A lower bound for the curvature invariant p(G/K) associated with a Riemannian symmetric space G/K

Yoshio AGAOKA and Eiji KANEDA

(Received April 19, 2002)

Abstract. We investigate the curvature invariant p(G/K) associated with a Riemannian symmetric space G/K, which was introduced in [3] in order to estimate the least dimension of the Euclidean space \mathbb{R}^N into which G/K can be locally isometrically imbedded. We calculate, in a systematic method, a lower bound of p(G/K) for any compact irreducible Riemannian symmetric space G/K. Further, we calculate p(G/K) for compact rank one Riemannian symmetric spaces and establish a non-existence theorem of isometric imbeddings. It is conjectured that the lower bound obtained by our method coincides with p(G/K) for almost every compact irreducible Riemannian symmetric space G/K.

Key words: curvature invariant, isometric imbedding, Riemannian symmetric space.

1. Introduction

Let M be a Riemannian manifold. In our paper [3], we defined a Z-valued function p_M on M, which is a curvature invariant of M. As we have shown, p_M is effective to estimate the least dimension of the Euclidean space into which M can be locally isometrically imbedded (see Proposition 1.1 of [3]).

In the special case where M is a Riemannian symmetric space, it is shown that the function p_M can be reformulated in terms of Lie algebras as follows: Let M = G/K be a Riemannian symmetric space and let $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ be the canonical decomposition of the Lie algebra \mathfrak{g} of G associated with the Riemannian symmetric pair (G,K). Take a maximal abelian subspace \mathfrak{a} in \mathfrak{m} and denote by \mathfrak{k}_0 the centralizer of \mathfrak{a} in \mathfrak{k} , i.e., $\mathfrak{k}_0 = \{X \in \mathfrak{k} \mid [X,\mathfrak{a}] = 0\}$. We call a subspace V of \mathfrak{m} pseudo-abelian if $[V,V] \subset \mathfrak{k}_0$. By p(G/K) we denote the maximum of the dimensions of pseudo-abelian subspaces in \mathfrak{m} , which we call the pseudo-nullity of G/K. Then it is shown that the function p_M coincides with p(G/K) everywhere on M = G/K (see Proposition 2.1 of [3]). Applying Proposition 1.1 of [3] to M = G/K, we have

²⁰⁰⁰ Mathematics Subject Classification: 17B20, 53B25, 53C35.

Theorem 1.1 ([3]) Let G/K be a Riemannian symmetric space. Then, any open set of G/K cannot be isometrically imbedded into the Euclidean space \mathbb{R}^N with $N \leq 2 \dim G/K - p(G/K) - 1$.

In this paper, we consider the problem to determine the pseudo-nullity p(G/K). For this purpose, it is essential to calculate p(G/K) for compact irreducible Riemannian symmetric spaces G/K. In fact, we have shown that: (i) If G/K is (locally) isomorphic to a Riemannian product of two Riemannian symmetric spaces G_i/K_i (i = 1, 2), i.e., $G/K \cong G_1/K_1 \times G_2/K_2$, then $p(G/K) = p(G_1/K_1) + p(G_2/K_2)$; (ii) If G/K is of Euclidean type, then $p(G/K) = \dim G/K$; (iii) If G/K is of non-compact type, then $p(G/K) = p(G/K)^*$, where $(G/K)^*$ is the compact dual of G/K (see [3]).

In [3] and [4] we have calculated the pseudo-nullities p(G/K) for the following compact irreducible Riemannian symmetric spaces:

- (1) The spheres S^n $(n \ge 2)$.
- (2) Those spaces G/K satisfying rank(G/K) = rank(G), i.e.,

AI, CI, EI, EV, EVIII, FI, G,
BI:
$$SO(2n+1)/SO(n+1) \times SO(n) \ (n \ge 2)$$
,
DI: $SO(2n)/SO(n) \times SO(n) \ (n > 3)$.

(3) Compact Lie groups:

$$Sp(n) \ (n \ge 1), \ SU(n) \ (2 \le n \le 5), \ SO(n) \ (3 \le n \le 9, \ n \ne 4), \ G_2.$$

As we have stated, for each symmetric space G/K listed above, we obtain an estimate on the least dimension of the Euclidean space into which G/K can be (locally) isometrically imbedded. Especially, by our results we know that in the case where G/K is CI: Sp(n)/U(n) $(n \ge 1)$ or Sp(n) $(n \ge 1)$ the canonical isometric imbedding defined in Kobayashi [13] gives the least dimensional isometric imbedding of G/K.

Unfortunately, we cannot so easily get the estimate stated above for the other compact irreducible Riemannian symmetric spaces G/K, because it is, in general, a hard algebraic problem to calculate the pseudo-nullities p(G/K). In this paper, in order to approach the pseudo-nullity p(G/K) we propose a systematic method to obtain a lower bound for p(G/K).

Our method is divided into two steps. The first step is to localize the problem. Let Σ be the set of all non-zero restricted roots associated with the Riemannian symmetric pair (G, K). We denote by $\mathfrak{m}(\mu)$ the root subspace

of m corresponding to a non-zero restricted root $\mu \in \Sigma$. By $n(\mu)$ we denote the maximum of the dimensions of pseudo-abelian subspaces contained in $\mathfrak{m}(\mu)$ and call it the *local pseudo-nullity* of μ . Our first task is to describe $n(\mu)$ by using the multiplicity $m(\mu)$ of μ (see Theorem 3.2). Our results of this step are summarized in Table 3.

The second step is explained as follows: Let Γ be a strongly orthogonal subset of Σ (for the definition of strongly orthogonal subsets, see §4). Let $V(\mu)$ be a pseudo-abelian subspace contained in $\mathfrak{m}(\mu)$ with $\dim V(\mu) = n(\mu)$. Then, the sum $\sum_{\mu \in \Gamma} V(\mu)$ plus a suitable subspace of \mathfrak{a} forms a pseudo-abelian subspace of \mathfrak{m} (see Proposition 4.1). By $p_{cat}(G/K)$ we denote the maximum of the dimensions of all pseudo-abelian subspaces constructed in the manner stated above. We call $p_{cat}(G/K)$ the categorical pseudo-nullity of G/K, which gives a lower bound for the pseudo-nullity p(G/K). Our second task is to calculate the categorical pseudo-nullity $p_{cat}(G/K)$ by viewing the result of the classification of strongly orthogonal subsets in Σ (see [5]). In Table 4 and Table 5 we exhibit the results of this task.

Although the categorical pseudo-nullity $p_{cat}(G/K)$ does not directly serve to determine the least dimensional (local) isometric imbeddings of G/K, it gives a fairly good estimate on p(G/K). It will be shown that the equality $p(G/K) = p_{cat}(G/K)$ holds for Riemannian symmetric spaces G/K listed above (see Table 4 and Table 5). In §5, we will determine the pseudo-nullities p(G/K) for compact rank one Riemannian symmetric spaces G/K. As a result, we know that the equality $p(G/K) = p_{cat}(G/K)$ holds for any compact rank one Riemannian symmetric spaces except the 2-dimensional complex projective space $P^2(C)$ (see Theorem 5.1). On the basis of this result we obtain an estimate on the least dimension of the Euclidean space into which compact rank one Riemannian symmetric spaces G/K can be locally isometrically imbedded (see Theorem 5.6). In the case where $G/K = P^n(H)$ ($n \geq 2$) or $P^2(Cay)$, Theorem 5.6 improves the former estimate obtained in [2].

It is expected that the equality $p(G/K) = p_{cat}(G/K)$ holds for a wider class of Riemannian symmetric spaces G/K, whose proof will be investigated as a main subject in our future work.

2. Restricted roots and multiplicities

In this and the subsequent sections we follow the notations in the introduction. Let G/K be a compact irreducible Riemannian symmetric space with G simple. In this section we recall the multiplicities of the restricted roots associated with the Riemannian symmetric pair (G, K).

Let B be the Killing form of \mathfrak{g} . We introduce an inner product (,) of \mathfrak{g} by

$$(X,Y) = -B(X,Y), \quad X,Y \in \mathfrak{g}.$$

Let \mathfrak{t} be a Cartan subalgebra satisfying $\mathfrak{t} \supset \mathfrak{a}$ and set $\mathfrak{b} = \mathfrak{t} \cap \mathfrak{k}$. Then we have

$$\mathfrak{t} = \mathfrak{a} + \mathfrak{b}$$
 (orthogonal direct sum).

Let \mathfrak{g}^c be the complexification of \mathfrak{g} . For each $\alpha \in \mathfrak{t}$ we define a subspace \mathfrak{g}_{α} of \mathfrak{g}^c by

$$\mathfrak{g}_{\alpha} = \{ Z \in \mathfrak{g}^c \mid [H, Z] = \sqrt{-1}(\alpha, H)Z, \ \forall H \in \mathfrak{t} \}.$$

An element $\alpha \in \mathfrak{t}$ is called a *root* of \mathfrak{g}^c if $\mathfrak{g}_{\alpha} \neq 0$. By Δ we denote the set of non-zero roots of \mathfrak{g}^c .

Let $\lambda \in \mathfrak{t}$. By $\lambda_{\mathfrak{a}}$ we mean the \mathfrak{a} -component of λ with respect to the orthogonal decomposition $\mathfrak{t} = \mathfrak{a} + \mathfrak{b}$. An element $\mu \in \mathfrak{a}$ is called a *restricted* root if there is a root α such that $\alpha_{\mathfrak{a}} = \mu$. Let us denote by Σ the set of all non-zero restricted roots. As is well-known, Σ forms an irreducible (possibly non-reduced) root system.

Let $\mu \in \Sigma$. We denote by $\Delta(\mu)$ the set of all roots $\alpha \in \Delta$ such that $\alpha_{\mathfrak{a}} = \mu$. The cardinality $\#\Delta(\mu)$ of $\Delta(\mu)$ is called the *multiplicity* of $\mu \in \Sigma$ and is denoted by $m(\mu)$.

Let $\mu \in \Sigma$. We define two subspaces $\mathfrak{k}(\mu) \subset \mathfrak{k}$ and $\mathfrak{m}(\mu) \subset \mathfrak{m}$ by setting

$$\mathfrak{k}(\mu) = \{ X \in \mathfrak{k} \mid \operatorname{ad}(H)^2(X) = -(\mu, H)^2 X, \ \forall H \in \mathfrak{a} \},$$

$$\mathfrak{m}(\mu) = \{ Y \in \mathfrak{m} \mid \operatorname{ad}(H)^2(Y) = -(\mu, H)^2 Y, \ \forall H \in \mathfrak{a} \}.$$

As is easily seen, we have $\mathfrak{k}(-\mu) = \mathfrak{k}(\mu)$ and $\mathfrak{m}(-\mu) = \mathfrak{m}(\mu)$. For convenience we set $\mathfrak{k}(0) = \mathfrak{k}_0$, $\mathfrak{m}(0) = \mathfrak{a}$ and $\mathfrak{k}(\mu) = \mathfrak{m}(\mu) = 0$ if $\mu \notin \Sigma \cup \{0\}$.

Let θ be the involution of \mathfrak{g} induced from the geodesic symmetry at the origin of G/K. Let "<"be a linear order of \mathfrak{a} . We extend "<"to a linear

order "<" of t in such a way

$$H > 0$$
, $H \notin \mathfrak{b} \Longrightarrow \theta H < 0$.

Let Δ^+ (resp. Σ^+) be the set of positive roots of Δ (resp. Σ) with respect to "<". Then the following assertion is well-known (see [14]):

Proposition 2.1 (1) dim $\mathfrak{k}(\mu)$ = dim $\mathfrak{m}(\mu)$ = $m(\mu)$.

(2) The following decompositions hold:

$$\mathfrak{m} = \mathfrak{a} + \sum_{\mu \in \Sigma^+} \mathfrak{m}(\mu) \quad (orthogonal \ direct \ sum),$$

$$\mathfrak{k} = \mathfrak{k}_0 + \sum_{\mu \in \Sigma^+} \mathfrak{k}(\mu) \quad (orthogonal\ direct\ sum).$$

(3) Let $\mu_1, \mu_2 \in \Sigma \cup \{0\}$. Then:

$$\begin{split} & \left[\mathfrak{k}(\mu_1), \mathfrak{k}(\mu_2) \right] \subset \mathfrak{k}(\mu_1 + \mu_2) + \mathfrak{k}(\mu_1 - \mu_2), \\ & \left[\mathfrak{m}(\mu_1), \mathfrak{m}(\mu_2) \right] \subset \mathfrak{k}(\mu_1 + \mu_2) + \mathfrak{k}(\mu_1 - \mu_2), \\ & \left[\mathfrak{k}(\mu_1), \mathfrak{m}(\mu_2) \right] \subset \mathfrak{m}(\mu_1 + \mu_2) + \mathfrak{m}(\mu_1 - \mu_2). \end{split}$$

Since the restricted root system Σ is an irreducible root system, Σ contains at most three sorts of roots with different lengths. Let us divide Σ into three subsets Σ_i (i=1,2,3) according as the lengths of restricted roots. In the case where Σ is not reduced, i.e., Σ is of type BC_n $(n \geq 1)$, we denote by Σ_2 (resp. Σ_3) the set of multipliable (resp. divisible) restricted roots and set $\Sigma_1 = \Sigma \setminus (\Sigma_2 \cup \Sigma_3)$. Recall that a restricted root $\mu \in \Sigma$ is called multipliable (resp. divisible) if $2\mu \in \Sigma$ (resp. $(1/2)\mu \in \Sigma$) (see Helgason [12]). In the case where Σ is reduced, we denote by Σ_2 the set of short restricted roots and set $\Sigma_1 = \Sigma \setminus \Sigma_2$ and $\Sigma_3 = \emptyset$. (By definition, a restricted root $\mu \in \Sigma$ is called short if Σ contains a restricted root longer than μ .) In any case, each Σ_i (i=1,2,3) is composed of restricted roots of the same length if $\Sigma_i \neq \emptyset$ and $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ (disjoint union). Since two restricted roots of the same length have the same multiplicity (see Appendix of [2]), it follows that the multiplicity $m(\mu)$ $(\mu \in \Sigma_i)$ takes a constant value on each subset Σ_i .

