Hokkaido Mathematical Journal Vol. 83 (2004) p. 153-184

A lower bound for the curvature invariant p(G/K)
associated with a Riemannian symmetric space G/K
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Abstract. We investigate the curvature invariant p(G/K) associated with a Rieman-
nian symmetric space G/K, which was introduced in [3] in order to estimate the least
dimension of the Euclidean space RY into which G/K can be locally isometrically imbed-
ded. We calculate, in a systematic method, a lower bound of p(G/K) for any compact
irreducible Riemannian symmetric space G/K. Further, we calculate p(G/K) for com-
pact rank one Riemannian symmetric spaces and establish a non-existence theorem of
isometric imbeddings. It is conjectured that the lower bound obtained by our method co-
incides with p(G/K) for almost every compact irreducible Riemannian symmetric space
G/K.
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1. Introduction

Let M be a Riemannian manifold. In our paper [3]|, we defined a Z-
valued function pys on M, which is a curvature invariant of M. As we have
shown, pys is effective to estimate the least dimension of the Euclidean space
into which M can be locally isometrically imbedded (see Proposition 1.1 of
31)-

In the special case where M is a Riemannian symmetric space, it is
shown that the function pps can be reformulated in terms of Lie algebras as
follows: Let M = G/K be a Riemannian symmetric space and let g = ¢+m
be the canonical decomposition of the Lie algebra g of (G associated with the
Riemannian symmetric pair (G, K). Take a maximal abelian subspace a in
m and denote by £y the centralizer of a in ¢, i.e., 8o ={X € ¢ | [X, a} = 0}.
We call a subspace V' of m pseudo-abelian if [V,V] C %. By p(G/K) we
denote the maximum of the dimensions of pseudo-abelian subspaces in m,
which we call the pseudo-nullity of G/K. Then it is shown that the function
py coincides with p(G/K) everywhere on M = G/K (see Proposition 2.1
of [3]). Applying Proposition 1.1 of [3] to M = G/K, we have
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Theorem 1.1 ([3]) Let G/K be a Riemannian symmetric space. Then,
any open set of G/K cannot be isometrically imbedded into the Fuclidean
space RN with N < 2dimG/K — p(G/K) — 1.

In this paper, we consider the problem to determine the pseudo-nullity
p(G/K). For this purpose, it is essential to calculate p(G/K) for compact ir-
reducible Riemannian symmetric spaces G/K. In fact, we have shown that:
(i) If G/K is (locally) isomorphic to a Riemannian product of two Rieman-
nian symmetric spaces G;/K; (1 = 1,2),i.e., G/K = G1/K; x G2/ K3, then
p(G/K) = p(G1/ K1) + p(G2/K2); (ii) If G/K is of Euclidean type, then
p(G/K) = dim G/K; (iii) If G/K is of non-compact type, then p(G/K) =
p((G/K)*), where (G/K)* is the compact dual of G/K (see [3]).

In [3] and [4] we have calculated the pseudo-nullities p(G/K) for the
following compact irreducible Riemannian symmetric spaces:

(1) The spheres S™ (n > 2).
(2) Those spaces G/K satisfying rank(G/K) = rank(G), i.e.,

AI, CI, EI, EV, EVIII, FI, G,
BI:S0(2n+1)/SO(n+1) x SO(n) (n > 2),
DI : S0(2n)/SO(n) x SO(n) (n > 3).

(3) Compact Lie groups:
Sp(n) (n>1), SUN)(2<n<5), SO(n)(B<n<9, n#4), G

As we have stated, for each symmetric space G/K listed above, we
obtain an estimate on the least dimension of the Fuclidean space into which
G/K can be (locally) isometrically imbedded. Especially, by our results we
know that in the case where G/K is CI : Sp(n)/U(n) (n > 1) or Sp(n) (n >
1) the canonical isometric imbedding defined in Kobayashi [13] gives the
least dimensional isometric imbedding of G/ K.

Unfortunately, we cannot so easily get the estimate stated above for
the other compact irreducible Riemannian symmetric spaces G/ K, because
it is, in general, a hard algebraic problem to calculate the pseudo-nullities
p(G/K). In this paper, in order to approach the pseudo-nullity p(G/K) we
propose a systematic method to obtain a lower bound for p(G/K).

Our method is divided into two steps. The first step is to localize the
problem. Let X be the set of all non-zero restricted roots associated with the
Riemannian symmetric pair (G, K'). We denote by m(u) the root subspace
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of m corresponding to a non-zero restricted root u € X. By n(u) we denote
the maximum of the dimensions of pseudo-abelian subspaces contained in
m(u) and call it the local pseudo-nullity of u. Our first task is to describe
n(p) by using the multiplicity m(u) of u (see Theorem 3.2). Our results of
this step are summarized in Table 3.

The second step is explained as follows: Let I" be a strongly orthogo-
nal subset of X' (for the definition of strongly orthogonal subsets, see §4).
Let V(1) be a pseudo-abelian subspace contained in m(u) with dim V(u) =
n(w). Then, the sum 3 .- V(u) plus a suitable subspace of a forms a
pseudo-abelian subspace of m (see Proposition 4.1). By peat(G/K) we de-
note the maximum of the dimensions of all pseudo-abelian subspaces con-
structed in the manner stated above. We call peot(G/K) the categorical
pseudo-nullity of G/K, which gives a lower bound for the pseudo-nullity
p(G/K). Our second task is to calculate the categorical pseudo-nullity
Peat(G/K) by viewing the result of the classification of strongly orthogonal
subsets in X' (see [5]). In Table 4 and Table 5 we exhibit the results of this
task.

Although the categorical pseudo-nullity pe.:(G/K) does not directly
serve to determine the least dimensional (local) isometric imbeddings of
G/K, it gives a fairly good estimate on p(G/K). It will be shown that the
equality p(G/K) = peat(G/K) holds for Riemannian symmetric spaces G/ K
listed above (see Table 4 and Table 5). In §5, we will determine the pseudo-
nullities p(G/K) for compact rank one Riemannian symmetric spaces G/ K.
As a result, we know that the equality p(G/K) = p¢:(G/K) holds for any
compact rank one Riemannian symmetric spaces except the 2-dimensional
complex projective space P?(C) (see Theorem 5.1). On the basis of this
result we obtain an estimate on the least dimension of the Euclidean space
into which compact rank one Riemannian symmetric spaces G/K can be
locally isometrically imbedded (see Theorem 5.6). In the case where G/K =
P*"(H)(n > 2) or P(Cay), Theorem 5.6 improves the former estimate
obtained in [2].

It is expected that the equality p(G/K) = peat(G/K) holds for a wider
class of Riemannian symmetric spaces G/K, whose proof will be investi-
gated as a main subject in our future work.
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2. Restricted roots and multiplicities

In this and the subsequent sections we follow the notations in the intro-
duction. Let G/K be a compact irreducible Riemannian symmetric space
with G simple. In this section we recall the multiplicities of the restricted
roots associated with the Riemannian symmetric pair (G, K).

Let B be the Killing form of g. We introduce an inner product (, ) of
g by

(X,Y)=-B(X,Y), X, Yeg.

Let t be a Cartan subalgebra satisfying t D a and set b = t M€ Then we
have

t=a+b (orthogonal direct sum).

Let g° be the complexification of g. For each a € t we define a subspace g,
-of g¢ by

ga=1{Z€g°|[H, Z] =V-1(a, H)Z, VH € t}.

An element « € tis called a root of g€ if g, # 0. By A we denote the set of
non-zero roots of ge.

Let A € t. By )\; we mean the a-component of A with respect to the
orthogonal decomposition t = a + b. An element u € a is called a restricted
root if there is a root o such that oy = p. Let us denote by X' the set
of all non-zero restricted roots. As is well-known, X forms an irreducible
(possibly non-reduced) root system.

Let u € X. We denote by A(u) the set of all roots @ € A such that
ag = p. The cardinality #A(u) of A(w) is called the multiplicity of p € X
and is denoted by m(u).

