, : ,). Then, since a}, and £, are the

BK-spaces we have from Lemma 5.1 that there exists some real constant
K > 0 such that
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| Azle, < K - [|]laz (5.8)

for all z € al,. Since the inequality (5.8) is also satisfied for the sequence z =
(k) = D ker k) (r) belonging to the space af, where b (r) = {b,(f) (r)} is
defined by (3.1), we thus have for any F' € F that

|Azle, = (Z > p>1/p <K - afla

n keF
which shows the necessity of (5.2).

Since A is applicable to the space a] by the hypothesis, the necessities
of (5.3) and (5.4) are trivial. This completes the proof of the part (i) of
Theorem.

Since the part (ii) may also be proved in the similar way that of the
part (i), we leave the detailed proof to the reader. O

Theorem 5.4 A € (a}: c) if and only if (5.4) and (5.5) hold, and

lim Gnr = ar for each k€N, (5.9)
n—oo
JLIEO;ELM = a. (5.10)

Proof. Suppose that A satisfies the conditions (5.4), (5.5), (5.9) and (5.10).
Let us take any z = (zx) in al. Then, Az exists and it is trivial that the
sequence y = (yi) connected with the sequence z = (zj) by the relation
(2.2) is in ¢ such that yp — [ as k — oo. At this stage, we observe from
(5.9) and (5.5) that

k

Z laj| < supz |Gnj| < 00
neN J

J=0

holds for every k € N. This leads us to the consequence that (ay) € #1.
Considering (5.7), let us write

zankxk = Zank(yk — l) +1 Z&nk. (5.11)
k k k

In this situation, by letting n — oo in (5.11) we see that the first term on
the right tends to >, ax(yx — ) by (5.5) and (5.9), and the second term
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tends to la by (5.10) and we thus have that

(Az)n — Y onlye — 1) + o (5.12)
k

which shows that A € (a’, : ¢).
Conversely, suppose that A € (a] : ¢). Then, since the inclusion ¢ C
?s holds, the necessities of (5.4) and (5.5) are immediately obtained from
Theorem 5.3. To prove the necessity of (5.9), consider the sequence z =
k) = {xﬁfc) (r)},.en € 0 defined by
1+k

_1\n—k

0, (0<n<k—-lorn>k+1)

(5.13)

for each £ € N. Since Az exists and is in ¢ for every z € af, one can easily
see that Az(®) = {G.3}nen € ¢ for each k € N which shows the necessity of
(5.9).

Similarly by putting z=e in (5.7), we also obtain that Az={>", Gnk }neN
which belongs to the space ¢ and this shows the necessity of (5.10). This
step concludes the proof. O

Let us define the concept of s-multiplicativity of a limitation matrix.
When there is some notion of limit or sum in A and u, we shall say that
the method A € (A : u) is multiplicative s if every z € A is A-summable
to s times of lim z, for any fixed real number s and denote the class of all
s-multiplicative matrices by (A : u)s. It is of course that the class (a : ¢)s
of s-multiplicative matrices reduces to the classes (af, : cg) and (a, : ¢)reg in
the cases s = 0 and s = 1, respectively; where (a, : ¢)reg denotes the class
of all matrix mappings from af to ¢ such that A —lim z = lim z for all

z € a}. Now, we may give the corollary to Theorem 5.4, without proof.

Corollary 5.5 A € (a} : ¢)s if and only if (5.4), (5.5) hold, (5.9) and
(5.10) also hold with oy, = 0 for each k and o = s, respectively.

Now, we may present our basic lemma given by Altay and Basar ([2,
Lemma 6.6]) which is useful for obtaining the characterization of some new
matrix classes from Theorems 5.3, 5.4 and Corollary 5.5.

Lemma 5.6 Let A\, u be any two sequence spaces, A be an infinite matriz
and B a triangle matriz. Then, A € (A : up) if and only if BA € (A : ).
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It is trivial that Lemma 5.6 has several consequences. Indeed, combin-
ing the Lemma 5.6 with Theorems 5.3, 5.4 and Corollary 5.5, one can easily
derive the following results:

Corollary 5.7 Let A = (ani) be an infinite matriz and define the matriz
C = (cnk) by

n
Cnk = Z <?) (L=r)"riay; (n, k€N).

j=0

Then, the necessary and sufficient conditions in order for A belongs to any-
one of the classes (ag, : ef), (ai : e), (ag : ef) and (af : ef)s are obtained
from the respective ones in Theorems 5.3, 5.4 and Corollary 5.5 by replacing
the entries of the matriz A by those of the matriz C; where e denotes the
Euler space of all sequences whose E"-transforms are in the space ¢ and is

studied by B. Altay and F. Basar in a separate paper.

Corollary 5.8 Let A = (ank) be an infinite matriz and t = (tg) be a
sequence of positive numbers and define the matriz C = (cni) by

1 n
Cnk = T—njz::()tjajk; (n, k € N),

where T, = Y p_ote for all m € N. Then, the necessary and sufficient
conditions in order for A belongs to anyone of the classes (al : r% ), (al :
rp), (ag : mE) and (a : %) are obtained from the respective ones in Theorems
5.3, 5.4 and Corollary 5.5 by replacing the entries of the matriz A by those
of the matriz C; where r; is defined in [1] as the space of all sequences whose
Rt-transforms are in the space £, and is derived from the paranormed space

rt(p) in the case p, = p for allk € N,

Since the spaces 75, and 7}, reduce in the case ¢t = e to the Cesaro
sequence spaces Xo and X, of non-absolute type, respectively, Corollary
5.8 also includes the characterizations of the classes (a : Xo) and (af : Xp).

Corollary 5.9 Let A = (ani) be an infinite matriz and define the matrices
¢ = (cnk) and D = (dnk) by cnk = ank — U1k 0N dpg = Gpk — Gn_1k
for all n, k € N. Then, the necessary and sufficient conditions in order for
A belongs to anyone of the classes (a}, : boo(A)), (al : c(AD)), (al : ¢(A))s
and (al, : bup) are obtained from the respective ones in Theorems 5.3, 5.4
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and Corollary 5.5 by replacing the entries of the matriz A by those of the
matrices C and D; where £o (D), c(A) denote the difference spaces of all
bounded, convergent sequences and introduced by Kizmaz [6], and bu, also
denotes the space of all sequences x = (xy,) such that (xy — zk—1) € £p and
is studied by Bagar and Altay in [4].

Corollary 5.10 Let A = (ank) be an infinite matriz and define the matriz
C = (cnk) by cpp = Z?:o ajr for all n, k € N. Then, the necessary and
sufficient conditions in order for A belongs to anyone of the classes (al, : bs),

(al : cs) and (a, : cs)s are obtained from the respective ones in Theorems

5.3, 5.4 and Corollary 5.5 by replacing the entries of the matriz A by those
of the matriz C.
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