Let m_i (i = 1, 2, 3) be the multiplicity of the restricted roots in Σ_i . $(m_i$ is assumed to be 0, if $\Sigma_i = \emptyset$.) As we have stated above, by the triplet $\mathcal{M}(G/K) = \{m_1, m_2, m_3\}$ we can recover the multiplicities of all restricted roots $\mu \in \Sigma$. In Table 3 we list the triplets $\mathcal{M}(G/K)$ for all compact,

irreducible Riemannian symmetric spaces G/K with G simple, which can be easily read from the classification table in Araki [9].

3. Local pseudo-nullities $n(\mu)$

As in the previous section we assume that G/K is a compact, irreducible Riemannian symmetric space with G simple. Let \mathcal{P} denote the family of pseudo-abelian subspaces of \mathfrak{m} . Let $U \in \mathcal{P}$. U is called a *local* pseudoabelian subspace if U is contained in some root subspace $\mathfrak{m}(\mu)$ ($\mu \in \Sigma$). Let $\mu \in \Sigma$. We denote by $n(\mu)$ the maximum dimension of local pseudo-abelian subspaces contained in $\mathfrak{m}(\mu)$, i.e.,

$$n(\mu) = \max \{ \dim U \mid U \subset \mathfrak{m}(\mu), \ U \in \mathcal{P} \}.$$

The integer $n(\mu)$ is called the *local pseudo-nullity* of $\mu \in \Sigma$.

Considering the action of the Weyl group $W(\Sigma)$, we have the following - basic property of $n(\mu)$.

Proposition 3.1 The local pseudo-nullity is invariant under the action of the Weyl group $W(\Sigma)$, i.e., $n(w\mu) = n(\mu)$ holds for $w \in W(\Sigma)$ and $\mu \in \Sigma$. Consequently, if two restricted roots μ and μ' are of the same length, i.e., $|\mu| = |\mu'|$, then $n(\mu) = n(\mu')$.

Proof. Let $w \in W(\Sigma)$. As is well-known, there is an element $k \in K$ such that $\mathrm{Ad}(k)\mathfrak{a} = \mathfrak{a}$ and $\mathrm{Ad}(k)\mu = w\mu$. Then it can be easily observed that $\mathrm{Ad}(k)\mathfrak{m}(\mu) = \mathfrak{m}(w\mu)$ and $\mathrm{Ad}(k)\mathfrak{k}_0 = \mathfrak{k}_0$. Therefore, a subspace U of $\mathfrak{m}(\mu)$ is pseudo-abelian if and only if $\mathrm{Ad}(k)U$ is a pseudo-abelian subspace of $\mathfrak{m}(w\mu)$. This implies $n(w\mu) = n(\mu)$. If two restricted roots μ and μ' are of the same length, we can find an element of $w \in W(\Sigma)$ such that $\mu' = w\mu$. Therefore, we have $n(\mu') = n(\mu)$.

Let $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ be the decomposition defined in the previous section. In view of Proposition 3.1, we know that the pseudo-nullity $n(\mu)$ ($\mu \in \Sigma_i$) takes a constant value on each subset Σ_i (i = 1, 2, 3). Let n_i (i = 1, 2, 3) be the local pseudo-nullity of the restricted roots in Σ_i . (As in the case of the multiplicity, n_i is assumed to be 0 if $\Sigma_i = \emptyset$.) It is clear that by the triplet $\mathcal{N}(G/K) = \{n_1, n_2, n_3\}$ we can recover the local pseudo-nullities of all restricted roots $\mu \in \Sigma$.

The following theorem shows that the local pseudo-nullities $\mathcal{N}(G/K)$ are completely determined by the multiplicities $\mathcal{M}(G/K)$.

Theorem 3.2 Let G/K be a compact irreducible Riemannian symmetric space with G simple. Let $\mathcal{M}(G/K) = \{m_1, m_2, m_3\}$ (resp. $\mathcal{N}(G/K) = \{n_1, n_2, n_3\}$) be the multiplicities (resp. local pseudo-nullities) of G/K. Then, the following equalities hold:

$$n_1 = m_1, \quad n_2 = m_2/(1+m_3), \quad n_3 = m_3.$$

Before proceeding to the proof of Theorem 3.2, we note

Lemma 3.3 (1)
$$\left[\mathfrak{m}(\mu),\mathfrak{m}(\mu)\right] \subset \mathfrak{k}(2\mu) + \mathfrak{k}_0.$$
 (2) $\left[\mathfrak{k}(2\mu),\mathfrak{m}(\mu)\right] \subset \mathfrak{m}(\mu).$

Proof. From (3) of Proposition 2.1 the assertion (1) follows directly. We also have the assertion (2), because $3\mu \notin \Sigma$.

We now start the proof of Theorem 3.2. First assume that μ is not multipliable, i.e., $2\mu \notin \Sigma$. Then we have $[\mathfrak{m}(\mu),\mathfrak{m}(\mu)] \subset \mathfrak{k}_0$ and hence $\mathfrak{m}(\mu) \in \mathcal{P}$. Consequently, if $\mu \in \Sigma_1 \cup \Sigma_3$ then it follows $n(\mu) = m(\mu)$. This proves that $n_1 = m_1$ and $n_3 = m_3$. Similarly, if $\mu \in \Sigma_2$ and $\Sigma_3 = \emptyset$ (equivalently $m_3 = 0$), then we have $n_2 = m_2$.

Next we assume that μ is multipliable, i.e., $\mu \in \Sigma_2$ and $\Sigma_3 \neq \emptyset$. This case occurs only in the case where Σ is of type BC_n . In view of Table 3, we know that such restricted roots are exhausted by the following G/K:

$$AIII_{p,q} \ (p > q \ge 1), \ CII_{p,q} \ (p > q \ge 1),$$

 $DIII_n \ (n = 2m + 1), \ EIII, \ FII.$

We also know that the multiplicity m_3 is equal to 1, 3 or 7 and that restricted roots μ satisfying $m(2\mu) > 1$ can be found only in $CII_{p,q}$ $(p > q \ge 1)$: $G^{p,q}(H)$ and $FII: P^2(Cay)$.

Now let $X \in \mathfrak{k}(2\mu)$. Then, by (2) of Lemma 3.3, we know that ad X induces a linear endomorphism of $\mathfrak{m}(\mu)$, which we denote by X^{\dagger} , i.e.,

$$X^{\dagger}(Y) = [X, Y], \quad Y \in \mathfrak{m}(\mu).$$

It is easy to see that X^{\dagger} is a skew-symmetric endomorphism of $\mathfrak{m}(\mu)$ with respect to the inner product (,).

Lemma 3.4 Let V be a subspace of $\mathfrak{m}(\mu)$. Then V is pseudo-abelian if and only if $(X^{\dagger}(V), V) = 0$ holds for any $X \in \mathfrak{k}(2\mu)$.

Proof. Let $X \in \mathfrak{k}(2\mu)$. Since

$$(X^{\dagger}(Y), Z) = ([X, Y], Z) = (X, [Y, Z]), \quad \forall Y, \forall Z \in \mathfrak{m}(\mu),$$

we have $(X^{\dagger}(V), V) = (X, [V, V])$. Hence, if $[V, V] \subset \mathfrak{k}_0$, then we have $(X^{\dagger}(V), V) = 0$. Conversely, if $(X^{\dagger}(V), V) = 0$ holds for any $X \in \mathfrak{k}(2\mu)$, then by the above equality we have $(\mathfrak{k}(2\mu), [V, V]) = 0$. This implies that $[V, V] \subset \mathfrak{k}_0$ (see (1) of Lemma 3.3). This completes the proof.

The set $\mathfrak{k}(2\mu)^{\dagger}$ composed of all X^{\dagger} ($X \in \mathfrak{k}(2\mu)$), which is a subspace of the space of endomorphisms of $\mathfrak{m}(\mu)$, has the following special feature.

Theorem 3.5 Let $\mu \in \Sigma$. Assume that μ is multipliable, i.e., $2\mu \in \Sigma$. Then:

- (1) If $m(2\mu) = 1$, then $\dim \mathfrak{m}(\mu)$ is even and there is an element I of $\mathfrak{k}(2\mu)$ such that I^{\dagger} determines a complex structure of $\mathfrak{m}(\mu)$, i.e., $I^{\dagger 2} = -\mathbf{1}_{\mathfrak{m}(\mu)}$.
- (2) If $m(2\mu) = 3$, i.e., if G/K is of type $CII_{p,q}$ $(p > q \ge 1)$, then $\dim \mathfrak{m}(\mu)$ is a multiple of 4 and there are elements I, J, K of $\mathfrak{k}(2\mu)$ such that the triplet $\{I^{\dagger}, J^{\dagger}, K^{\dagger}\}$ determines a quaternion structure of $\mathfrak{m}(\mu)$, i.e.,

$$\begin{split} &\boldsymbol{I}^{\dagger 2} = \boldsymbol{J}^{\dagger 2} = \boldsymbol{K}^{\dagger 2} = -\mathbf{1}_{\mathfrak{m}(\mu)}, \quad \boldsymbol{I}^{\dagger} \boldsymbol{J}^{\dagger} = -\boldsymbol{J}^{\dagger} \boldsymbol{I}^{\dagger} = \boldsymbol{K}^{\dagger}, \\ &\boldsymbol{J}^{\dagger} \boldsymbol{K}^{\dagger} = -\boldsymbol{K}^{\dagger} \boldsymbol{J}^{\dagger} = \boldsymbol{I}^{\dagger}, \quad \boldsymbol{K}^{\dagger} \boldsymbol{I}^{\dagger} = -\boldsymbol{I}^{\dagger} \boldsymbol{K}^{\dagger} = \boldsymbol{J}^{\dagger}. \end{split}$$

In the above (1) and (2), $\mathbf{1}_{\mathfrak{m}(\mu)}$ implies the identity mapping of $\mathfrak{m}(\mu)$.

The proof of Theorem 3.5 will be given in §6.

By virtue of Theorem 3.5, the determination of $n(\mu)$ can be reduced to an easy problem.

First consider the case where $m(2\mu)=3$, i.e., G/K is of type $CII_{p,q}$ $(p>q\geq 1)$. Let U be an arbitrary local pseudo-abelian subspace of $\mathfrak{m}(\mu)$. Denote by V the sum of four subspaces U, $I^{\dagger}(U)$, $J^{\dagger}(U)$ and $K^{\dagger}(U)$, i.e.,

$$V = U + I^{\dagger}(U) + J^{\dagger}(U) + K^{\dagger}(U).$$

We now prove that the above summation is orthogonal and that $\dim V = 4\dim U$. In fact, by Lemma 3.4 we have

$$(U, I^{\dagger}(U)) = (U, J^{\dagger}(U)) = (U, K^{\dagger}(U)) = 0.$$

Moreover, since I^{\dagger} is an orthogonal endomorphism of $\mathfrak{m}(\mu)$, we can prove

$$(I^\dagger(U),J^\dagger(U))=(U,I^\dagger J^\dagger(U))=(U,K^\dagger(U))=0.$$

Similarly, we have $(J^{\dagger}(U), K^{\dagger}(U)) = (K^{\dagger}(U), I^{\dagger}(U)) = 0$. Consequently, V is an orthogonal direct sum of four subspaces U, $I^{\dagger}(U)$, $J^{\dagger}(U)$ and $K^{\dagger}(U)$. Moreover, since $I^{\dagger 2} = J^{\dagger 2} = K^{\dagger 2} = -\mathbf{1}_{\mathfrak{m}(\mu)}$, we have $\dim I^{\dagger}(U) = \dim J^{\dagger}(U) = \dim K^{\dagger}(U) = \dim U$. Therefore, we have $\dim V = 4 \dim U \leq \dim \mathfrak{m}(\mu) = m(\mu)$, which proves that $\dim U \leq m(\mu)/4$. Since U is an arbitrary local pseudo-abelian subspace contained in $\mathfrak{m}(\mu)$, we obtain $n(\mu) \leq m(\mu)/4$.

We now show the converse. Utilizing the quaternion structure $\{I^{\dagger}, J^{\dagger}, K^{\dagger}\}$, we can get a subspace U_0 of $\mathfrak{m}(\mu)$ such that $\dim U_0 = m(\mu)/4$ and

$$\mathfrak{m}(\mu) = U_0 + I^{\dagger}(U_0) + J^{\dagger}(U_0) + K^{\dagger}(U_0)$$
 (orthogonal direct sum).