Let p € X. We define two subspaces ¢(u) C € and m(u) C m by setting

t(u) = {X e t|ad(H)*(X) = —(u, H)* X, VH € a},
m(p) = {Y € m|ad(H)X(Y) = —(n, H)’Y, VH € a}.
As is easily seen, we have ¢(—u) = 8(u) and m(—u) = m(u). For convenience
we set £(0) = &, m(0) = a and ¢(u) = m(u) =0if p ¢ X U{0}.
Let 6 be the involution of g induced from the geodesic symmetry at the
origin of G/K. Let “<”be a linear order of a. We extend “<”"to a linear
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order “<”of t in such a way
H>0, H¢b=60H <0.

Let A (resp. ZT) be the set of positive roots of A (resp. X) with respect
to “<”. Then the following assertion is well-known (see [14]):

Proposition 2.1 (1) dimé&(u) = dimm(u) = m(p).
(2) The following decompositions hold:

m=a-+ 2 m(p) (orthogonal direct sum),
pueXt

=8+ Z t(u) (orthogonal direct sum).
ueEXt

(3) Let pg, ug € X U{0}. Then:

; [8(u1), €(u2)] C (1 + p2) + (uy — p2),
[m(u1), m(p2)] C €(u1 + p2) + (g — p2),
[(u1), m(p2)] C m(p1 + p) +m(p1 — p2).

Since the restricted root system X is an irreducible root system, X
contains at most three sorts of roots with different lengths. Let us divide
Y into three subsets X; (¢ = 1,2, 3) according as the lengths of restricted
roots. In the case where X' is not reduced, i.e., X' is of type BCy, (n > 1), we
denote by Xy (resp. X3) the set of multipliable (resp. divisible) restricted
roots and set X7 = X'\ (X5 U X3). Recall that a restricted root p € X
is called multipliable (resp. divisible) if 2u € X (resp. (1/2)u € X) (see
Helgason [12]). In the case where X is reduced, we denote by X the set of
short restricted roots and set X = X'\ Xy and X3 = §. (By definition, a
restricted root p € X' is called short if X contains a restricted root longer
than p.) In any case, each X; (i = 1,2, 3) is composed of restricted roots of
the same length if X; # 0 and X' = X7 U X5 U X3 (disjoint union). Since two
restricted roots of the same length have the same multiplicity (see Appendix
of [2]), it follows that the multiplicity m(u) (1 € X;) takes a constant value
on each subset ;.

Let m; (i = 1,2, 3) be the multiplicity of the restricted roots in X;. (m;
is assumed to be 0, if X; = 0.) As we have stated above, by the triplet
M(G/K) = {my, mo, m3} we can recover the multiplicities of all restricted
roots p € X. In Table 3 we list the triplets M(G/K) for all compact,
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irreducible Riemannian symmetric spaces G/K with G simple, which can
be easily read from the classification table in Araki [9].

3. Local pseudo-nullities n(u)

As in the previous section we assume that G/ K is a compact, irreducible
Riemannian symmetric space with G simple. Let P denote the family of
pseudo-abelian subspaces of m. Let U € P. U is called a local pseudo-
abelian subspace if U is contained in some root subspace m{u) (4 € X). Let
p € X. We denote by n(u) the maximum dimension of local pseudo-abelian
subspaces contained in m(u), i.e.,

n(p) = max {dimU |U C m{u), U € P}.

The integer n(u) is called the local pseudo-nullity of p € X.
Considering the action of the Weyl group W(X'), we have the following
basic property of n(u).

Proposition 3.1 The local pseudo-nullity is invariant under the action of
the Weyl group W (X)), i.e., n{wy) = n(u) holds forw e W(X) and u € X.
Consequently, if two restricted roots p and p' are of the same length, i.e.,
|ul = 11/], then n(u) = n(w').

Proof. Let w € W(X). As is well-known, there is an element £ € K such
that Ad(k)a = a and Ad(k)p = wy. Then it can be easily observed that
Ad(k)m(p) = m(wp) and Ad(k)Ey = €. Therefore, a subspace U of m(u) is
pseudo-abelian if and only if Ad(k)U is a pseudo-abelian subspace of m{wpy).
This implies n(wu) = n(w). If two restricted roots  and ' are of the same
length, we can find an element of w € W(X) such that p/ = wu. Therefore,
we have n{y') = n{u). O

Let ¥ = X1 UXyUZX5 be the decomposition defined in the previous sec-
tion. In view of Proposition 3.1, we know that the pseudo-nullity n(u) (u €
%;) takes a constant value on each subset X; (1 =1,2,3). Let n; (¢ =1,2,3)
be the local pseudo-nullity of the restricted roots in X;. (As in the case of
the multiplicity, n; is assumed to be 0 if X; = 0.) It is clear that by the
triplet N(G/K) = {n1,ng,n3} we can recover the local pseudo-nullities of
all restricted roots u € 2.

The following theorem shows that the local pseudo-nullities M (G/K)
are completely determined by the multiplicities M(G/K).
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Theorem 3.2 Let G/K be a compact irreducible Riemannian symmet-
ric space with G simple. Let M(G/K) = {m1, ma, m3} (resp. N(G/K) =
{n1,n9,m3}) be the multiplicities (resp. local pseudo-nullities) of G/K.
Then, the following equalities hold:

ny = My, ng———mg/(l—{—mg), ng = ms.
Before proceeding to the proof of Theorem 3.2, we note

Lemma 3.3 (1) [m(u), m(x)] C 8(2u) + .
(2) [B2p), m(p)] € m(w).

Proof. From (3) of Proposition 2.1 the assertion (1) follows directly. We
also have the assertion (2), because 3u ¢ X. O

We now start the proof of Theorem 3.2. First assume that u is not
multipliable, i.e., 24 ¢ X. Then we have [m(u), m(u)] C ¥ and hence
m(p) € P. Consequently, if u € Xy U X5 then it follows n(u) = m(u).
This proves that n; = m; and n3 = mgs. Similarly, if 4 € Xy and X3 =
(equivalently mg = 0), then we have ng = ma.

Next we assume that u is multipliable, i.e., u € X5 and X3 # . This
case occurs only in the case where X' is of type BC,,. In view of Table 3,
we know that such restricted roots are exhausted by the following G/K:

Alll, o (p>q2>1), Cll,, (p>q2>1),
DIII, (n = 2m+ 1), EII, FII.

We also know that the multiplicity mg is equal to 1, 3 or 7 and that restricted
roots u satisfying m(2u) > 1 can be found only in CII,, (p > ¢ > 1) :
GP4(H) and FII : P%(Cay).

Now let X € £(2u). Then, by (2) of Lemma 3.3, we know that ad X
induces a linear endomorphism of m(x), which we denote by XT, i.e.,

X7y =[X,Y], Yem).

It is easy to see that XT is a skew-symmetric endomorphism of m(y) with
respect to the inner product (, ).

Lemma 3.4 Let V be a subspace of m(u). Then V is pseudo-abelian if
and only if (XT(V),V) =0 holds for any X € €(2u).
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Proof. Let X € €(2u). Since
(X1(Y),2)=([X,Y],2) = (X, [\, Z]), VY,VZemy),

we have (XT(V),V) = (X, [V, V]). Hence, if [V,V] C ¥, then we have
(XH(V),V) = 0. Conversely, if (XT(V),V) = 0 holds for any X € £(2u),
then by the above equality we have (¢(2u), [V, V]) = 0. This implies that
[V, V] C ¥ (see (1) of Lemma 3.3). This completes the proof. O

The set #(2u)! composed of all Xt (X € #(24)), which is a subspace of
the space of endomorphisms of m(u), has the following special feature.

Theorem 3.5 Let p € X. Assume that p is multipliable, i.e., 2u € X.
Then:

(1) If m(2u) = 1, then dimm(u) is even and there is an element I of
8(2u) such that IT determines a complex structure of m(u), i.e., =
g

(2) If m(2u) =3, i.e., if G/K isof type Cll, 4 (p > q > 1), then dimm(u)
is a multiple of 4 and there are elements I, J, K of €(2u) such that the triplet
{IT, Jt, KT} determines a quaternion structure of m(u), i.e.,

= gt = Kkt = 1, 1T = -t = K,
JIkt= gyt =1t Kitrt=_—ITkt=Jt.
In the above (1) and (2), 1y, implies the identity mapping of m(u).