Since $(U_0, I^{\dagger}(U_0)) = (U_0, J^{\dagger}(U_0)) = (U_0, K^{\dagger}(U_0)) = 0$ and since $\{I, J, K\}$ forms a basis of $\mathfrak{k}(2\mu)$, we have $(U_0, X^{\dagger}(U_0)) = 0$ for any $X \in \mathfrak{k}(2\mu)$. This proves that U_0 is a local pseudo-abelian subspace contained in $\mathfrak{m}(\mu)$ and hence $n(\mu) \geq \dim U_0 = m(\mu)/4$. Therefore, we get the equality $n(\mu) = m(\mu)/4$ if $m(2\mu) = 3$.

In a similar manner, we can also prove that $n(\mu) = m(2\mu)/2$ for those symmetric spaces G/K satisfying $m(2\mu) = 1$.

Finally, we consider the case where G/K is of type FII, i.e., $G/K = P^2(Cay)$. We first prove

Proposition 3.6 Assume that $G/K = P^2(Cay)$ and that μ , $2\mu \in \Sigma$. Let Y be a non-zero element of $\mathfrak{m}(\mu)$. Then, $\dim[\mathfrak{k}(2\mu), Y] = 7$.

Proof. Since dim $\mathfrak{k}(2\mu) = m(2\mu) = 7$, it suffices to prove that $[X,Y] \neq 0$ for each $X \in \mathfrak{k}(2\mu)$ with $X \neq 0$. Now suppose [X,Y] = 0 holds for some $X \in \mathfrak{k}(2\mu)$. Since ad μ gives an isomorphism between $\mathfrak{m}(2\mu)$ and $\mathfrak{k}(2\mu)$, we can find $Y' \in \mathfrak{m}(2\mu)$ such that $X = [\mu, Y']$. Consequently, we have

$$[Y, [\mu, Y']] = 0.$$
 (3.1)

Applying ad μ to (3.1), we have

$$[[\mu, Y], [\mu, Y']] = 4(\mu, \mu)^{2} [Y, Y']. \tag{3.2}$$

(Note that $[\mu, [\mu, Y']] = -4(\mu, \mu)^2 Y'$.) In §5, we will prove that $Y \in \mathfrak{m}(\mu)$

and $Y' \in \mathfrak{m}(2\mu)$ must satisfy the following equality (see (1) of Lemma 5.3):

$$[[\mu, Y], [\mu, Y']] = 2(\mu, \mu)^2 [Y, Y'].$$
 (3.3)

Comparing the equalities (3.2) and (3.3), we can easily conclude [Y, Y'] = 0. This implies that two vectors Y and Y' span an abelian subspace of \mathfrak{m} . However, since $\operatorname{rank}(P^2(\boldsymbol{Cay})) = 1$, Y' must be a scalar multiple of Y. Hence we get Y' = 0, because $Y \in \mathfrak{m}(\mu)$ and $Y' \in \mathfrak{m}(2\mu)$. Thus, $X = [\mu, Y'] = 0$, proving the proposition.

We now proceed to the determination of the local pseudo-nullity $n(\mu)$ for a multipliable restricted root in $G/K = P^2(\mathbf{Cay})$. Let V be an arbitrary local pseudo-abelian subspace in $\mathfrak{m}(\mu)$. Let Y be a non-zero element of V. By Lemma 3.4 we know that V is necessarily orthogonal to $[\mathfrak{k}(2\mu), Y]$. Since $\dim[\mathfrak{k}(2\mu), Y] = 7$ and $m(\mu) = 8$, we have $\dim V \leq 1$. This proves $n(\mu) = 1 = 8/(1+7)$.

By the above discussions, we complete the proof of Theorem 3.2. \Box

We will give in Table 3 the local pseudo-nullity $\mathcal{N}(G/K) = \{n_1, n_2, n_3\}$ for each compact irreducible Riemannian symmetric space G/K with G simple.

4. Categorical pseudo-nullities $p_{cat}(G/K)$

In this section, as the second step to estimate the pseudo-nullities p(G/K), we construct pseudo-abelian subspaces of \mathfrak{m} by summing up suitable local pseudo-abelian subspaces.

Let Γ be a subset of the restricted root system Σ . Γ is called a *strongly orthogonal subset* (= SOS) in Σ if it satisfies the following:

$$\alpha, \beta \in \Gamma, \ \alpha \neq \beta \Longrightarrow \alpha \pm \beta \notin \Sigma \cup \{0\}.$$

The notion of the strongly orthogonal subsets was first introduced by Harish-Chandra (see [11]) and has been used in many places concerning geometric or representation theoretic problems. For each irreducible root system Σ we have determined the equivalence classes of maximal strongly orthogonal subsets in Σ under the action of the Weyl group $W(\Sigma)$ (see [5]).

Now let us define the notion of categorical subspace of \mathfrak{m} . Let V be a subspace of \mathfrak{m} . V is called *categorical* if the following two conditions are satisfied:

(1) V is represented by

$$V = V(0) + \sum_{\mu \in \Sigma^+} V(\mu) \quad (direct \ sum),$$

where $V(\mu) = V \cap \mathfrak{m}(\mu) \ (\mu \in \Sigma^+ \cup \{0\}).$

(2) The support Γ of V, which is defined by $\Gamma = \{ \mu \in \Sigma^+ \mid V(\mu) \neq 0 \}$, is a SOS in Σ .

The following proposition assures that there are many categorical pseudo-abelian subspaces of \mathfrak{m} .

Proposition 4.1 Let $V = V(0) + \sum_{\mu} V(\mu)$ be a categorical subspace of \mathfrak{m} and let Γ the support of V. Then, V is pseudo-abelian if and only if it satisfies:

- (1) $V(0) \perp \Gamma$, i.e., $(V(0), \Gamma) = 0$.
- (2) For each $\mu \in \Gamma$, $V(\mu)$ is a local pseudo-abelian subspace.

Proof. Let μ_1 , μ_2 be two distinct restricted roots in Γ . Then, by Proposition 2.1, we have

$$[V(\mu_1),V(\mu_2)]\subset \mathfrak{k}(\mu_1+\mu_2)+\mathfrak{k}(\mu_1-\mu_2).$$

Since Γ is a SOS, we have $\mu_1 \pm \mu_2 \notin \Sigma \cup \{0\}$. Hence, $[V(\mu_1), V(\mu_2)] = 0$. Therefore, it is easy to see that V is pseudo-abelian if and only if

$$[V(0), V(\mu)] \subset \mathfrak{k}(0), \tag{4.1}$$

$$[V(\mu), V(\mu)] \subset \mathfrak{k}(0) \tag{4.2}$$

hold for each $\mu \in \Gamma$. Obviously, (4.2) implies that $V(\mu)$ is a local pseudo-abelian subspace. On the other hand, (4.1) is equivalent to $[V(0), V(\mu)] = 0$, because $[V(0), V(\mu)] \subset [\mathfrak{a}, \mathfrak{m}(\mu)] \subset \mathfrak{k}(\mu)$. It is easy to verify that $[V(0), V(\mu)] = 0$ holds if and only if $(V(0), \mu) = 0$.

Let \mathcal{P}_{cat} denote the family of all categorical pseudo-abelian subspaces of \mathfrak{m} . We denote by $p_{cat}(G/K)$ the maximum dimension of categorical pseudo-abelian subspaces of \mathfrak{m} , i.e.,

$$p_{cat}(G/K) = \max\{\dim V \mid V \in \mathcal{P}_{cat}\}.$$

The integer $p_{cat}(G/K)$ is called the *categorical pseudo-nullity* of G/K. In the following we will determine the pseudo-nullities $p_{cat}(G/K)$ for all compact, irreducible Riemannian symmetric spaces G/K with G simple.

Let \mathcal{SOS} be the family of all SOS's in Σ . For each $\Gamma \in \mathcal{SOS}$ we define a quantity $b(\Gamma) \in \mathbf{Z}$ by

$$b(\varGamma) = \operatorname{rank}(G/K) - \#\varGamma + \sum_{\mu \in \varGamma} n(\mu).$$

Then we can prove

Proposition 4.2 $p_{cat}(G/K) = \max\{b(\Gamma) \mid \Gamma \in \mathcal{SOS}\}.$

Proof. Let V be an element of \mathcal{P}_{cat} and Γ be the support of V. We note that since any distinct elements of Γ are mutually orthogonal, we have $\dim \mathbf{R}\Gamma = \#\Gamma$ (see [5]). Consequently, we have $\dim V(0) \leq \dim \mathfrak{a} - \#\Gamma$ and $\dim V(\mu) \leq n(\mu)$ for each $\mu \in \Gamma$ (see Proposition 4.1). Therefore, $\dim V \leq b(\Gamma)$ and hence $p_{cat}(G/K) \leq \max_{\Gamma} \{b(\Gamma)\}$.

Now we show the converse. Let $\Gamma \in \mathcal{SOS}$. Then, there is a categorical pseudo-abelian subspace V whose support coincides with Γ . In fact, define V by $V = R\Gamma^{\perp} + \sum_{\mu \in \Gamma} U(\mu)$, where $R\Gamma^{\perp}$ denotes the orthogonal complement of $R\Gamma$ in \mathfrak{a} and $U(\mu)$ a pseudo-abelian subspace of $\mathfrak{m}(\mu)$ such that $\dim U(\mu) = n(\mu)$. Then, it is easy to see that $V \in \mathcal{P}_{cat}$ and $\dim V = b(\Gamma)$. This proves $p_{cat}(G/K) \geq \max_{\Gamma} \{b(\Gamma)\}$.

The following assertion is fundamental to calculate $p_{cat}(G/K)$.

Proposition 4.3 (1) b is invariant under the action of the Weyl group of Σ , i.e., $b(w\Gamma) = b(\Gamma)$ holds for any $w \in W(\Sigma)$ and $\Gamma \in \mathcal{SOS}$. (2) Let Γ , $\Gamma' \in \mathcal{SOS}$. Suppose that $\Gamma \subset \Gamma'$. Then $b(\Gamma) \leq b(\Gamma')$.

Proof. It is obvious that $w\Gamma \in \mathcal{SOS}$, $\#(w\Gamma) = \#\Gamma$. Since $n(w\mu) = n(\mu)$ (see Proposition 3.1), we have $b(w\Gamma) = b(\Gamma)$. This proves (1).

By the definition, we easily have

$$b(\Gamma') - b(\Gamma) = -\#(\Gamma' \setminus \Gamma) + \sum_{\mu \in \Gamma' \setminus \Gamma} n(\mu) = \sum_{\mu \in \Gamma' \setminus \Gamma} (n(\mu) - 1).$$

Since every one-dimensional subspace of $\mathfrak{m}(\mu)$ is pseudo-abelian, we have $n(\mu) \geq 1$, and hence we get $b(\Gamma') \geq b(\Gamma)$.

In view of (2) of Proposition 4.3 we know that in order to determine $p_{cat}(G/K)$ we have only to calculate $b(\Gamma)$ for maximal SOS's in Σ . In [5], for each irreducible root system Σ , we determined the equivalence classes of maximal SOS's in Σ under the action of the Weyl group $W(\Sigma)$ and

obtained the representative maximal SOS for each equivalence class (see §§3–5 of [5]). By (1) of Proposition 4.3 we can also restrict our calculations to these representatives Γ .

We now recall the conclusions of [5] more closely. Let Γ be a maximal SOS in Σ . First assume that Σ is isomorphic to a reduced, irreducible root system X_n ($X = A \sim G$), where n implies the rank of G/K. Then, in the terminology in [5], Γ is equivalent to $\Gamma(X_n)^s$, where the superscript s indicates the cardinality of the set of short roots contained in Γ , i.e., $s = \#(\Gamma \cap \Sigma_2)$ (see §3 and §5 of [5]). According to the type of Σ , s takes a value in Table 1.

Type of Σ	Range
$A_n (n \ge 1), D_n (n \ge 4), E_i (i = 6, 7, 8)$	s = 0
$B_n (n=2m+1, m \geq 1), G_2$	s = 1
$B_n (n = 2m, m \ge 1), F_4$	$0 \le s \le 1$
$C_n \ (n \geq 3)$	$0 \le s \le [n/2]$

Table 1. Range of s.

Next assume that Σ is not reduced, i.e., Σ is isomorphic to BC_n $(n = \operatorname{rank}(G/K))$. Then Γ is equivalent to $\Gamma(BC_n)^{r,s}$ $(0 \le r \le 1, 0 \le s \le [(n - r)/2])$, where the superscript r implies the number of multipliable roots in Γ and s implies the number of roots in Γ which are not multipliable nor divisible (see §4 of [5]). In our terminology, we have $r = \#(\Gamma \cap \Sigma_2)$ and $s = \#(\Gamma \cap \Sigma_1)$.

These being prepared, we prove the main result of this paper:

Theorem 4.4 Let Σ be the restricted root system of a compact irreducible Riemannian symmetric space G/K with G simple. Let $\mathcal{N}(G/K) = \{n_1, n_2, n_3\}$ be the local pseudo-nullities of G/K. Then:

(1) Assume that Σ is isomorphic to a reduced, irreducible root system $X_n(X = A \sim G)$, where n = rank(G/K). Then:

$$p_{cat}(G/K) = \operatorname{rank}(G/K) + \max_{s} \{(n_1 - 1) \# \Gamma(X_n)^s + (n_2 - n_1)s\},$$

where s runs through the range listed in Table 1.

(2) Assume that Σ is isomorphic to BC_n $(n = \operatorname{rank}(G/K))$. Then:

$$p_{cat}(G/K) = n_3 \operatorname{rank}(G/K) + \max_{(r,s)} \{(n_2 - n_3)r + (n_1 - 2n_3 + 1)s\},$$

where the pair (r, s) satisfies $0 \le r \le 1$ and $0 \le s \le \lfloor (n - r)/2 \rfloor$.

Proof. Let Γ be a maximal SOS in Σ . We set $\Gamma_i = \Gamma \cap \Sigma_i$ (i = 1, 2, 3). Then by the definition of $b(\Gamma)$ we easily have

$$b(\Gamma) = \operatorname{rank}(G/K) - \#\Gamma + n_1 \#\Gamma_1 + n_2 \#\Gamma_2 + n_3 \#\Gamma_3.$$

If Σ is isomorphic to X_n ($X = A \sim G$) and if Γ is equivalent to $\Gamma(X_n)^s$, then we have $\#\Gamma = \#\Gamma(X_n)^s$, $\#\Gamma_3 = 0$, $\#\Gamma_2 = s$ and $\#\Gamma_1 = \#\Gamma - s$. Putting these equalities into the above formula of $b(\Gamma)$, we obtain the assertion (1).

On the other hand, if Σ is isomorphic to BC_n and if Γ is equivalent to $\Gamma(BC_n)^{r,s}$, then we have $\#\Gamma = \#\Gamma(BC_n)^{r,s} = n - s$ (see Theorem 4.1 in [5]), $\#\Gamma_1 = s$, $\#\Gamma_2 = r$ and $\#\Gamma_3 = \#\Gamma - r - s$. Putting these equalities into the formula of $b(\Gamma)$, we have the assertion (2).

The result of the calculations of $p_{cat}(G/K)$ is summarized in Table 4 and Table 5. Details are left to the reader.

The categorical pseudo-nullity $p_{cat}(G/K)$ gives a fairly good estimate of the pseudo-nullity p(G/K). It is expected that the equality $p(G/K) = p_{cat}(G/K)$ holds for many compact irreducible Riemannian symmetric spaces G/K. Here we show the examples satisfying the above equality.

Example 1 (Case of the spheres $S^p(p \ge 2)$) In view of Table 4, we have $p_{cat}(S^p) = p - 1$ ($p \ge 2$) (see the types BII_p and DII_p). This proves that $p(S^p) = p_{cat}(S^p)$ ($p \ge 2$).

Example 2 (Case of G/K with $\operatorname{rank}(G/K) = \operatorname{rank}(G)$) For these spaces G/K we have proved $p(G/K) = \operatorname{rank}(G/K)$ (see Proposition 2.3 of [3]). Since, in our terminology, \mathfrak{a} is a categorical pseudo-abelian subspace of \mathfrak{m} , we have $p_{cat}(G/K) \geq \dim \mathfrak{a} = \operatorname{rank}(G/K)$, proving $p_{cat}(G/K) = p(G/K)$.

In the next section we will prove that the equality $p(G/K) = p_{cat}(G/K)$ holds for all compact rank one Riemannian symmetric spaces G/K except $P^2(C)$.

In the rest of this section we consider the case where G/K is a compact simple Lie group. Let G be a compact connected simple Lie group and \mathfrak{g} be the Lie algebra of G. As is well-known, G endowed with a bi-invariant

metric can be represented by a compact, irreducible Riemannian symmetric space $G = \widetilde{G}/\widetilde{K}$, where $\widetilde{G} = G \times G$ and \widetilde{K} denotes the diagonal subgroup of $G \times G$. In this and the previous sections we have developed our discussions for compact irreducible Riemannian symmetric spaces G/K with G simple. We note that these discussions are also valid for $\widetilde{G}/\widetilde{K}$. For example, the notions of restricted roots, multiplicities, (local) pseudo-nullities and strongly orthogonal subsets, etc. can also be well defined. In addition, the notion of categorical pseudo-nullities $p_{cat}(\widetilde{G}/\widetilde{K})$ can also be defined and Proposition 4.2 is true under this situation.

In [3] we have proved an inequality concerning $p(\widetilde{G}/\widetilde{K})$, which can be expressed as $p(\widetilde{G}/\widetilde{K}) \geq \operatorname{rank}(G) + s_0(G)$ in the terminology of this paper (see Proposition 6.3 of [3]), where $s_0(G)$ denotes the integer given by

$$s_0(G) = \left\{ egin{array}{ll} [(n+1)/2], & \emph{if} \ \mathfrak{g} \cong \mathfrak{su}(n+1), \ 2[n/2], & \emph{if} \ \mathfrak{g} \cong \mathfrak{o}(2n), \ 4, & \emph{if} \ \mathfrak{g} \cong \mathfrak{e}_6, \ \mathrm{rank}(G), & \emph{otherwise}. \end{array}
ight.$$

Here, let us reconsider the above estimate $p(\widetilde{G}/\widetilde{K}) \ge \operatorname{rank}(G) + s_0(G)$ in the line of this paper. Then we can prove:

Proposition 4.5 Let $G = \widetilde{G}/\widetilde{K}$ be a compact simple Lie group. Then

$$p_{cat}(\widetilde{G}/\widetilde{K}) = \operatorname{rank}(G) + s_0(G).$$

Proof. It is well-known that the Lie algebra $\widetilde{\mathfrak{g}}$ (resp. $\widetilde{\mathfrak{k}}$) of \widetilde{G} (resp. \widetilde{K}) is given by $\widetilde{\mathfrak{g}} = \mathfrak{g} \oplus \mathfrak{g}$ (resp. $\widetilde{\mathfrak{k}} = \{(X,X) \in \mathfrak{g} \oplus \mathfrak{g} \mid X \in \mathfrak{g}\}$). Putting $\widetilde{\mathfrak{m}} = \{(X,-X) \in \mathfrak{g} \oplus \mathfrak{g} \mid X \in \mathfrak{g}\}$, we get the canonical decomposition $\widetilde{\mathfrak{g}} = \widetilde{\mathfrak{k}} \oplus \widetilde{\mathfrak{m}}$. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{g} . Then $\widetilde{\mathfrak{t}} = \mathfrak{t} \oplus \mathfrak{t}$ defines a Cartan subalgebra of $\widetilde{\mathfrak{g}}$ and $\widetilde{\mathfrak{a}} = \{(H,-H) \in \widetilde{\mathfrak{m}} \mid H \in \mathfrak{t}\}$ defines a maximal abelian subspace of $\widetilde{\mathfrak{m}}$.

Let Δ (resp. $\widetilde{\Delta}$) be the set of non-zero roots of \mathfrak{g}^c (resp. $\widetilde{\mathfrak{g}}^c$) with respect to \mathfrak{t} (resp. $\widetilde{\mathfrak{t}}$). As is known, $\widetilde{\Delta}$ is composed of roots written in the form $\alpha^+ = (\alpha,0)$ or $\alpha^- = (0,-\alpha)$, where $\alpha \in \Delta$. Since $\alpha^+_{\widetilde{\mathfrak{a}}} = \alpha^-_{\widetilde{\mathfrak{a}}} = 1/2 \cdot (\alpha,-\alpha)$, the set of non-zero restricted roots associated with the Riemannian symmetric pair $(\widetilde{G},\widetilde{K})$ can be written by $\widetilde{\Sigma} = \{1/2 \cdot (\alpha,-\alpha) \mid \alpha \in \Delta\}$.

By these facts we can verify the following:

(1) $m(\mu) = 2$ holds for each restricted root $\mu \in \widetilde{\Sigma}$.

- (2) $\widetilde{\Sigma}$ does not contain any multipliable root. Accordingly, $n(\mu) = m(\mu) = 2$ holds for each $\mu \in \widetilde{\Sigma}$.
- (3) For each SOS $\widetilde{\Gamma}$ in $\widetilde{\Sigma}$, there is a SOS Γ in Δ such that $\widetilde{\Gamma} = \{1/2 \cdot (\gamma, -\gamma) \mid \gamma \in \Gamma\}$.

By Proposition 4.2 and the above (1), (2) and (3) we have $p_{cat}(\tilde{G}/\tilde{K}) = \text{rank}(\mathfrak{g}) + \max_{\Gamma} \{\#\Gamma\}$, where Γ runs over all SOS's in Δ . In [5], we have determined maximal SOS's in Δ for all irreducible root systems Δ . In view of Theorems 3.1 and 5.1 of [5], we easily get the equality $\max_{\Gamma} \{\#\Gamma\} = s_0(G)$, which proves our proposition.

In [3] and [4], we have shown that $p(\widetilde{G}/\widetilde{K}) = \operatorname{rank}(G) + s_0(G)$ holds for the following compact simple Lie groups G:

$$SU(n) (2 \le n \le 5), SO(n) (3 \le n \le 9, n \ne 4), Sp(n) (n \ge 1), G_2.$$

Proposition 4.5 indicates that $p(\widetilde{G}/\widetilde{K}) = p_{cat}(\widetilde{G}/\widetilde{K})$ holds for these compact simple Lie groups. We conjecture that the equality $p(\widetilde{G}/\widetilde{K}) = p_{cat}(\widetilde{G}/\widetilde{K})$ holds for all compact simple Lie groups $G = \widetilde{G}/\widetilde{K}$.

5. Compact rank one symmetric spaces

Let G/K be a compact rank one Riemannian symmetric space not isomorphic to any sphere S^n , i.e., G/K is one of the following Riemannian symmetric spaces:

- (1) The complex projective spaces $P^n(C)$ $(n \ge 2)$.
- (2) The quaternion projective spaces $P^n(\mathbf{H})$ $(n \ge 2)$.
- (3) The Cayley projective plane $P^2(Cay)$.

The purpose of this section is to calculate the pseudo-nullities p(G/K) for G/K listed above. We prove

Theorem 5.1 Let G/K be a compact rank one Riemannian symmetric space not isomorphic to any sphere S^n . Then:

$$p(G/K) = \begin{cases} p_{cat}(G/K) & \text{if } G/K = P^n(C) \ (n \ge 3), \\ P^n(H) \ (n \ge 2) & \text{or } P^2(Cay), \\ 2 & \text{if } G/K = P^2(C). \end{cases}$$

Before proceeding to the proof, we exhibit several basic data on G/K. In view of Table 3, we know that the restricted root system Σ of G/K is

7

isomorphic to BC_1 . Now let us take and fix a multipliable root $\mu \in \Sigma$. Then we have the following decomposition:

$$\mathfrak{m} = \mathfrak{a} + \mathfrak{m}(\mu) + \mathfrak{m}(2\mu)$$
 (orthogonal direct sum), $\mathfrak{a} = \mathbf{R}\mu$.

Further, from Tables 3, 4 and 5, we get

 $P^2(Cay)$

FII

Type G/K $n(\mu)$ $n(2\mu) (= m(2\mu))$ $p_{cat}(G/K)$ $AIII_{n,1}$ $P^n(C)$ $(n \ge 2)$ n-1 1 n-1 $CII_{n,1}$ $P^n(H)$ $(n \ge 2)$ n-1 3 $\max\{3, n-1\}$

1

Table 2. Basic data for rank one symmetric spaces.

We now proceed to the proof of Theorem 5.1. To prove the theorem we have to estimate the dimensions of non-categorical pseudo-abelian subspaces. It can be shown that the dimension of any non-categorical pseudo-abelian subspace is fairly small. In fact, we have

Proposition 5.2 (1) Let V be a non-categorical pseudo-abelian subspace of \mathfrak{m} . Then the inequality dim $V \leq 2$ holds.

(2) If $G/K = P^n(C)$ $(n \ge 2)$, there is a non-categorical pseudo-abelian subspace V satisfying dim V = 2.

As is easily seen, Theorem 5.1 immediately follows from this proposition and Table 2.

For the proof of Proposition 5.2 we prepare several lemmas.

Lemma 5.3 Let $Y_1 \in \mathfrak{m}(\mu)$ and $Y_2 \in \mathfrak{m}(2\mu)$. Then:

- (1) $[[\mu, Y_1], [\mu, Y_2]] = 2(\mu, \mu)^2 [Y_1, Y_2].$
- (2) $[[\mu, Y_2], Y_1] = 2[[\mu, Y_1], Y_2].$

Proof. We first note that $[Y_1,Y_2]\in\mathfrak{k}(\mu)$ (see Proposition 2.1). Consequently, we have

$$(ad \mu)^2 [Y_1, Y_2] = -(\mu, \mu)^2 [Y_1, Y_2].$$

Since $(\operatorname{ad} \mu)^2 Y_1 = -(\mu, \mu)^2 Y_1$, $(\operatorname{ad} \mu)^2 Y_2 = -4(\mu, \mu)^2 Y_2$, we have

$$(\operatorname{ad} \mu)^{2}[Y_{1}, Y_{2}] = [(\operatorname{ad} \mu)^{2}Y_{1}, Y_{2}] + 2[[\mu, Y_{1}], [\mu, Y_{2}]] + [Y_{1}, (\operatorname{ad} \mu)^{2}Y_{2}]$$
$$= 2[[\mu, Y_{1}], [\mu, Y_{2}]] - 5(\mu, \mu)^{2}[Y_{1}, Y_{2}].$$

Hence we immediately get the equality (1).