The proof of Theorem 3.5 will be given in §6.

By virtue of Theorem 3.5, the determination of n(u) can be reduced to
an easy problem.

First consider the case where m(2u) = 3,1.e., G/K is of type CII, 4 (p >
q > 1). Let U be an arbitrary local pseudo-abelian subspace of m(u).
Denote by V' the sum of four subspaces U, IT(U), JT(U) and KT(U), i.e.,

V=U+I'U)+JIU) + KN (V).

‘We now prove that the above summation is orthogonal and that dimV =
4dimU. In fact, by Lemma 3.4 we have

U, ') = (U, J'(U)) = (U, K'(U)) = 0.
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Moreover, since I' is an orthogonal endomorphism of m(u), we can prove
('), JH) = U, 1'T1(W) = (U, K'(U)) = 0.

Similarly, we have (J1(U), KT(U)) = (KT(U), IT(U)) = 0. Consequently,
V is an orthogonal direct sum of four subspaces U, IT(U), J'(U) and
KT(U). Moreover, since It = gt? = kt* = —Lin(y), we have dim IT(U) =
dim JT(U) = dim KT(U) = dimU. Therefore, we have dimV = 4dimU <
dimm(u) = m(u), which proves that dimU < m(u)/4. Since U is an ar-
bitrary local pseudo-abelian subspace contained in m(u), we obtain n{u) <
m(u)/4.

We now show the converse. Utilizing the quaternion structure
{It, Jt, KT}, we can get a subspace Up of m(u) such that dim Uy = m(u)/4
and

m(p) = Up + IT(Uy) + JT(Uo) + K (Uy) (orthogonal direct sum).

Since (Uy, I1(Up)) = (Uy, JH(Uy)) = (Ug, KT(Up)) = 0 and since {I,J, K}
forms a basis of £(2u), we have (Ug, XT(Up)) = 0 for any X € £(2u). This
proves that Uy is a local pseudo-abelian subspace contained in m(u) and
hence n(u) > dim Uy = m(u)/4. Therefore, we get the equality n{u) =
m(p)/4 if m(2u) = 3.

In a similar manner, we can also prove that n(u) = m(2u)/2 for those
symmetric spaces G/ K satisfying m(2u) = 1.

Finally, we consider the case where G/K is of type FII, ie., G/K =
P%(Cay). We first prove

Proposition 3.6 Assume that G/K = P?(Cay) and that p, 2u € X.
LetY be a non-zero element of m(u). Then, dim[¢(2u),Y] =7.

Proof. Since dim #(2u) = m(2u) = 7, it suffices to prove that [X,Y] # 0
for each X € €(2u) with X # 0. Now suppose [X,Y] = 0 holds for some
X € €(2u). Since ad p gives an isomorphism between m(2u) and €(2u), we
can find Y/ € m(2u) such that X = [u, Y’ ] Consequently, we have

[v, 1, Y']] =0. (3.1)
Applying ad u to (3.1), we have

[ Y], [ Y]] = 4(u, ,u)Z[Y, Y'). (3.2)
(Note that [u, [u, Y]] = —4(u, ©)?Y".) In §5, we will prove that ¥ € m(u)
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and Y’ € m(2y) must satisfy the following equality (see (1) of Lemma 5.3):

[ Y], [0 Y]] = 2(w, ?[¥, Y], (3.3)

Comparing the equalities (3.2) and (3.3), we can easily conclude [Y,Y'] =
0. This implies that two vectors Y and Y’ span an abelian subspace of
m. However, since rank(P?(Cay)) = 1, Y’ must be a scalar multiple of
Y. Hence we get Y’ =0, because Y € m(u) and Y’ € m(2u). Thus, X =
[u, Y’] = 0, proving the proposition. O

We now proceed to the determination of the local pseudo-nullity n(u)
for a multipliable restricted root in G/K = P?(Cay). Let V be an arbitrary
local pseudo-abelian subspace in m(p). Let Y be a non-zero element of V.
By Lemma 3.4 we know that V' is necessarily orthogonal to [¢(2u), Y]. Since
dim[8(2p),Y] = 7 and m(u) = 8, we have dim V' < 1. This proves n(u) =
1=8/(1+7).

- By the above discussions, we complete the proof of Theorem 3.2. O

We will give in Table 3 the local pseudo-nullity N (G/K) = {n1,ng, ng}
for each compact irreducible Riemannian symmetric space G/K with G
simple.

4. Categorical pseudo-nullities p..:(G/K)

In this section, as the second step to estimate the pseudo-nullities
p(G/K), we construct pseudo-abelian subspaces of m by summing up suit-
able local pseudo-abelian subspaces.

Let I" be a subset of the restricted root system X. I is called a strongly
orthogonal subset (=SOS) in X' if it satisfies the following:

a, el a#f=axf¢XU{0}.

The notion of the strongly orthogonal subsets was first introduced by
Harish-Chandra (see [11]) and has been used in many places concerning
geometric or representation theoretic problems. For each irreducible root
system X we have determined the equivalence classes of maximal strongly
orthogonal subsets in ' under the action of the Weyl group W (X) (see [5]).

Now let us define the notion of categorical subspace of m. Let V be a
subspace of m. V is called categorical if the following two conditions are
satisfied:
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(1) V is represented by

V=V(0)+ Z V(u) (direct sum),
pext

where V(u) =V Nm(u) (ue X+t uU{0}).
(2) The support I' of V, which is defined by I'={u € Xt | V(u) # 0},
is a SOS in 2.

The following proposition assures that there are many categorical
pseudo-abelian subspaces of m.

Proposition 4.1 Let V = V(0) + 3., V(u) be a categorical subspace of
m and let I' the support of V.. Then, V is pseudo-abelian if and only if it
satisfies:

(1) V(0) L I, d.e, (V(0),I')=0.

(2) For each p € I', V(i) is a local pseudo-abelian subspace.

If'roof. Let w1, pg be two distinct restricted roots in I". Then, by Proposi-
tion 2.1, we have

[V(u1), V{(p2)] C (1 + po) + 8(pr — pa2).

Since I' is a SOS, we have y1 + pp ¢ X U {0}. Hence, [V (1), V(u2)] = 0.
Therefore, it is easy to see that V is pseudo-abelian if and only if

[V(0), V()]  #(0), (4.1)
[V(1), V()] C 2(0) (4.2)

hold for each y € I'. Obviously, (4.2) implies that V{(u) is a local pseudo-
abelian subspace. On the other hand, (4.1) is equivalent to [V(0), V(u)] =
0, because [V(0),V(n)] C [a,m(u)] C &(u). It is easy to verify that
[V(0), V(1)] = 0 holds if and only if (V(0), ) = 0. O

Let Py denote the family of all categorical pseudo-abelian subspaces
of m. We denote by pe:(G/K) the maximum dimension of categorical
pseudo-abelian subspaces of m, i.e.,

Peat (G/K) = max{dimV | V € P}

The integer pe.:(G/K) is called the categorical pseudo-nullity of G/K. In
the following we will determine the pseudo-nullities poq:(G/K) for all com-
pact, irreducible Riemannian symmetric spaces G/K with G simple.
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Let SOS be the family of all SOS’s in . For each I" € SOS we define
a quantity b(I") € Z by

b(I") = rank(G/K) — #I' + Z n(w).
per

Then we can prove
Proposition 4.2  p.;(G/K) = max{b(I") | I € SOS}.

Proof. Let V be an element of P, and I' be the support of V. We note
that since any distinct elements of I' are mutually orthogonal, we have
dim RI" = #I" (see [5]). Consequently, we have dim V(0) < dima — #1I”
and dimV(u) < n(u) for each p € I' (see Proposition 4.1). Therefore,
dimV < b(I') and hence pet(G/K) < maxp{b(I")}.