The equality (2) can be easily obtained by applying ad μ to the equality (1).

Lemma 5.4 Let V be an arbitrary pseudo-abelian subspace of \mathfrak{m} .

- (1) If $V \not\subset \mathfrak{m}(\mu)$, then dim $V \leq 1 + m(2\mu)$.
- (2) If $V \not\subset \mathfrak{m}(2\mu)$, then dim $V \leq 1 + n(\mu)$.

Proof. First we show the assertion (1). Since $V \not\subset \mathfrak{m}(\mu)$, V contains an element $Y = H + Y_1 + Y_2$ ($H \in \mathfrak{a}$, $Y_1 \in \mathfrak{m}(\mu)$, $Y_2 \in \mathfrak{m}(2\mu)$) such that $H + Y_2 \neq 0$. Let Y' be an arbitrary element of $V \cap \mathfrak{m}(\mu)$. Then we have

$$[Y,Y'] = [H+Y_2,Y'] + [Y_1,Y'] \in \mathfrak{k}_0.$$

Since $[H+Y_2,Y'] \in \mathfrak{k}(\mu)$ and $[Y_1,Y'] \in \mathfrak{k}_0 + \mathfrak{k}(2\mu)$ (see Proposition 2.1), we have $[H+Y_2,Y']=0$. This implies that the subspace spanned by $H+Y_2$ and Y' is an abelian subspace of \mathfrak{m} . Since $\operatorname{rank}(G/K)=1$, it follows that Y' must be a scalar multiple of $H+Y_2$. This proves Y'=0, because $H+Y_2 \in \mathfrak{a} + \mathfrak{m}(2\mu)$, $Y' \in \mathfrak{m}(\mu)$. Hence we have $V \cap \mathfrak{m}(\mu)=0$. Consequently, we have $\dim V \leq \dim(\mathfrak{a} + \mathfrak{m}(2\mu)) = 1 + m(2\mu)$.

Next we show the assertion (2). As in the proof of (1), we can prove that $V \cap \mathfrak{m}(2\mu) = 0$. Set $r = \dim V$. Since $\dim(V \cap (\mathfrak{m}(\mu) + \mathfrak{m}(2\mu))) \geq r - 1$, we get elements $Y^i = Y_1^i + Y_2^i \in V$ $(1 \leq i \leq r - 1)$ such that $Y_1^i \in \mathfrak{m}(\mu)$ and $Y_2^i \in \mathfrak{m}(2\mu)$. Moreover, since $V \cap \mathfrak{m}(2\mu) = 0$, we may assume that the vectors $\{Y_1^i (1 \leq i \leq r - 1)\}$ are linearly independent. Now, since $[Y^i, Y^j] \in \mathfrak{k}_0$, we have

$$[Y_1^i + Y_2^i, Y_1^j + Y_2^j] \in \mathfrak{k}_0.$$

On the other hand, since $[Y_2^i,Y_2^j] \in \mathfrak{k}_0$, $[Y_1^i,Y_1^j] \in \mathfrak{k}_0 + \mathfrak{k}(2\mu)$ and $[Y_1^i,Y_2^j] + [Y_2^i,Y_1^j] \in \mathfrak{k}(\mu)$, we have

$$\left[Y_1^i,Y_1^j\right]\in\mathfrak{k}_0,\quad 1\leq i,\,j\leq r-1.$$

This implies that the subspace spanned by $\{Y_1^i (1 \le i \le r-1)\}$ is a local pseudo-abelian subspace in $\mathfrak{m}(\mu)$. This proves that $r-1 \le n(\mu)$, completing the proof of the assertion (2).

Lemma 5.5 Let V be a non-categorical pseudo-abelian subspace of \mathfrak{m} . Then:

$$\dim V \le \min\{1 + m(2\mu), 1 + n(\mu)\}.$$

Proof. Since V is not categorical, it follows that $V \not\subset \mathfrak{m}(\mu)$ and $V \not\subset \mathfrak{m}(2\mu)$. Therefore, by the above lemma we have $\dim V \leq 1 + m(2\mu)$ and $\dim V \leq 1 + n(\mu)$.

Proof of Proposition 5.2. By Lemma 5.5, we can prove (1) of Proposition 5.2 for the spaces $P^n(C)$ $(n \ge 2)$, $P^2(H)$ and $P^2(Cay)$. In fact, we have $m(2\mu) = 1$ if $G/K = P^n(C)$ $(n \ge 2)$ and $n(\mu) = 1$ if $G/K = P^2(H)$ or $P^2(Cay)$.

Next, we directly show (1) for the remaining spaces $G/K = P^n(\boldsymbol{H})$ ($n \geq 3$). Suppose that there is a non-categorical pseudo-abelian subspace V with dim $V \geq 3$. As in the proof of Lemma 5.4, we may assume that there are two elements $Y = Y_1 + Y_2$, $Y' = Y_1' + Y_2' \in V$ ($Y_1, Y_1' \in \mathfrak{m}(\mu), Y_2, Y_2' \in \mathfrak{m}(2\mu)$) such that Y_1 and Y_1' are linearly independent and the subspace $\{Y_1, Y_1'\}$ is pseudo-abelian. Further, since $[Y_2, Y_2'] \in \mathfrak{k}_0 + \mathfrak{k}(2\mu)$ and $[Y_2, Y_1'] + [Y_1, Y_2'] \in \mathfrak{k}(\mu)$, we have

$$[Y_2, Y_1'] = [Y_2', Y_1]. \tag{5.1}$$

By Lemma 3.4 we know that the condition $[Y_1,Y_1']\in\mathfrak{k}_0$ is equivalent to

$$(Y_1', I^{\dagger}Y_1) = (Y_1', J^{\dagger}Y_1) = (Y_1', K^{\dagger}Y_1) = 0.$$
 (5.2)

(Note that $\mathfrak{k}(2\mu)$ is spanned by I, J and K.) Applying $\mathrm{ad}\,\mu$ to the equality (5.1), we have

$$[[\mu, Y_2], Y_1'] + [Y_2, [\mu, Y_1']] = [[\mu, Y_2'], Y_1] + [Y_2', [\mu, Y_1]].$$

Using (2) of Lemma 5.3, we have

$$X_2^{\dagger}(Y_1') = X_2'^{\dagger}(Y_1), \tag{5.3}$$

where we set $X_2 = [\mu, Y_2]$, $X_2' = [\mu, Y_2']$. Applying X_2^{\dagger} to the both sides of (5.3), we have

$$(X_2^{\dagger})^2(Y_1') = X_2^{\dagger} X_2'^{\dagger}(Y_1). \tag{5.4}$$

Since X_2^{\dagger} and $X_2'^{\dagger}$ are linear combinations of I^{\dagger} , J^{\dagger} and K^{\dagger} , it follows that $(X_2^{\dagger})^2 = c \ \mathbf{1}_{\mathfrak{m}(\mu)} \ (c \in \mathbf{R}, \ c \neq 0)$ and $X_2^{\dagger} X_2'^{\dagger}$ is written as a linear

combination of $\mathbf{1}_{\mathfrak{m}(\mu)}$, I^{\dagger} , J^{\dagger} and K^{\dagger} . Consequently, by (5.4) we know that Y_1' can be written as a linear combination of Y_1 , $I^{\dagger}(Y_1)$, $J^{\dagger}(Y_1)$ and $K^{\dagger}(Y_1)$. This together with (5.2), we can conclude that Y_1' is written by a scalar multiple of Y_1 . This contradicts the assumption that Y_1 and Y_1' are linearly independent. Therefore, we have dim $V \leq 2$.

Finally, we prove (2) of Proposition 5.2. Assume that $G/K = P^n(C)$ $(n \ge 2)$. Take a non-zero element $Y \in \mathfrak{m}(\mu)$ satisfying $(Y,Y) = 2(\mu,\mu)^2(I,I)$ and consider a subspace $V \subset \mathfrak{m}$ spanned by $\mu + Y$ and $[I,\mu - 2Y]$. Then it is easily shown that $\dim V = 2$, because $(0 \ne)[I,\mu - 2Y] \in \mathfrak{m}(\mu) + \mathfrak{m}(2\mu)$ but $\mu + Y \not\in \mathfrak{m}(\mu) + \mathfrak{m}(2\mu)$. Let us show V is pseudo-abelian. To show this we have to prove

$$\left[\mu + Y, \left[I, \mu - 2Y\right]\right] \in \mathfrak{k}_0.$$

By (1) of Lemma 5.3 and $(\operatorname{ad} \mu)^2 I = -4(\mu, \mu)^2 I$ we have

$$\begin{split} \left[I, \left[\mu, Y\right]\right] &= \left[-\frac{1}{4(\mu, \mu)^2} \left[\mu, \left[\mu, I\right]\right], \left[\mu, Y\right]\right] \\ &= -\frac{2(\mu, \mu)^2}{4(\mu, \mu)^2} \left[\left[\mu, I\right], Y\right] \\ &= -\frac{1}{2} \left[\left[\mu, I\right], Y\right]. \end{split}$$

Consequently, we have

$$[\mu, [I, Y]] = [[\mu, I], Y] + [I, [\mu, Y]] = \frac{1}{2}[[\mu, I], Y].$$

Therefore, by a simple calculation we have

$$[\mu + Y, [I, \mu - 2Y]] = 2 \{2(\mu, \mu)^2 I - [Y, [I, Y]]\}.$$

We note that the right hand side of the above equality is contained in $\mathfrak{k}_0 + \mathfrak{k}(2\mu)$. Since $\mathfrak{k}(2\mu) = RI$ and since

$$(I, 2(\mu, \mu)^2 I - [Y, [I, Y]]) = 2(\mu, \mu)^2 (I, I) - ([I, Y], [I, Y])$$

= 2(\mu, \mu)^2 (I, I) - (Y, Y) = 0,

we have $[\mu + Y, [I, \mu - 2Y]] \in \mathfrak{k}_0$. Therefore, we get (2) of Proposition 5.2.

By Theorem 5.1 we obtain the non-existence theorem:

Г

Theorem 5.6 Let G/K be a compact rank one Riemannian symmetric space not isomorphic to any sphere S^n . Define an integer q(G/K) by

$$q(G/K) = \begin{cases} \min\{4n - 2, 3n + 1\}, & \text{if } G/K = P^n(C) \ (n \ge 2), \\ \min\{8n - 3, 7n + 1\}, & \text{if } G/K = P^n(H) \ (n \ge 2), \\ 25, & \text{if } G/K = P^2(Cay). \end{cases}$$

Then, any open set of G/K cannot be isometrically imbedded into the Euclidean space \mathbb{R}^N with $N \leq q(G/K) - 1$.

Finally, we refer to the result of Agaoka [1] concerning the non-existence of isometric imbeddings of $P^n(C)$. He investigated directly the solvability of the Gauss equation associated with isometric imbeddings of $P^n(C)$, and obtained the following

Proposition 5.7 ([1]) Any open set of the complex projective space $P^n(C)$ cannot be isometrically imbedded into the Euclidean space \mathbb{R}^N with $N \leq [16n/5] - 1$.

As is easily seen, Agaoka's result is stronger than ours in case n is large enough $(n \ge 10)$. It is noted that in such a case the least dimension of Euclidean spaces into which $P^n(C)$ is (locally) isometrically imbedded cannot be determined only by $p(P^n(C))$. This is an interesting phenomenon compared with the spaces Sp(n)/U(n) and Sp(n), where the least dimensions are just determined by p(G/K) (see [3] and [4]).

For the spaces $P^2(\mathbf{H})$ and $P^2(\mathbf{Cay})$, we can get stronger results than Theorem 5.6, which will be shown in the forthcoming papers [7] and [8].

6. Proof of Theorem 3.5

In this section we prove Theorem 3.5. Before starting the proof, we prepare some lemmas. We follow the notations used in Introduction and §2.

Let G/K be a compact irreducible Riemannian symmetric space with G simple. Let τ be the conjugation of \mathfrak{g}^c with respect to \mathfrak{g} . As is known (see [2]), there is a set of vectors $\{Z_{\alpha} \in \mathfrak{g}_{\alpha} \mid \alpha \in \Delta\}$ of \mathfrak{g}^c satisfying

- (1) $\theta Z_{\alpha} = Z_{\theta\alpha}, \quad \tau Z_{\alpha} = Z_{-\alpha},$
- (2) $\left[Z_{\alpha}, Z_{-\alpha}\right] = 2\sqrt{-1} \alpha/(\alpha, \alpha).$

Let $\alpha, \beta \in \Delta$. We define an integer $A_{\alpha,\beta}$ by $A_{\alpha,\beta} = 2(\alpha,\beta)/(\beta,\beta)$. The

following formula, which is a well-known fact in the theory of Lie algebras (see [12]):

Lemma 6.1 Assume that $\alpha + \beta \notin \Delta \cup \{0\}$. Then:

ad
$$Z_{\beta}(\operatorname{ad} Z_{-\beta})^{k}(Z_{\alpha}) = k \left(-A_{\alpha,\beta} + k - 1\right) \left(\operatorname{ad} Z_{-\beta}\right)^{k-1}(Z_{\alpha}),$$

 $k \in \mathbb{Z}, k > 0.$

Let us set $\Delta_0 = \Delta \cap \mathfrak{b}$. For a root $\alpha \in \Delta \setminus \Delta_0$, we define a subspace $\mathfrak{g}(\alpha)$ of \mathfrak{g}^c by

$$\mathfrak{g}(\alpha) = \mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha} + \mathfrak{g}_{\theta\alpha} + \mathfrak{g}_{-\theta\alpha}.$$

As is easily seen, $\mathfrak{g}(\alpha)$ satisfies the following properties:

Lemma 6.2 Let $\alpha \in \Delta \setminus \Delta_0$. Then:

- (1) $g(\alpha) = g(-\alpha) = g(\theta\alpha) = g(-\theta\alpha)$.
- (2) $\dim \mathfrak{g}(\alpha) = 4$ if $\theta \alpha \neq -\alpha$; $\dim \mathfrak{g}(\alpha) = 2$ if $\theta \alpha = -\alpha$.
 - (3) Let $\beta \in \Delta \setminus \Delta_0$ satisfy $\beta \neq \pm \alpha$, $\pm \theta \alpha$. Then $\mathfrak{g}(\beta)$ is orthogonal to $\mathfrak{g}(\alpha)$ with respect to the inner product (,), i.e., $(\mathfrak{g}(\alpha),\mathfrak{g}(\beta)) = 0$.

We also have the following lemma whose proof is left to the reader.

Lemma 6.3 Let Σ be the restricted root system of G/K and $\mu \in \Sigma$. Then:

- (1) Let $\alpha \in \Delta(\mu)$. Then $-\theta \alpha \in \Delta(\mu)$.
- (2) The following decomposition holds:

$$\mathfrak{k}(\mu)^c + \mathfrak{m}(\mu)^c = \sum_{\alpha \in \Delta(\mu), -\theta\alpha \le \alpha} \mathfrak{g}(\alpha) \quad (orthogonal \ direct \ sum).$$

(3) Let $\alpha \in \Delta(\mu)$. Define vectors $X(\alpha)^{\pm}$ and $Y(\alpha)^{\pm}$ of $\mathfrak{g}(\alpha)$ by

$$X(\alpha)^{+} = Z_{\alpha} + Z_{-\alpha} + Z_{\theta\alpha} + Z_{-\theta\alpha},$$

$$X(\alpha)^{-} = \sqrt{-1} \left(Z_{\alpha} - Z_{-\alpha} + Z_{\theta\alpha} - Z_{-\theta\alpha} \right),$$

$$Y(\alpha)^{+} = \sqrt{-1} \left(Z_{\alpha} - Z_{-\alpha} - Z_{\theta\alpha} + Z_{-\theta\alpha} \right),$$

$$Y(\alpha)^{-} = Z_{\alpha} + Z_{-\alpha} - Z_{\theta\alpha} - Z_{-\theta\alpha}.$$

Then, it holds that $X(\alpha)^{\pm} \in \mathfrak{k}(\mu)$, $Y(\alpha)^{\pm} \in \mathfrak{m}(\mu)$ and $X(-\theta\alpha)^{\pm} = \pm X(\alpha)^{\pm}$, $Y(-\theta\alpha)^{\pm} = \pm Y(\alpha)^{\pm}$.

(4) The set of vectors $\{X(\alpha)^{\pm} \mid \alpha \in \Delta(\mu)\}\ (resp.\ \{Y(\alpha)^{\pm} \mid \alpha \in \Delta(\mu)\})$ spans $\mathfrak{k}(\mu)$ (resp. $\mathfrak{m}(\mu)$).

These being prepared, we start the proof of Theorem 3.5. In the following we assume that Σ is of type BC_n and $\mu \in \Sigma$ is a multipliable root, i.e., $2\mu \in \Sigma$. Under this assumption, we have $m(\mu) = even$, $m(2\mu) = odd$ and $\mu \notin \Delta$, $2\mu \in \Delta$ (see [9] or Table 3).

We first prove

Proposition 6.4 (1) Let $\alpha \in \Delta(\mu)$. Then $A_{\alpha,2\mu} = 1$ and $\alpha - 2\mu \in \Delta$, but $\alpha + 2\mu \notin \Delta \cup \{0\}$.

(2) Set $I = Z_{2\mu} + Z_{-2\mu}$. Then $I \in \mathfrak{k}(2\mu)$ and I^{\dagger} determines a complex structure of $\mathfrak{m}(\mu)$, i.e., $I^{\dagger 2} = -\mathbf{1}_{\mathfrak{m}(\mu)}$.

Proof. It is clear that $I \in \mathfrak{k}(2\mu)$. Now let $\alpha \in \Delta(\mu)$. We consider the 2μ -series of roots containing α . Since $A_{\alpha,2\mu} = 2(\alpha,2\mu)/(2\mu,2\mu) = 1$, it follows that $\alpha - 2\mu \in \Delta$. On the contrary, since the \mathfrak{a} -component of $\alpha + 2\mu$ is equal to 3μ , it follows that $\alpha + 2\mu \notin \Delta \cup \{0\}$. Therefore, by Lemma 6.1 we have

$$(\operatorname{ad} I)^{2}(Z_{\alpha}) = [Z_{2\mu}, [Z_{-2\mu}, Z_{\alpha}]]$$
$$= -Z_{\alpha}.$$

Moreover, since $\operatorname{ad} I \cdot \theta = \theta \cdot \operatorname{ad} I$ and $\operatorname{ad} I \cdot \tau = \tau \cdot \operatorname{ad} I$, we have $(\operatorname{ad} I)^2(Z_{\alpha'}) = -Z_{\alpha'}$, where $\alpha' = \pm \alpha$ or $\pm \theta \alpha$. Since the vectors $Y(\alpha)^{\pm} (\alpha \in \Delta(\mu))$ generate $\mathfrak{m}(\mu)$, we have $I^{\dagger^2} = -\mathbf{1}_{\mathfrak{m}(\mu)}$.

The above lemma shows the assertion (1) of Theorem 3.5. In what follows, we may assume that $m(2\mu) = 3$. We first consider the sets $\Delta(\mu)$ and $\Delta(2\mu)$.

Lemma 6.5 (1) There is a root $\nu \in \Delta_0$ such that $\Delta(2\mu) = \{2\mu, 2\mu \pm \nu\}$ and $(\nu, \nu) = 4(\mu, \mu)$.

- (2) Let $\alpha \in \Delta(\mu)$. Then $(\alpha, \alpha) = 4(\mu, \mu)$.
- (3) Let α , $\alpha' \in \Delta(\mu)$. Assume that $\alpha' \neq \alpha$, $-\theta\alpha$. Then, one of the following (a) and (b) holds.
 - (a) $A_{\alpha',\alpha} = 1$, $A_{\alpha',-\theta\alpha} = 0$.
 - (b) $A_{\alpha',\alpha} = 0$, $A_{\alpha',-\theta\alpha} = 1$.

Proof. In Appendix of [2], we have proved that for a restricted root $\psi \in \Sigma$ satisfying $m(\psi) = odd$ and $m(\psi) > 1$, there is a root $\nu \in \Delta_0$ such that $\psi \pm \nu \in \Delta$. Applying this to the case $\psi = 2\mu$, we have the first part of the assertion (1). Since $(2\mu + \nu) \pm (2\mu - \nu) \notin \Delta \cup \{0\}$, we have $(2\mu + \nu, 2\mu - \nu) = 0$. This shows that $(\nu, \nu) = 4(\mu, \mu)$.

We now prove the assertion (2). Consider the α -series of roots containing 2μ . By (1) of Proposition 6.4, we have $2\mu + \alpha \notin \Delta \cup \{0\}$ and $2\mu - \alpha \in \Delta$. On the other hand, by the fundamental property of symmetric spaces we have $2\mu - 2\alpha = -(\alpha + \theta\alpha) \notin \Delta \cup \{0\}$. Therefore we have $A_{2\mu,\alpha} = 1$. Since $A_{\alpha,2\mu} = 1$ (see (1) of Proposition 6.4) we have $(\alpha, \alpha) = (2\mu, 2\mu)$.

Finally, we prove (3). Since $\alpha - \theta \alpha = 2\mu$ and since $(\alpha, \alpha) = (\theta \alpha, \theta \alpha) = (2\mu, 2\mu)$, we have

$$A_{\alpha',\alpha} + A_{\alpha',-\theta\alpha} = \frac{2(\alpha',\alpha)}{(\alpha,\alpha)} + \frac{2(\alpha',-\theta\alpha)}{(\theta\alpha,\theta\alpha)} = \frac{2(\alpha',\alpha-\theta\alpha)}{(2\mu,2\mu)}$$
$$= A_{\alpha',2\mu} = 1.$$

We also have $|A_{\alpha',\alpha}| \leq 1$ and $|A_{\alpha',-\theta\alpha}| \leq 1$, because $\alpha' \neq \pm \alpha$, $\pm \theta \alpha$, $(\alpha',\alpha') = (\alpha,\alpha)$. Then the assertion (3) immediately follows from these facts.

In the following discussion we fix an element $\nu \in \Delta_0$ stated in (1) of Lemma 6.5.

Lemma 6.6 Let $\alpha \in \Delta(\mu)$. Then:

- (1) $A_{\alpha,\nu} = \pm 1$. Moreover,
 - (a) $A_{\alpha,\nu} = 1 \iff \alpha \nu \in \Delta$.
 - (b) $A_{\alpha,\nu} = -1 \iff \alpha + \nu \in \Delta$.
- (2) $\alpha \pm 2\nu \not\in \Delta \cup \{0\}.$

Proof. Since $\alpha - \theta \alpha = 2\mu \in \Delta$ and $2\mu + \nu \in \Delta$, it follows that $\left[Z_{\nu}, \left[Z_{\alpha}, Z_{-\theta \alpha}\right]\right] \neq 0$. Hence, we have either $\left[Z_{\nu}, Z_{\alpha}\right] \neq 0$ or $\left[Z_{\nu}, Z_{-\theta \alpha}\right] \neq 0$. Therefore, we have either $\alpha + \nu \in \Delta$ or $-\theta \alpha + \nu \in \Delta$.

Now assume that $\alpha + \nu \in \Delta$. Then we have $\alpha + \nu \in \Delta(\mu)$ and hence by Lemma 6.5 we have $(\alpha + \nu, \alpha + \nu) = 4(\mu, \mu)$. Since $(\alpha, \alpha) = 4(\mu, \mu)$ and $(\nu, \nu) = 4(\mu, \mu)$, we have $(\alpha, \nu) = -2(\mu, \mu)$. This implies $A_{\alpha,\nu} = -1$. Conversely, if $A_{\alpha,\nu} = -1$, then we have $\alpha + \nu \in \Delta$. This proves the assertion (b).

Next assume that $-\theta\alpha + \nu \in \Delta$. Then, since $-\theta\alpha + \nu = -\theta(\alpha - \nu)$, we have $\alpha - \nu \in \Delta$. In this case, by the same method stated above, we have $(\alpha, \nu) = 2(\mu, \mu)$ and hence $A_{\alpha,\nu} = 1$. Conversely, if $A_{\alpha,\nu} = 1$, then we have $\alpha - \nu \in \Delta$, which proves the assertion (a).

Finally, we show (2). In view of (1), we know that the length of ν -series containing α is just equal to 2. Hence we have $\alpha \pm 2\nu \notin \Delta \cup \{0\}$.