Now we show the converse. Let I' € SOS. Then, there is a categorical
pseudo-abelian subspace V' whose support coincides with I'. In fact, define
V by V.=RI*+Y pU(u), where R denotes the orthogonal com-
plement of RI" in a and U{u) a pseudo-abelian subspace of m(u) such that
dimU(p) = n(w). Then, it is easy to see that V € Py and dim'V = b(I).
This proves pe.:(G/K) > maxp{b(I")}. O

The following assertion is fundamental to calculate peq.: (G/K).

Proposition 4.3 (1) b is invariant under the action of the Weyl group
of X, i.e., b(wl') =b(I") holds for any w € W(X) and I € SOS.
(2) Let I I" € SOS. Suppose that I' C I'". Then b(I") < b(I").

Proof. It is obvious that wI” € SOS, #(wl') = #I'. Since n(wy) = n(u)
(see Proposition 3.1), we have b(wI") = b(I"). This proves (1).
By the definition, we easily have

(I =b(I) =—#(I'\ D)+ D nw)= > (n(p)-1)

pel\I e\

Since every one-dimensional subspace of m(y) is pseudo-abelian, we have
n(p) > 1, and hence we get b(I") > b(I). O

In view of (2) of Proposition 4.3 we know that in order to determine
peat(G/K) we have only to calculate b(I") for maximal SOS’s in X. In [5],
for each irreducible root system X, we determined the equivalence classes
of maximal SOS’s in X under the action of the Weyl group W(X) and
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obtained the representative maximal SOS for each equivalence class (see
§83-5 of [5]). By (1) of Proposition 4.3 we can also restrict our calculations
to these representatives I.

We now recall the conclusions of [5] more closely. Let I" be a maximal
SOS in X. First assume that X is isomorphic to a reduced, irreducible root
system X, (X = A ~ @), where n implies the rank of G/K. Then, in
the terminology in [5], I" is equivalent to I"(X,)*, where the superscript s
indicates the cardinality of the set of short roots contained in I, i.e., s =
#(I'N Xy) (see §3 and §5 of [5]). According to the type of X, s takes a
value in Table 1.

Table 1. Range of s.

Type of X Range

Ap(n>1), Dy(n>4), Ei(i=6,7,8) s=0

i B,(n=2m+1,m>1), G, s=1
n(n=2m, m>1), Fy 0<s<1
Cr (n > 3) 0<s<[n/2

Next assume that X' is not reduced, i.e., X' is isomorphic to BC, (n =
rank(G/K)). Then I' is equivalent to I'(BC,)"* (0<r <1,0<s<[(n—
7)/2]), where the superscript 7 implies the number of multipliable roots in
I' and s implies the number of roots in I' which are not multipliable nor
divisible (see §4 of [5]). In our terminology, we have r = #(I' N Xy) and
s=#(I'NXy).

These being prepared, we prove the main result of this paper:

Theorem 4.4  Let X be the restricted root system of a compact irre-
ducible Riemannian symmetric space G/K with G simple. Let N(G/K) =
{n1,na,n3} be the local pseudo-nullities of G/K. Then:

(1) Assume that X is isomorphic to a reduced, irreducible root system
Xn(X = A~ @), where n =rank(G/K). Then:

Peat(G/K) = rank(G/K) + mfx{(nl — D#I'(X,)® + (ng — n1)s},

where s Tuns through the range listed in Table 1.
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(2) Assume that X is isomorphic to BCy, (n = rank(G/K)). Then:
Peat(G/K) = ngrank(G/K) + r(nagc{(nz —ng)r+ (n; — 2nz + 1)s},

where the pair (r,s) satisfies 0 <r <1 and 0<s < [(n—r1)/2].

Proof. Let I' be a maximal SOS in ¥. Weset I; =TI'NX; (1 =1,2,3).
Then by the definition of b(I") we easily have

W) =rank(G/K) — #I' + ny#11 + no# s + na#1s.

If X is isomorphic to X, (X = A ~ G) and if I is equivalent to I'(X,,)?, then
we have #I" = #I'(X,,)%, #I3 =0, #I5 = s and #I = #I" — s. Putting
these equalities into the above formula of b(I"), we obtain the assertion (1).

On the other hand, if ¥ is isomorphic to BC, and if I' is equivalent to
I'(BC,)™*, then we have #I" = #I'(BC,)™* = n — s (see Theorem 4.1 in
[B]), #I1 = s, #I% = r and #[3 = #[ —r — s. Putting these equalities
into the formula of b(I"), we have the assertion (2). O

The result of the calculations of pe.:(G/K) is summarized in Table 4
and Table 5. Details are left to the reader.

The categorical pseudo-nullity pe.:(G/K) gives a fairly good estimate
of the pseudo-nullity p(G/K). It is expected that the equality p(G/K) =
Peat(G/K) holds for many compact irreducible Riemannian symmetric
spaces G/K. Here we show the examples satisfying the above equality.

Example 1 (Case of the spheres SP (p > 2)) In view of Table 4, we have
Peat(SP) = p — 1 (p > 2) (see the types BII, and DII,). This proves that

p(SP) = peat(SP) (p > 2).

Example 2 (Case of G/K with rank(G/K) = rank(G)) For these spaces
G/K we have proved p(G/K) = rank(G/K) (see Proposition 2.3 of [3]).
Since, in our terminology, a is a categorical pseudo-abelian subspace of m,
we have pe: (G/K) > dima = rank(G/K), proving pe.:(G/K) = p(G/K).

~ In the next section we will prove that the equality p(G/K) = peat (G/K)
holds for all compact rank one Riemannian symmetric spaces G/K except
P2(C).

In the rest of this section we consider the case where G/K is a compact
simple Lie group. Let G be a compact connected simple Lie group and g
be the Lie algebra of G. As is well-known, G endowed with a bi-invariant
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metric can be represented by a compact, irreducible Riemannian symmetric
space G = G / K where G = G x G and K denotes the diagonal subgroup
of G x G. In this and the previous sections we have developed our dis-
cussions for compact irreducible Riemannian symmetric spaces G /K with
G simple. We note that these discussions are also valid for G /K. For ex-
ample, the notions of restricted roots, multiplicities, (local) pseudo-nullities
and strongly orthogonal subsets, etc. can also be well defined. In addition,
the notion of categorical pseudo-nullities pegs (G/K) can also be defined and
Proposition 4.2 is true under this situation.

In [3] we have proved an inequality concerning p(G/K), which can be
expressed as p(G/K) > rank(G) + so(G) in the terminology of this paper
(see Proposition 6.3 of [3]), where so(G) denotes the integer given by

[(n+1)/2], i g=su(n+1),
2[n/2], if g=0o(2n),
4, if g% e,
rank(G),  otherwise.

50(@) =

Here, let us reconsider the above estimate p(G/K) > rank(G) + so(G) in
the line of this paper. Then we can prove:

Proposition 4.5 Let G = @/f( be a compact simple Lie group. Then
pcat(é/f?) = rank(G) + so(G).

Proof. Tt is well-known that the Lie algebra g (resp. E) of G (resp. K ) is
givenby § = g® g (resp. £ = {(X,X)egag| X € g}). Putting m =
{(X,-X)egdg| X € g}, we get the canonical decomposition g =to M.
Let t be a Cartan subalgebra of g. Then t = t@t defines a Cartan subalgebra,
ofgand a= {(H,—H) e m| H € t} defines a maximal abelian subspace of
m.

Let A (resp. A) be the set of non-zero roots of g¢ (resp. g¢) with respect
to t (resp. I) As is known, Ais composed of roots written in the form o =
(a,0) or o~ = (0, —a), where o € A. Since a™z = a3 =1/2- (o, —a), the
set of non-zero restricted roots associated with the Riemannian symmetric
pair (G, K) can be written by % = {1/2- (a, —) | a € A}.

By these facts we can verify the following:

(1) m(u) = 2 holds for each restricted root u € z.
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(2) 5 does not contain any multipliable root. Accordingly, n(p) =
m(u) = 2 holds for each p € 2.
(3) For each SOS I' in X, there is a SOS I in A such that I = {1/2-
(v, Ilverl}
By Proposition 4.2 and the above (1), (2) and (3) we have pe(G/K) =
rank(g) + maxp{#I}, where I runs over all SOS’s in A. In [5], we have
determined maximal SOS’s in A for all irreducible root systems A. In view
of Theorems 3.1 and 5.1 of [5], we easily get the equality maxp{#I['} =
80(G), which proves our proposition. O

In [3] and [4], we have shown that p(G/K) = rank(G) + so(G) holds for
the following compact simple Lie groups G:

SUM)(2<n<5), SON)(B<n<9, n#£d), Sp(n)(n>1), G

Proposition 4.5 indicates that p(G/K) = peat(G/K) holds for these compact
“simple Lie groups. We conjecture that the equality p(G/K) = peat(G/K)
holds for all compact simple Lie groups G = G/K.

5. Compact rank one symmetric spaces

Let G/K be a compact rank one Riemannian symmetric space not
isomorphic to any sphere S™, i.e., G/K is one of the following Riemannian
symmetric spaces:

(1) The complex projective spaces P*(C) (n > 2).

(2) The quaternion projective spaces P"(H) (n > 2).

(3) The Cayley projective plane P%2(Cay).
The purpose of this section is to calculate the pseudo-nullities p(G/K) for
G/K listed above. We prove

Theorem 5.1 Let G/K be a compact rank one Riemannian symmetric
space not isomorphic to any sphere S™. Then:

pat(G/K) if G/K = P"(C) (n > 3),
p(G/K) = P"(H) (n>2) or P*(Cay),
2 if G/K = P%(C).

Before proceeding to the proof, we exhibit several basic data on G/K.
In view of Table 3, we know that the restricted root system X' of G/K is
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isomorphic to BC;. Now let us take and fix a multipliable root u € 3.
Then we have the following decomposition:

m=a+m(y) + m(2u) (orthogonal direct sum), o= Ry.
Further, from Tables 3, 4 and 5, we get

Table 2. Basic data for rank one symmetric spaces.

Type G/K n(pw) n(2p) (=m(2p)  pa(G/K)
Alll,; P*(C)(n>2) n-1 1 n—1
Cll,n P H)(n>2) n-1 3 max{3,n— 1}
FII P2(Cay) 1 7 7

~ We now proceed to the proof of Theorem 5.1. To prove the theorem
we have to estimate the dimensions of non-categorical pseudo-abelian sub-
spaces. It can be shown that the dimension of any non-categorical pseudo-
abelian subspace is fairly small. In fact, we have

Proposition 5.2 (1) Let V be a non-categorical pseudo-abelian subspace
of m. Then the inequality dimV < 2 holds.
(2) If G/K = P™(C)(n > 2), there is a non-categorical pseudo-abelian
subspace V satisfying dimV = 2.

As is easily seen, Theorem 5.1 immediately follows from this proposition

and Table 2.
For the proof of Proposition 5.2 we prepare several lemmas.

Lemma 5.3 Let Y1 € m(u) and Y2 € m(2p). Then:
1) [[w11], [ Y2]] = 2(u, 0)?[V1, Ya].
2) [[w Y], ¥1] =2[[w,11], V2]

Proof. We first note that [Y1,Y3] € €(u) (see Proposition 2.1). Conse-
quently, we have

(ad 1)?[¥1, Y] = —(u, )% [¥1, V2]
Since (ad 1)*Y1 = —(u, #)*Y1, (ad u)?Ya = —4(u, )Yz, we have
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(ad w)?[¥1, 3] = [(ad p)*Y1, Yo] +2[ [, V1], [, Yo]] + [¥1, (ad 1) Y3)]
=2[[w,Y1], [ Ya]] — 5 (1, ) [¥1, Ya).

Hence we immediately get the equality (1).
The equality (2) can be easily obtained by applying ad  to the equality
(1). 0

Lemma 5.4 Let V be an arbitrary pseudo-abelian subspace of m.
(1) If V¢ m(p), then dimV < 1+ m(2u).
(2) If V¢ m(2u), then dimV < 1+ n(u).

Proof. First we show the assertion (1). Since V' ¢ m(u), V contains an
element Y = H+ Y, + Y2 (H € a, Y7 € m(p), Yo € m(2u)) such that H +
Ys # 0. Let Y/ be an arbitrary element of V Nm(u). Then we have

[Y,Y'] = [H+Y,Y] + [v1,Y] € .

Since [H+Y>,Y’] € ¥(n) and [¥1,Y’] € €9+ 8(21) (see Proposition 2.1), we
have [H + Y, Y’ ] = 0. This implies that the subspace spanned by H + Y
and Y’ is an abelian subspace of m. Since rank(G/K) = 1, it follows that
Y’ must be a scalar multiple of H + Y3. This proves Y’/ = 0, because H +
Yo € a+m(2u), Y € m{u). Hence we have V Nm(p) = 0. Consequently,
we have dim V < dim(a+ m(24)) = 1+ m(2p).

Next we show the assertion (2). As in the proof of (1), we can prove
that VNm(2u) = 0. Set r = dim V. Since dim(V N (m{p) +m(2u))) > r—1,
we get elements V¢ = Vi +Y§ € V (1 €4 < r — 1) such that ¥} € m(u)
and Y € m(2u). Moreover, since V Nm(2u) = 0, we may assume that the
vectors {Y7 (1 < i < r—1)} are linearly independent. Now, since [Y*,Y7] €
By, we have

Y} +3,Y] + Y]] €t
On the other hand, since [Y7, Y23] € ¥, [, Ylj] € t+8(2p) and [¥], YQJ] .
[ 2i> Yf] € €(u), we have

i, ¥/l eto, 1<éj<r—1

This implies that the subspace spanned by {¥; (1 < i < r —1)} is a local
pseudo-abelian subspace in m(u). This proves that r—1 < n(u), completing
the proof of the assertion (2). O
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Lemma 5.5 Let V be a non-categorical pseudo-abelian subspace of m.
Then:

dimV < min{l +m(2u), 1+ n(p)}.

Proof. Since V is not categorical, it follows that V' ¢ m(u) and V ¢ m(2u).
Therefore, by the above lemma we have dimV < 14 m(24) and dimV <
1+n{u). (

Proof of Proposition 5.2. By Lemma 5.5, we can prove (1) of Proposi-
tion 5.2 for the spaces P"(C) (n > 2), P?(H) and P?(Cay). In fact, we
have m(2u) = 1if G/K = P*(C) (n > 2) and n(u) = 1 if G/K = P?(H)
or P2(Cay).

Next, we directly show (1) for the remaining spaces G/K = P"(H) (n >
3). Suppose that there is a non-categorical pseudo-abelian subspace V' with
dimV > 3. As in the proof of Lemma 5.4, we may assume that there are
twoelements Y =Y +Y5, Y/ =Y/+Y) € V (N, Y] e m(p), Y2, Yy € m(2u))
such that Y7 and Y] are linearly independent and the subspace {Y¥1,Y]} is
pseudo-abelian. Further, since [Y2, Y] € 8+8(2u) and [Ya, Y]] +[¥1,Y5] €
¥(1), we have

%2, ¥{] = [¥{,%1]. (5.1
By Lemma 3.4 we know that the condition [Yl, Yl’] € ¥ is equivalent to
(Yl,’ITyl) = (Yl/7‘]TY1) = (Y1I7KTY1) =0. (5'2)

(Note that 8(2u) is spanned by I, J and K.) Applying ad y to the equal-
ity (5.1), we have

[, Y], Y] + [Ye, [ Y]] = [[w Y] 1] + [33, [, 1]
Using (2) of Lemma 5.3, we have
x}(vf) = x3' (), (5.3)

where we set Xp = [u,Y2], X3 = [, Y5]. Applying X] to the both sides of
(5.3), we have

(xh2y) = x§x5t(n). (5.4)

Since X;f and XQT are linear combinations of IT, JT and KT, it follows
that (Xg)2 = c 1y (c € R, ¢ # 0) and XgXéT is written as a linear
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combination of 1), t, JT and KT. Consequently, by (5.4) we know that
Y/ can be written as a linear combination of Y7, I(Y3), Jt (Y1) and K (V7).
This together with (5.2), we can conclude that Y/ is written by a scalar
multiple of Y7. This contradicts the assumption that Y7 and Y] are linearly
independent. Therefore, we have dim V' < 2.