Now we define an action of \mathfrak{k}_0 on $\mathfrak{m}(\mu)$. Since $[\mathfrak{k}_0,\mathfrak{m}(\mu)] \subset \mathfrak{m}(\mu)$ (see Proposition 2.1), each element ad $X(X \in \mathfrak{k}_0)$ induces a skew-symmetric endomorphism of $\mathfrak{m}(\mu)$, which is also denoted by X^{\dagger} . This together with the action of $\mathfrak{k}(2\mu)$ defined in §3, we get the action of $\mathfrak{k}_0 + \mathfrak{k}(2\mu)$ on $\mathfrak{m}(\mu)$. By the definition we directly have

$$[X, X']^{\dagger} = X^{\dagger}X'^{\dagger} - X'^{\dagger}X^{\dagger} = [X^{\dagger}, X'^{\dagger}], \quad X, X' \in \mathfrak{k}_0 + \mathfrak{k}(2\mu).$$

Set $\widehat{\nu} = 2\nu/(\nu, \nu)$, $P = Z_{\nu} + Z_{-\nu}$ and $Q = \sqrt{-1}(Z_{\nu} - Z_{-\nu})$. Then we easily have $\widehat{\nu}$, P, $Q \in \mathfrak{k}_0$ and

$$[\widehat{\nu}, P] = 2Q, \quad [\widehat{\nu}, Q] = -2P, \quad [P, Q] = 2\widehat{\nu}.$$

We now prove

Proposition 6.7 The triplet $\{\hat{\nu}^{\dagger}, P^{\dagger}, Q^{\dagger}\}$ determines a quaternion structure of $\mathfrak{m}(\mu)$, i.e.,

$$\begin{split} &(\widehat{\boldsymbol{\nu}}^\dagger)^2 = {\boldsymbol{P}^\dagger}^2 = {\boldsymbol{Q}^\dagger}^2 = -\mathbf{1}_{\mathfrak{m}(\mu)}, \quad \widehat{\boldsymbol{\nu}}^\dagger {\boldsymbol{P}^\dagger} = -{\boldsymbol{P}^\dagger} \widehat{\boldsymbol{\nu}}^\dagger = {\boldsymbol{Q}^\dagger}, \\ &Q^\dagger \widehat{\boldsymbol{\nu}}^\dagger = -\widehat{\boldsymbol{\nu}}^\dagger {\boldsymbol{Q}^\dagger} = {\boldsymbol{P}^\dagger}, \quad {\boldsymbol{P}^\dagger} {\boldsymbol{Q}^\dagger} = -{\boldsymbol{Q}^\dagger} {\boldsymbol{P}^\dagger} = \widehat{\boldsymbol{\nu}}^\dagger. \end{split}$$

For the proof, we prepare the following

Lemma 6.8 Let $\alpha \in \Delta(\mu)$. Then:

(1)
$$[Z_{\nu}, [Z_{-\nu}, Z_{\alpha}]] + [Z_{-\nu}, [Z_{\nu}, Z_{\alpha}]] = -Z_{\alpha}.$$

$$(2) \ \left[\widehat{\nu}, \left[Z_{\pm\nu}, Z_{\alpha}\right]\right] + \left[Z_{\pm\nu}, \left[\widehat{\nu}, Z_{\alpha}\right]\right] = 0.$$

Proof. Assume that $\alpha - \nu \in \Delta$. Then we have $A_{\alpha,\nu} = 1$ and $\alpha + \nu \notin \Delta \cup \{0\}$ (see Lemma 6.6). By Lemma 6.1 we have

$$\begin{split} & \left[Z_{\nu}, \left[Z_{-\nu}, Z_{\alpha} \right] \right] = -A_{\alpha,\nu} Z_{\alpha} = -Z_{\alpha}, \\ & \left[\widehat{\nu}, \left[Z_{-\nu}, Z_{\alpha} \right] \right] = \sqrt{-1} A_{\alpha-\nu,\nu} \left[Z_{-\nu}, Z_{\alpha} \right] = -\sqrt{-1} \left[Z_{-\nu}, Z_{\alpha} \right], \\ & \left[Z_{-\nu}, \left[\widehat{\nu}, Z_{\alpha} \right] \right] = \sqrt{-1} A_{\alpha,\nu} \left[Z_{-\nu}, Z_{\alpha} \right] = \sqrt{-1} \left[Z_{-\nu}, Z_{\alpha} \right]. \end{split}$$

By these equalities and $[Z_{\nu}, Z_{\alpha}] = 0$, we get the assertions (1) and (2). Similarly, in the case $\alpha + \nu \in \Delta$ we can prove (1) and (2).

We now prove Proposition 6.7. We first note that since $\theta\nu = \tau\nu = \nu$, the endomorphism ad $\widehat{\nu}$ commutes with θ and τ . Similarly, since $\theta P = \tau P = P$ and $\theta Q = \tau Q = Q$, we know that ad P and ad Q commute with θ and τ .

Let $\alpha \in \Delta(\mu)$. By Lemmas 6.8, 6.6 and a direct calculation, we have

$$(\operatorname{ad}\widehat{\nu})^{2}(Z_{\alpha}) = \left[\widehat{\nu}, \sqrt{-1}A_{\alpha,\nu}Z_{\alpha}\right] = -A_{\alpha,\nu}^{2}Z_{\alpha} = -Z_{\alpha},$$

$$(\operatorname{ad}P)^{2}(Z_{\alpha}) = (\operatorname{ad}Q)^{2}(Z_{\alpha}) = \left[Z_{\nu}, \left[Z_{-\nu}, Z_{\alpha}\right]\right]$$

$$+ \left[Z_{-\nu}, \left[Z_{\nu}, Z_{\alpha}\right]\right] = -Z_{\alpha}.$$

Therefore, by the same reason stated in the proof of (2) of Proposition 6.4 we can conclude $(\hat{\nu}^{\dagger})^2 = P^{\dagger^2} = Q^{\dagger^2} = -\mathbf{1}_{\mathfrak{m}(\mu)}$. Further, by Lemmas 6.8, 6.6 and by a direct calculation, we can prove $[P, [Q, Z_{\alpha}]] = -[Q, [P, Z_{\alpha}]]$, $[\hat{\nu}, [P, Z_{\alpha}]] = -[P, [\hat{\nu}, Z_{\alpha}]]$ and $[\hat{\nu}, [Q, Z_{\alpha}]] = -[Q, [\hat{\nu}, Z_{\alpha}]]$. By the same reason as above, we have $P^{\dagger}Q^{\dagger} = -Q^{\dagger}P^{\dagger}$, $\hat{\nu}^{\dagger}P^{\dagger} = -P^{\dagger}\hat{\nu}^{\dagger}$ and $\hat{\nu}^{\dagger}Q^{\dagger} = -Q^{\dagger}\hat{\nu}^{\dagger}$. From these equalities, it follows

$$\begin{split} \widehat{\nu}^\dagger P^\dagger &= (1/2)(\widehat{\nu}^\dagger P^\dagger - P^\dagger \widehat{\nu}^\dagger) = (1/2)\big[\widehat{\nu}, P\big]^\dagger = Q^\dagger, \\ Q^\dagger \widehat{\nu}^\dagger &= (1/2)(Q^\dagger \widehat{\nu}^\dagger - \widehat{\nu}^\dagger Q^\dagger) = (1/2)\big[Q, \widehat{\nu}\big]^\dagger = P^\dagger, \\ P^\dagger Q^\dagger &= (1/2)(P^\dagger Q^\dagger - Q^\dagger P^\dagger) = (1/2)\big[P, Q\big]^\dagger = \widehat{\nu}^\dagger. \end{split}$$

This completes the proof of the proposition.

Finally, we prove

Proposition 6.9 $I^{\dagger} = \varepsilon \, \widehat{\nu}^{\dagger}$, where $\varepsilon \in \mathbf{R}$ and $\varepsilon^2 = 1$.

If the above proposition is true, we can get Theorem 3.5. In fact, set J = -(1/2)[I, Q], K = (1/2)[I, P]. Then we have $J, K \in \mathfrak{k}(2\mu)$ and

$$\begin{split} J^{\dagger} &= -(1/2) \big[I^{\dagger}, Q^{\dagger} \big] = -(\varepsilon/2) \big[\widehat{\nu}, Q \big]^{\dagger} = \varepsilon \, P^{\dagger}, \\ K^{\dagger} &= (1/2) \big[I^{\dagger}, P^{\dagger} \big] = (\varepsilon/2) \big[\widehat{\nu}, P \big]^{\dagger} = \varepsilon \, Q^{\dagger}. \end{split}$$

Consequently, by Proposition 6.7 it is shown that the triplet $\{\varepsilon I^{\dagger}, \varepsilon J^{\dagger}, \varepsilon K^{\dagger}\}\$ $(\subset \mathfrak{k}(2\mu)^{\dagger})$ determines a quaternion structure of $\mathfrak{m}(\mu)$.

Now we show Proposition 6.9. For each $\alpha \in \Delta(\mu)$ let us define a complex number ρ_{α} by

$$[Z_{-2\mu}, Z_{\alpha}] = \sqrt{-1}\rho_{\alpha}Z_{\theta\alpha}. \tag{6.1}$$

 ρ_{α} is well-defined, because $-2\mu + \alpha = \theta \alpha \in \Delta$ and hence $[Z_{-2\mu}, Z_{\alpha}] \in \mathfrak{g}_{\theta\alpha}$.

Lemma 6.10 (1)
$$\rho_{\alpha}^2 = 1$$
, $\rho_{-\theta\alpha} = -\rho_{\alpha}$.
(2) $[I, Y(\alpha)^{\pm}] = \pm \rho_{\alpha} Y(\alpha)^{\mp}$ holds for each $\alpha \in \Delta(\mu)$.

Proof. From (6.1), we easily get

$$[I, Z_{\alpha}] = \sqrt{-1}\rho_{\alpha}Z_{\theta\alpha}. \tag{6.2}$$

Applying θ to the both sides of (6.2), we have $[I, Z_{\theta\alpha}] = \sqrt{-1}\rho_{\alpha}Z_{\alpha}$. Hence we have

$$[I, [I, Z_{\alpha}]] = [I, \sqrt{-1}\rho_{\alpha}Z_{\theta\alpha}] = -\rho_{\alpha}^{2}Z_{\alpha}.$$

Since $(\operatorname{ad} I)^2(Z_{\alpha}) = -Z_{\alpha}$, the above equality implies $\rho_{\alpha}^2 = 1$.

Applying τ and $\theta\tau$ to the both sides of (6.2), we have $[I, Z_{-\alpha}] = -\sqrt{-1}\rho_{\alpha}Z_{-\theta\alpha}$ and $[I, Z_{-\theta\alpha}] = -\sqrt{-1}\rho_{\alpha}Z_{-\alpha}$. From the latter equality, it follows that $\rho_{-\theta\alpha} = -\rho_{\alpha}$. Moreover, by an easy calculation we obtain the assertion (2).

We need two more lemmas concerning the values ρ_{α} ($\alpha \in \Delta(\mu)$).

Lemma 6.11 Let $\zeta \in \Delta_0$, $\alpha \in \Delta(\mu)$. Assume that $\alpha + \zeta \in \Delta(\mu)$. Then:

$$\rho_{\alpha+\zeta} = \begin{cases} \rho_{\alpha}, & \text{if } \zeta \neq \pm \nu, \\ -\rho_{\alpha}, & \text{if } \zeta = \nu \text{ or } -\nu. \end{cases}$$

Proof. First note that $[Z_{\zeta}, Z_{\alpha}] \in \mathfrak{g}_{\alpha+\zeta}$ and $[Z_{\zeta}, Z_{\alpha}] \neq 0$. We also note

$$\begin{aligned} \left[\left[Z_{-2\mu}, Z_{\zeta} \right], Z_{\alpha} \right] &= \left[Z_{-2\mu}, \left[Z_{\zeta}, Z_{\alpha} \right] \right] - \left[Z_{\zeta}, \left[Z_{-2\mu}, Z_{\alpha} \right] \right] \\ &= \sqrt{-1} (\rho_{\alpha+\zeta} - \rho_{\alpha}) \theta \left[Z_{\zeta}, Z_{\alpha} \right]. \end{aligned}$$

Assume that $\zeta \neq \pm \nu$. Then we have $-2\mu + \zeta \not\in \Delta \cup \{0\}$ (see (1) of Lemma 6.5). Since $[Z_{-2\mu}, Z_{\zeta}] = 0$, we have $\rho_{\alpha+\zeta} = \rho_{\alpha}$. On the contrary, assume that $\zeta = \nu$ or $-\nu$. Then we have $-2\mu + \zeta \in \Delta$ and $-2\mu + \zeta + \alpha = \theta(\alpha + \zeta) \in \Delta$. Hence, $[[Z_{-2\mu}, Z_{\zeta}], Z_{\alpha}] \neq 0$. Consequently, we have $\rho_{\alpha+\zeta} - \rho_{\alpha} \neq 0$. Since $\rho_{\alpha+\zeta}^2 = \rho_{\alpha}^2 = 1$, it follows that $\rho_{\alpha+\zeta} = -\rho_{\alpha}$.

Lemma 6.12 Let α , $\alpha' \in \Delta(\mu)$. Then, $A_{\alpha',\nu}/\rho_{\alpha'} = A_{\alpha,\nu}/\rho_{\alpha}$ holds.

Proof. If $\alpha' = \alpha$, then there is nothing to prove. Next consider the case $\alpha' = -\theta\alpha$. By Lemma 6.10(1), we have $\rho_{-\theta\alpha} = -\rho_{\alpha}$. On the other hand, we have

$$A_{-\theta\alpha,\nu} = \frac{2(-\theta\alpha,\nu)}{(\nu,\nu)} = -\frac{2(\alpha,\theta\nu)}{(\nu,\nu)} = -\frac{2(\alpha,\nu)}{(\nu,\nu)} = -A_{\alpha,\nu}.$$

This shows that the lemma is true for the case $\alpha' = -\theta \alpha$.

Now assume that $\alpha' \neq \alpha$, $-\theta \alpha$. Replacing α by $-\theta \alpha$ if necessary, we may assume that $A_{\alpha',\alpha} = 1$ (see Lemma 6.5 (3)). Then, setting $\zeta = \alpha' - \alpha$, we have $\zeta \in \Delta_0$. In view of Lemma 6.6, we have $A_{\alpha,\nu} = \pm 1$, $A_{\alpha',\nu} = \pm 1$. First consider the case $A_{\alpha',\nu} = A_{\alpha,\nu}$. Then we have $A_{\zeta,\nu} = A_{\alpha',\nu} - A_{\alpha,\nu} = 0$ and hence $\zeta \neq \pm \nu$. Therefore, by Lemma 6.11, we have $\rho_{\alpha'} = \rho_{\alpha+\zeta} = \rho_{\alpha}$. This implies that $A_{\alpha',\nu}/\rho_{\alpha'} = A_{\alpha,\nu}/\rho_{\alpha}$.