Finally, we prove (2) of Proposition 5.2. Assume that G/K = P"(C)
(n > 2). Take a non-zero element Y € m(y) satisfying (¥, Y) = 2(u, n)*(I, )
and consider a subspace V' C m spanned by x+Y and [I y = ZY]. Then it
is easily shown that dimV = 2, because (0 #)[I, u — 2Y] € m(u) +m(2y)
but u+Y & m{u) +m(2u). Let us show V is pseudo-abelian. To show this
we have to prove

[,u-l—Y, [I,u— 2Y]] € &.
By (1) of Lemma 5.3 and (ad u)%] = —4(u, 1)%I we have

‘ 1, [, Y]] = —4(—;;)—2[% [, 1)), [ Y]
2w’
=~ w1,V
— 51}, 71,
Consequently, we have
[ [1,Y9] = [ 70, Y] + 1, [, Y]] = 5 ([ 7], ¥,

Therefore, by a simple calculation we have

[4+Y, [I,u—2Y]] =2 {2@, w21 - [v, [1, Y]]} :

We note that the right hand side of the above equality is contained in & +
¥(2p). Since £(2u) = RI and since

(1’2(/%/1')2[“ [Y’ [I’Y”) = 2(/’%/‘)2(1’])_— ([I’Y]’ [I7Y])
= 2(/J'a /J’)Q(I’ I) - (Y’ Y) =0,

we have [u +Y, [I = 2YH € t. Therefore, we get (2) of Proposition 5.2.
O

By Theorem 5.1 we obtain the non-existence theorem:
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Theorem 5.6 Let G/K be a compact rank one Riemannian symmetric
space not isomorphic to any sphere S™. Define an integer ¢(G/K) by

min{dn — 2,3n+1}, if G/K =P"(C) (n>2),
¢(G/K)= < min{8n—-3,Tn+1}, if G/K=P'(H) (n>2),
25, if G/K = P?(Cay).

Then, any open set of G/K cannot be isometrically imbedded into the Eu-
clidean space RN with N < ¢(G/K) —1.

Finally, we refer to the result of Agaoka [1] concerning the non-existence
of isometric imbeddings of P™(C'). He investigated directly the solvability
of the Gauss equation associated with isometric imbeddings of P*(C'), and
obtained the following

Proposition 5.7 ([1]) Any open set of the complex projective space P™(C')
cannot be isometrically imbedded into the Euclidean space RN with N <
[16n/5] — 1.

As is easily seen, Agaoka’s result is stronger than ours in case n is large
enough (n > 10). It is noted that in such a case the least dimension of Eu-
clidean spaces into which P*(C) is (locally) isometrically imbedded cannot
be determined only by p(P™(C)). This is an interesting phenomenon com-
pared with the spaces Sp(n)/U(n) and Sp(n), where the least dimensions
are just determined by p(G/K) (see [3] and [4]).

For the spaces P?(H) and P%(Cay), we can get stronger results than
Theorem 5.6, which will be shown in the forthcoming papers 7] and [§].

6. Proof of Theorem 3.5

In this section we prove Theorem 3.5. Before starting the proof, we
prepare some lemmas. We follow the notations used in Introduction and

§2.

Let G/K be a compact irreducible Riemannian symmetric space with
G simple. Let 7 be the conjugation of g€ with respect to g. As is known
(see [2]), there is a set of vectors {Z, € go | @ € A} of g° satisfying

(1) QZa = Zga, TZQ = Z_a,

(2) [Za, Z_0) = 2¢v/=10/(a, ).
Let a, f € A. We define an integer Aag by Aap = 2(a,8)/(8,5). The
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following formula, which is a well-known fact in the theory of Lie algebras
(see [12]):

Lemma 6.1 Assume that a +8 & AU {0}. Then:
2d Z5(0d Z_5)"(Za) = k (~Aap + k1) (ad Z_p)* (Za),
ke Z,k>0.
Let us set Ag = ANb. For a root a € A\Ay, we define a subspace g(«)
of g° by
g(a’) =fgo + 8-a 1+ g6 + G—ba-
As is easily seen, g(a) satisfies the following properties:

Lemma 6.2 Let a € A\ Ag. Then:

(1) g(e) = g(—a) = g(0a) = g(-fa).

_(2) dimg(a) =4 if a # —a; dimg(a) =2 if o = —a.

(3) Let B € A\ Ay satisfy 8 # ta, £0a. Then g(B) is orthogonal to g(a)
with respect to the inner product (, ), i.e., (g(a),g(B)) =0.

We also have the following lemma whose proof is left to the reader.

Lemma 6.3 Let X be the restricted root system of G/K and p € X.
Then:

(1) Let a € A(u). Then —0a € A(y).

(2) The following decomposition holds:

B(u)® + mp)® = Z g(a) (orthogonal direct sum).
acA(u), —fa<La

(3) Let o € A(w). Define vectors X(a)* and Y(a)* of g(a) by

X&)t =20+ Z -0+ Zgo + Z—pa,
X(a) =V-1(Z4~ Z-0+ Zoa — Z-0a),
Y(e)t =vV-1(Za — Z-a — Zoa + Z-ta),
Y(0) = Za+ Z-o — Zoo — Z—bar-

Then, it holds that X (a)* € t(u), Y (a)* € m(p) and X (—6a)* = £X (a)F,
Y(=fa)* = +Y (a)*.

(4) The set of vectors {X(a)* | a € A(w)} (resp. {Y(a)T | a € A(n)})
spans &(u) (resp. m(u)).
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These being prepared, we start the proof of Theorem 3.5. In the fol-
lowing we assume that X is of type BC,, and p € X' is a multipliable root,
i.e., 2u € X. Under this assumption, we have m(u) = even, m(2u) = odd
and p & A, 2u € A (see [9] or Table 3).

We first prove

Proposition 6.4 (1) Let o € A(n). Then Agpu =1 and o — 2 € A,
but o+ 2p € AU {0}.
(2) Set I = Zy, + Z_9,. Then I € ¥(2u) and IT determines a complex

structure of m(u), i.e., It? = —Ln()-

Proof. It is clear that I € £(2u). Now let o € A(u). We consider the 2u-
series of roots containing o. Since Aq 2, = 2(o, 21)/(2u, 21) = 1, it follows
that o —2u € A. On the contrary, since the a-component of o+ 2u is equal
to 3u, it follows that o+ 2u ¢ AU {0}. Therefore, by Lemma 6.1 we have

(ad 1)2(Zoz) = [Z2;u [Z—2,u, Za]]
= —Zqu.

Moreover, since ad I-6 = 6-ad I and ad I-7 = 7-ad I, we have (ad I)?(Zy) =
—Zg, where of = o or +0a. Since the vectors Y (a)* (o € A(u)) generate
m(u), we have It = —Ln)- O

The above lemma shows the assertion (1) of Theorem 3.5. In what
follows, we may assume that m(2u) = 3. We first consider the sets A(u)
and A(2p4).

Lemma 6.5 (1) There is a root v € Ag such that A(2u) = {2u,2u+ v}
and (v,v) = 4(u, p).
(2) Let a € A(w). Then (a,a) = 4(u, 1.
(3) Let o, o € A(n). Assume that o # a, —8a. Then, one of the follow-
ing (a) and (b) holds.

(a) Aa’,a = 1, Aa/’_ga =0.

(b) Awo=0, Ay o = 1.

Proof. In Appendix of [2], we have proved that for a restricted root ¢ € X
satisfying m(y) = odd and m(v¢) > 1, there is a root v € Ay such that
1+ v e A. Applying this to the case ¢ = 2u, we have the first part of the
assertion (1). Since (24 +v) = 2u —v) € AU {0}, we have (2u+ v, 24 —
v) = 0. This shows that (v,v) = 4(y, u)-
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We now prove the assertion (2). Consider the a-series of roots contain-
ing 2u. By (1) of Proposition 6.4, we have 2u+o ¢ AU{0} and 2u—a € A.
On the other hand, by the fundamental property of symmetric spaces we
have 2u — 20 = —(a + 0a) ¢ AU {0}. Therefore we have Ay, o = 1. Since
Ag 2, =1 (see (1) of Proposition 6.4) we have (&, o) = (2u, 2u).
Finally, we prove (3). Since a — fa = 2u and since (o, @) = (Ao, fa) =
(2u, 2u), we have
2(ef,0)  2(d,—ba) 2(c,a—ba)

’ A ! _ Qo — =
AC! ,Oé + (27 k] 0 (a, a) + (ea, 0@) (2/'67 2/‘1’)

= Arpp=1.

We also have |Aa/,a| < 1 and |Aa/,_9a’ < 1, because o # Fa, *fa,
(o/,d/) = (a,a). Then the assertion (3) immediately follows from these
facts. 0

In the following discussion we fix an element v € Ay stated in (1) of
Lemma 6.5.

Lemma 6.6 Let a € A(u). Then:
(1) Aqp = £1. Moreover,
(a) Agp=l<=a-veA
(b) Agy=-l<=a+veA.
(2) af+2v g AU{0}.

Proof. Since o — 0 = 2 € A and 2u+ v € A, it follows that
[Zy, [Za, Z—-9a]] # 0. Hence, we have either [Z,, Zo] # 0 or [Z,, Z-0a] #
0. Therefore, we have either a +v € Aor —fa+ v € A.

Now assume that o +v € A. Then we have a + v € A(u) and hence
by Lemma 6.5 we have (o + v, + v) = 4(u, u). Since (a,a) = 4(u, u)
and (v,v) = 4(u, ), we have (o,v) = —2(u, p). This implies Ay, = —1.
Conversely, if Ay, = —1, then we have a+v € A. This proves the assertion
(b).

Next assume that —fa + v € A. Then, since —0a +v = —0(a —v), we
have o — v € A. In this case, by the same method stated above, we have
(o, v) = 2(u, u) and hence A,, = 1. Conversely, if Ay, = 1, then we have
a —v € A, which proves the assertion (a).

Finally, we show (2). In view of (1), we know that the length of v-series
containing ¢ is just equal to 2. Hence we have a +2v ¢ AU {0}. O
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Now we define an action of £ on m(u). Since [E, m(u)] C m(k) (see
Proposition 2.1), each element ad X (X € %) induces a skew-symmetric
endomorphism of m(u), which is also denoted by XT. This together with
the action of £(2u) defined in §3, we get the action of € + €(2u) on m(u).
By the definition we directly have

[x, x0T = xtxt— xtxt = [x1, x1], X, X' eto+e2u).
Set v =2v/(v,v), P=2,+2Z_, and Q = v/-1(Z, — Z_,). Then we
easily have U, P, Q € & and
[7,P] =2Q, [7,Q]=-2P, [P,Q]=2v.
We now prove
Proposition 6.7 The triplet {Df, PT, Q'} determines a quaternion struc-
ture of m(u), i.e.,
1?2 = pt* = @t* = Ay, PP =—Pipt = Qf,
Qot = —ptQt = pt, PIQF = QTP = 7.
For the proof, we prepare the following

Lemma 6.8 Let o € A(p). Then:
(1) [Zua [Z—luZa]] + [Z—I/a [ZuaZa]] = —Zq.
(2) [7/): [Z:i:mZa]] + [Z:i:m [/V\a Zoz” =0.
Proof. Assume that a—v € A. Then we have Ay, = 1 and a+v ¢ AU{0}
(see Lemma 6.6). By Lemma 6.1 we have
[Z,/, [Z—-IJ) Za]] = —Aa,z/Za = _Zcx,
[/V\; [Z—Ila Zoe]] =V “1Aa—z/,z/ [Z—ua Zoz] =-v-1 [Z—I/) Za] )
[Z—uy [/IJ\, Za]] =V _1Aa,u [Z—m Za] =v-1 |:Z~—I/a Za]-

By these equalities and [Z,,,Za] = 0, we get the assertions (1) and (2).
Similarly, in the case a + v € A we can prove (1) and (2). d

We now prove Proposition 6.7. We first note that since v = 7v = v,
the endomorphism ad 7 commutes with € and 7. Similarly, since P = 7P =
P and 0Q = 7Q = @, we know that ad P and ad ¢ commute with 8 and 7.
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Let a € A(y). By Lemmas 6.8, 6.6 and a direct calculation, we have

(ad 7))2(Zo¢) = [D, \% —1Aa,VZa] = —Ai’VZa = —Za,

(ad P)?(Za) = (ad Q)*(Za) = [Zv, [Z-1, Z4]]

+ [Z—I/) [Zu, Zoe” = —Zq.

Therefore, by the same reason stated in the proof of (2) of Proposition 6.4
we can conclude (71)? = pt? = QT2 = —1y(y- Further, by Lemmas 6.8,
6.6 and by a direct calculation, we can prove [P, [Q, Za]] =- [Q, [P, Za]],
[7, [P, Za]] = =[P, [P, Z4]] and [7, [Q, Za]] = —[Q, [P, Za]]. By the same

reason as above, we have PTQ! = —QTPf, otPt = —Pipt and 21QT =
—QD!. From these equalities, it follows

ot Pt = (1/2)(0Pt — POty = (1/2)[p, P]" = @,
Q' = (1/2)(Q'" - ptQh) = (1/2)[@,7]" = P,
PIQ = (1/2)(P'Q! - Q'PY) = (1/2) [, Q)" = 9.
This completes the proof of the proposition. O
Finally, we prove
Proposition 6.9 IT=¢eDf, where e € R and €2 = 1.

If the above proposition is true, we can get Theorem 3.5. In fact, set
J=—(1/2)[1,Q], K = (1/2)[I, P]. Then we have J, K € #(2u) and
J=—(1/2)[11,Q1) = —(e/2)[7, Q] = P,
Kt =(1/2)[1, P = (¢/2)[9, P]" = e Q1.
Consequently, by Proposition 6.7 it is shown that the triplet {e feJt eK T}
(C #(2u)") determines a quaternion structure of m(u).

Now we show Proposition 6.9. For each oo € A(p) let us define a complex
number p, by

[Z 24, Za) = V—1paZba- (6.1)
Pa is well-defined, because . —2u + o = fa € A and hence [Z—Zua Za] € gon-

Lemma 6.10 (1) po2 =1, p—ga = —pa-
(2) [I,Y()¥] = £paY ()T holds for each o€ A(p).
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Proof. From (6.1), we easily get
11, Za] = V=1paZa- (6.2)

Applying 6 to the both sides of (6.2), we have [I, Zgo] = V—1paZs. Hence
we have

(1,1, Za]] = [I, V-1paZba) = —po’Za.

Since (ad I )Z(ZQ) = —Z,, the above equality implies p,2 = 1.

Applying 7 and 67 to the both sides of (6.2), we have [I ) Z_a] =

—vV—1paZ_p, and [I , Z_ga] = —v/—1paZ_,. From the latter equality,
it follows that p_g, = —pn. Moreover, by an easy calculation we obtain the
assertion (2). O

We need two more lemmas concerning the values po (o € A(p)).

Lemma 6.11 Let ( € Ag, o € A(p). Assume that a+ ¢ € A(p). Then:

{pa, if ¢# v,
Pat+¢ =

—pa, if (=vor —v.
Proof. First note that [Z¢, Za| € ga+¢ and [Z¢, Z5] # 0. We also note

[[Z-2: Z¢], Za] = [Z-2: [Z¢, Za]] = [Z¢, [ 225 Za]
= \/__I(Pa-l-C - pa)e[Zb Za]-

Assume that ¢ # +v. Then we have —2u + ¢ ¢ A U {0} (see (1) of
Lemma 6.5). Since [Z_Qﬂ,ZC] = 0, we have pai¢ = po. On the con-
trary, assume that ( = v or —v. Then we have —2u+ ¢ € A and —2u +
(+a=0(a+() e A Hence, [[Z—zu, ZC] ) Za] # 0. Consequently, we have
Patc — Pa # 0. Since parc? = pa’® =1, it follows that pate = —pa- O

Lemma 6.12 Let o, &/ € A(p). Then, Ay v/pa = Aay/po holds.