Next consider the case $A_{\alpha',\nu} = -A_{\alpha,\nu}$. Then we have $A_{\zeta,\nu} = A_{\alpha',\nu} - A_{\alpha,\nu} = -2A_{\alpha,\nu} = \pm 2$, which implies $(\zeta,\nu) = \pm (\nu,\nu)$. Since $(\alpha,\alpha) = (\alpha',\alpha') = (\nu,\nu)$ (see Lemma 6.5), we have

$$(\zeta,\zeta) = (\alpha' - \alpha, \alpha' - \alpha) = (\alpha,\alpha) (2 - A_{\alpha',\alpha}) = (\nu,\nu).$$

By these equalities $(\zeta, \nu) = \pm(\nu, \nu)$ and $(\zeta, \zeta) = (\nu, \nu)$, we have $\zeta = \nu$ or $-\nu$. Therefore, by Lemma 6.11 we have $\rho_{\alpha'} = \rho_{\alpha+\zeta} = -\rho_{\alpha}$. Hence, in this case, we get $A_{\alpha',\nu}/\rho_{\alpha'} = A_{\alpha,\nu}/\rho_{\alpha}$.

We are now in the final stage of the proof of Theorem 3.5. By a simple calculation, we have

$$\left[\widehat{\nu}, Y(\alpha)^{\pm}\right] = \mp A_{\alpha,\nu} Y(\alpha)^{\mp}.$$

Compare this equality with (2) of Lemma 6.10. Then, we know that Proposition 6.9 immediately follows from Lemma 6.12. Thus, we complete the proof of Theorem 3.5.

 ${\bf Table~3.} \quad {\bf Multiplicities~and~local~pseudo-nullities.}$

Туре	G/K	Σ	$\mathcal{M}(G/K)$	$\mathcal{N}(G/K)$		
AI_n	$SU(n+1)/SO(n+1) (n \ge 1)$	A_n	{1,0,0}	{1,0,0}		
AII_n	$SU(2(n+1))/Sp(n+1) \ (n \ge 1)$	A_n	$\{4,0,0\}$	$\{4, 0, 0\}$		
$AIII_{p,q}$	$SU(p+q)/S(U(p)\times U(q)) \ (p\geq q\geq 1, p\geq 2)$					
	(p>q>1)	BC_q	$\{2, 2(p-q), 1\}$	$\{2,p-q,1\}$		
	(p=q>1)	C_q	$\{1, 2, 0\}$	$\{1, 2, 0\}$		
	(p > q = 1)	BC_1	$\{0,2(p-1),1\}$	$\{0, p-1, 1\}$		
$BI_{p,q}$	$SO(p+q)/SO(p) \times SO(q) (p+q=0)$	= odd, p	$> q \ge 2)$			
		B_q	$\{1,p-q,0\}$	$\{1,p-q,0\}$		
BII_p	$SO(p+1)/SO(p) \ (p=even \geq 2)$	A_1	$\{p-1, 0, 0\}$	$\{p-1, 0, 0\}$		
CI_n	$Sp(n)/U(n)\ (n\geq 2)$	C_n	$\{1, 1, 0\}$	$\{1, 1, 0\}$		
$CII_{p,q}$	$Sp(p+q)/Sp(p) imes Sp(q) \ (p \ge q \ge 1)$					
	(p>q>1)	BC_q	$\{4, 4(p-q), 3\}$	$\{4,p-q,3\}$		
-	(p=q>1)	C_q	$\{3, 4, 0\}$	$\{3, 4, 0\}$		
	(p>q=1)	BC_1	$\{0,4(p-1),3\}$	$\{0, p-1, 3\}$		
	(p=q=1)	A_1	$\{3, 0, 0\}$	$\{3, 0, 0\}$		
$DI_{p,q}$	$SO(p+q)/SO(p) \times SO(q) (p+q)$					
	$(p \ge q+2)$	B_q	$\{1, p-q, 0\}$	$\{1, p-q, 0\}$		
	(p=q)	D_q	$\{1, 0, 0\}$	$\{1, 0, 0\}$		
DII_p	$SO(p+1)/SO(p) \ (p=odd \ge 3)$	A_1	$\{p-1, 0, 0\}$	$\{p-1, 0, 0\}$		
$DIII_n$	$SO(2n)/U(n) \ (n \ge 4)$					
	(n=2m)	C_m	$\{1, 4, 0\}$	$\{1, 4, 0\}$		
	(n=2m+1)	BC_m	$\{4, 4, 1\}$	$\{4,2,1\}$		
EI	$E_6/Sp(4)$	E_{6}	$\{1, 0, 0\}$	$\{1, 0, 0\}$		
EII	$E_6/SU(6) \cdot SU(2)$	F_4	$\{1,2,0\}$	$\{1, 2, 0\}$		
EIII	$E_6/Spin(10)\cdot SO(2)$	BC_2	$\{6, 8, 1\}$	$\{6, 4, 1\}$		
EIV	E_6/F_4	A_2	{8,0,0}	$\{8, 0, 0\}$		
EV	$E_7/SU(8)$	E_{7}	$\{1, 0, 0\}$	$\{1, 0, 0\}$		
EVI	$E_7/Spin(12) \cdot SU(2)$	F_4	$\{1, 4, 0\}$	$\{1, 4, 0\}$		
EVII	$E_7/E_6 \cdot SO(2)$	C_3	$\{1, 8, 0\}$	$\{1, 8, 0\}$		
EVIII	$E_8/Spin(16)$	E_8	$\{1, 0, 0\}$	$\{1, 0, 0\}$		
EIX	$E_8/E_7\cdot SU(2)$	F_4	$\{1, 8, 0\}$	$\{1, 8, 0\}$		
FI	$F_4/Sp(3)\cdot SU(2)$	F_4	$\{1, 1, 0\}$	$\{1, 1, 0\}$		
FII	$F_4/Spin(9)$	BC_1	$\{0, 8, 7\}$	$\{0, 1, 7\}$		
G	$G_2/SO(4)$	G_2	$\{1, 1, 0\}$	$\{1, 1, 0\}$		

Table 4. Categorical pseudo-nullities $p_{cat}(G/K)$ (Classical type).

				,
Туре	Maximal SOS	#Г	$b(\Gamma)$	$p_{cat}(G/K)$
$\overline{AI_n}$	$\Gamma(A_n)^0$	[(n+1)/2]	n	n
AII_n	$\Gamma(A_n)^0$	[(n+1)/2]	n+3[(n+1)/2]	n+3[(n+1)/2]
$AIII_{p,q}$, ,			
(p > q > 1)	$\Gamma(BC_q)^{0,s}$	q-s	q + s	
	$(0 \le s \le [q/2])$			
	$\Gamma(BC_q)^{1,t}$	$q\!-\!t$	p+t-1	
	$(0 \le t \le \lfloor (q-1)/2 \rfloor)$			$\max\{[3q/2],$
(p = q > 1)	$\Gamma(C_q)^s$	$q\!-\!s$	q + s	[(2p+q-3)/2]
	$(0 \le s \le [q/2])$			
(p > q = 1)	$\Gamma(BC_1)^{0,0}$	1	1	
	$\Gamma(BC_1)^{1,0}$	1	p-1	
$\overline{BI_{p,q}}$	$\Gamma(B_q)^0 \ (q = even)$	\overline{q}	q	p-1
	$\Gamma(B_q)^1$	2[(q-1)/2]+1	p-1	
BII_p	$\Gamma(A_1)^0$	1	p-1	p-1
$\overline{CI_n}$	$\Gamma(C_n)^s$	n-s	n	$\overline{}$
	$(0 \le s \le [n/2])$			
$CII_{p,q}$				
(p > q > 1)	$\Gamma(BC_q)^{0,s}$	$q\!-\!s$	$3q\!-\!s$	
	$(0 \le s \le [q/2])$			
	$\Gamma(BC_q)^{1,t}$	q-t	$p\!+\!2q\!-\!t\!-\!3$	
	$(0 \le t \le \lfloor (q-1)/2 \rfloor)$			$\max\{3q, p+2q-3\}$
(p = q > 1)	$\Gamma(C_q)^s$	$q\!-\!s$	3q-s	
	$(0 \le s \le [q/2])$			
(p > q = 1)	$\Gamma(BC_1)^{0,0}$	1	3	
	$\Gamma(BC_1)^{1,0}$	1	p-1	
(p=q=1)	$\Gamma(A_1)^0$	1	3	
$\overline{DI_{p,q}}$				
$(p \ge q + 2)$	$\Gamma(B_q)^0 \ (q = even)$	q	q	
~ - ·	$\Gamma(B_q)^1$	2[(q-1)/2]+1	p-1	$\max\{p-1,q\}$
(p=q)	$\Gamma(D_q)^0$	2[q/2]	q	(4 , 1)
DII_p	$\Gamma(A_1)^0$	1	p-1	$p\!-\!1$
$DIII_n$	(/		•	•
$\bar{n} = 2m$	$\Gamma(C_m)^s$	$m\!-\!s$	m+3s	m + 3[m/2]
, ,	$(0 \le s \le [m/2])$			• • •
		m-s	m+3s	[5m/2]
(n = 2m+1)	$I \setminus D \cup m$			
(n=2m+1)				
(n=2m+1)	$(0 \le s \le [m/2])$ $\Gamma(BC_m)^{1,t}$	$m\!-\!t$	m + 3t + 1	

Туре	Maximal SOS	#Г	$b(\Gamma)$	$p_{cat}(G/K)$
EI	$\Gamma(E_6)^0$	4	6	6
EII	$\Gamma(F_4)^0$	4	4	5
	$\Gamma(F_4)^1$	3	5	
EIII	$\Gamma(BC_2)^{0,s} (s=0,1)$	2-s	2+5s	7
	$\Gamma(BC_2)^{1,0}$	2	5	
EIV	$\Gamma(A_2)^0$	1	9	9
EV	$\Gamma(E_7)^0$	7	7	7
EVI	$arGamma(F_4)^0$	4	4	7
	$\Gamma(F_4)^1$	3	7	
EVII	$\Gamma(C_3)^s (s=0,1)$	3-s	3 + 7s	10
EVIII	$\Gamma(E_8)^0$	8	8	8
EIX	$\Gamma(F_4)^0$	4	4	11
	$\Gamma(F_4)^1$	3	11	
FI	$\Gamma(F_4)^s \ (s=0,1)$	4-s	4	4
FII	$\Gamma(BC_1)^{0,0}$	1	7	7
	$\Gamma(BC_1)^{1,0}$	1	1	
G	$\Gamma(G_2)^1$	2	2	2

Table 5. Categorical pseudo-nullities $p_{cat}(G/K)$ (Exceptional type).

References

- [1] Agaoka Y., A note on local isometric imbeddings of complex projective spaces. J. Math. Kyoto Univ. 27 (1987), 501–505.
- [2] Agaoka Y. and Kaneda E., On local isometric immersions of Riemannian symmetric spaces. Tôhoku Math. J. 36 (1984), 107–140.
- [3] Agaoka Y. and Kaneda E., An estimate on the codimension of local isometric imbeddings of compact Lie groups. Hiroshima Math. J. 24 (1994), 77–110.
- [4] Agaoka Y. and Kaneda E., Local isometric imbeddings of symplectic groups. Geometriae Dedicata 71 (1998), 75–82.
- [5] Agaoka Y. and Kaneda E., Strongly orthogonal subsets in root systems. Hokkaido Math. J. 31 (2002), 107–136.
- [6] Agaoka Y. and Kaneda E., Local isometric imbeddings of Grassmann manifolds. (In preparation.)

- [7] Agaoka Y. and Kaneda E., Local isometric imbeddings of $P^2(H)$ and $P^2(Cay)$. (To appear in Hokkaido Math. J.)
- [8] Agaoka Y. and Kaneda E., Rigidity of the canonical isometric imbedding of the Cayley projective plane $P^2(Cay)$. (To appear in Hokkaido Math. J.)
- [9] Araki S., On root systems and an infinitesimal classification of irreducible symmetric spaces. J. Math. Osaka City Univ. 13 (1962), 1-34.
- [10] Bourbaki N., Groupes et Algèbres de Lie Chap. 4, 5 et 6. Hermann, Paris (1968).
- [11] Harish-Chandra, Representations of semisimple Lie groups VI. Amer. J. Math. 78 (1956), 564-628.
- [12] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978).
- [13] Kobayashi S., Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. **20** (1968), 21–25.
- [14] Takeuchi M., Modern Spherical Functions. Translations of Math. Monographs vol. 135 (1994), Amer. Math. Soc., Providence, Rhode Island.

Yoshio Agaoka

Faculty of Integrated Arts and Sciences Hiroshima University 1-7-1 Kagamiyama, Higashi-Hiroshima-shi Hiroshima 739-8521, Japan

E-mail: agaoka@mis.hiroshima-u.ac.jp

Eiji Kaneda

Department of International Studies Osaka University of Foreign Studies 8-1-1 Aomadani-Higashi, Minoo-shi Osaka 562-8558, Japan

E-mail: kaneda@osaka-gaidai.ac.jp