Proof. If o/ = «, then there is nothing to prove. Next consider the case
o = —fa. By Lemma 6.10 (1), we have p_g, = —po. On the other hand,
we have
2(—0a, v) 2(a, Ov) 2(a, v)
A—Gavz—z_ = - = T Agu-
’ (v,v) (v,v) (v,v) ’

This shows that the lemma is true for the case o/ = —6o.
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Now assume that o/ # «, —fa. Replacing o by —6a if necessary, we
may assume that Ay o = 1 (see Lemma 6.5 (3)). Then, setting { =o' — o,
we have ( € Ag. In view of Lemma 6.6, we have A,, = +1, Ay, = £1.
First consider the case Ay, = Aq,. Then we have A¢ ), = Ay, — A,y =0
and hence ¢ # v. Therefore, by Lemma 6.11, we have pyy = pat¢ = pa-
This implies that Ay v/por = Aap/Pa-

Next consider the case Ay, = —Ay,,. Then we have A¢, = Ay —
Aqy = —24,, = £2, which implies (¢,v) = £(y,v). Since (a,a) =
(¢/,d') = (v,v) (see Lemma 6.5), we have

() =(-a,d —a)=(a,0) (2-Ay..) = (n,).

By these equalities (,v) = x(v,v) and ((,{) = (v,v), we have { = v or
—v. Therefore, by Lemma 6.11 we have pos = pot¢ = —po. Hence, in this
case, we get Ay v/ por = Aap/Pa- d

We are now in the final stage of the proof of Theorem 3.5. By a simple
calculation, we have

[0, Y (@)*] = FAa, Y (a)F.

Compare this equality with (2) of Lemma 6.10. Then, we know that Propo-
sition 6.9 immediately follows from Lemma 6.12. Thus, we complete the
proof of Theorem 3.5.
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Table 3. Multiplicities and local pseudo-nullities.
Type G/K z M(G/K) N(G/K)
Al,  SUn+1)/80(n+1)(n>1) An {1,0,0} {1,0, 0}
All,  SU@(n+1)/Spn+1)(n>1)  An {4,0,0} {4,0,0}
Alllp,y  SU(p+q)/SU(p) xU(g)) (p>q21,p22)
(p>q>1) BC, {22(p-9),1} {2p-—g1}
(p=g>1) Cq {1,2,0} {1,2,0}
(p>qg=1) BG {0.2(p—1),1} {0,p—-1,1}
Blpq  SO(p+q)/SO(p) x SO(q) (p+q = odd, p > q 2 2)
B, {1,p—4q,0} {1,p—q,0}
BII, SO(p+1)/SO(p)(p=-even>2) A {pr-1,0,0} {r-1,0,0}
Cl,  Sp(n)/U(n) (n>2) Ch {1,1,0} {1,1,0}
Cllpg  Sp(p+q)/Sp(p) x Sp(g) (p2 g2 1)
(p>g>1) BC, {4,4(p - 9),3} {4,p—9,3}
(p=¢g>1) Cq {3,4,0} {3,4,0}
p>qg=1) BC; {0,4(p-1),3} {0,p—1,3}
p=q=1) Aq {3,0,0} {3,0,0}
DI,  SO(p+4q)/SO(p) x SO(q) (p+q = even, p>q > 2, (p,q) # (2,2))
(P>q+2) Bq {Lp-q0t  {Lp-4¢0}
(r=29q Dy {1,0,0} {1,0,0}
DII,  SO(p+1)/SO(p) (p = odd > 3) Ay {p—1,0,0} {r-1,0,0}
DIII,  8O(2n)/U(n) (n > 4)
(n=2m) Cm {1,4,0} {1,4,0}
(n=2m+1) BCp, {4,4,1} {4,2,1}
EI Es/Sp(4) Eg {1,0,0} {1,0,0}
EIT Es/SU(6) - SU(2) Ey {1,2,0} {1,2,0}
EIIT Es/Spin(10) - SO(2) BC, {6,8,1} {6,4,1}
EIV Es/Fy As {8,0,0} {8,0,0}
EV E;/SU(8) Eq {1,0,0} {1,0,0}
EVI E;/Spin(12) - SU(2) Fy {1,4,0} {1,4,0}
EVII E;/Es- S0(2) Cs {1,8,0} {1,8,0}
EVIII  Eg/Spin(16) Eg {1,0,0} {1,0,0}
FEIX Es/E7 - SU(2) Fy {1,8,0} {1,8,0}
FI F4/Sp(3) - SU(2) Fy {1,1,0} {1,1,0}
FII Fy/Spin(9) BC; {0,8,7} {0,1,7}
G G2/S0(4) G2 {1,1,0} {1,1,0}
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Table 4. Categorical pseudo-nullities pe.:(G/K) (Classical type).

(0<t<{(m—1)/2])

Type Maximal SOS #I b(IM Peat(G/K)
Al I'(4,)° [(n+1)/2] n n
All, I'(A,)° (n+1)/2]  n+3[(n+1)/2] n+3[(n+1)/2]
Alll, 4
(p>q>1) I'(BC)*® qg—s g+s
(0<s <[g/2)
(BCHYM g—t p+t—1
(0<t<[(g—1)/2]) max{[3q/2],
(p=q>1) I(Cy)* g—s a+s [(2p+4¢-3)/2]}
(0<s<[g/2))
(p>q=1) I'(BC)* 1 1
(BC)*® 1 p—1
Blp,q I'(By)° (g = even) q q p—1
I'(Bg)! 2[(g-1)/2] +1 p—1
_BII, I'(Ap)° 1 p-1 p—1
Cl, I(Cp)® n—s n n
(0<s<[n/2])
Cll pq
(p>g>1) I(BC,)"® g—s 3g—s
(0<s<[g/2])
(BC,)M g—t p+2g—t—3
0<t<(g—1)/2]) max{3q,p + 2¢~3}
(p=q>1) I(Cy)* g—s 3g—s
(0<s<[g/2])
(p>q=1) I(BC)*® 1 3
I(BC)*® 1 p—1
p=q=1) I'(A4)° 1 3
Dlpq
(p>q+2) I'(Bg)° (¢ =even) g q
I'(Bg)* 2[(g-1)/2] +1 p—1 max{p—1, g}
(p=q  I'(Dy)° 2(q/2] q
DI, I'(A:)° 1 p—1 p—1
DIII,
(n=2m) I'(Cwm)® m—s m+ 3s m + 3[m/2)
(0<s<[m/2))
(n=2m+1) I'(BCw)"* m—s m+ 3s [5m/2]
(0<s < [m/2))
I(BCm)"* m—t m+3t+1




A lower bound for the curvature invariant p(G/K)

Table 5. Categorical pseudo-nullities pee:(G/K) (Exceptional type).
Type  Maximal SOS #I' b))  peat(G/K)
EI I(Es)° 4 6 6
EIl  I(F)° 4 4 5

I(Fy)t 3 5
EIIl  I(BC;)**(s=0,1) 2—s 2+5s 7
r(Bcy)*° 2 5
EIV  I'(42)° 1 9 9
EV I(E;)° 7 7
EVI  I(Fy)° 4 4 7
[(Fy)* 3 7
EVII  TI'(C3)°(s=0,1) 3—s 3+7s 10
EVIII I'(Es)® 8 8 8
EIX  I(Fy)° 4 4 11
T(Fy)! 3 11
FI T(Fy)® (s =0,1) 4—s 4 4
FIT I'(BC,)*° 1 7 7
I(BCy)*° 1 1
G [(G2)! 2 2 2
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