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Fundamental theorem for totally complex submanifolds
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Abstract. The fundamental theorem (existence and uniqueness) for submanifolds of

real space forms is well-known. We will discuss this theorem for some families of sub-

manifolds in the framework of Grassmann geometries in a unified way. In particular, we

show the fundamental theorem for half dimensional totally complex submanifolds of the

quaternion projective space HP n or the quaternion hyperbolic space HHn. This result

is an affirmative answer to the conjecture by Alekseevsky and Marchiafava.
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1. Introduction

For Riemannian submanifolds of a real space form, the fundamental the-
orem for submanifolds is well-known. We denote by M̄(c) an n-dimensional
real space form, that is, a simply connected, complete Riemannian manifold
of constant curvature c. The fundamental theorem tells us the following:
Let M be an m-dimensional simply connected Riemannian manifold, E →
M a Riemannian vector bundle of rank (n−m) over M with a metric con-
nection ∇⊥, and σ be an E-valued symmetric covariant tensor field of order
2 on M . If they satisfy the Gauss, Codazzi, and Ricci equations for the case
of constant curvature c, there exists an isometric immersion f : M → M̄(c)
such that E is the normal bundle, ∇⊥ its normal connection, and σ is the
second fundamental form. Moreover such an immersion f is unique up to
the action by the group of isometries of M̄(c). For the precise statement
and its proof, see Chapter 7 Part C in M. Spivak [12]. We will generalize
this theorem for some families of submanifolds called O-submanifolds in the
framework of Grassmann geometries introduced by Harvey and Lawson [4].

We recall O-submanifolds. Let M̄ be an n-dimensional Riemannian
manifold. We fix an integer m (0 < m < n) and denote by Grm(TM̄)
the Grassmann bundle over M̄ of all m-dimensional linear subspaces in the
tangent spaces of M̄ . Let G be the identity component of the group of
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isometries of M̄ . Then G acts on Grm(TM̄) through the differential of each
isometry. We take an orbit O in Grm(TM̄) by this action of G. Let M be an
m-dimensional manifold and f be an immersion ofM into M̄ . If f∗p(TpM) ∈
O for any p ∈ M , then (M, f) is called an O-submanifold. The collection
of all O-submanifolds forms a class of submanifolds, which is called an O-
geometry. Now we assume that for some, and hence for any, V ∈ O both
V and its orthogonal complement V ⊥ are invariant under the curvature
tensor R̄ of M̄ , that is, R̄(V, V )V ⊂ V and R̄(V ⊥, V ⊥)V ⊥ ⊂ V ⊥. Then
the orbit O is of strongly curvature-invariant type and its O-geometry is also
said to be of strongly curvature-invariant type. From now on we assume
that M̄ is a Riemannian symmetric space. Then the curvature-invariant
subspaces of M̄ are also known as Lie triple systems. If p ∈ M̄ and V ⊂
TpM̄ is curvature-invariant, then there exists a unique connected, complete,
totally geodesic submanifold M of M̄ with p ∈ M and TpM = V . These
totally geodesic submanifolds are O(V )-submanifolds, where O(V ) denotes
the orbit in Grm(TM̄) through V . H. Naitoh in a series of papers ([7],
[8], [9], [10]) classified O-geometries of strongly curvature-invariant type on
Riemannian symmetric spaces and determined all O-geometries containing
non-totally geodesic submanifolds.

Theorem 1.1 (Naitoh) Let M̄ be a simply connected irreducible Rieman-
nian symmetric space of compact type or of non-compact type and O be an
orbit of strongly curvature-invariant type in Grm(TM̄). All O-geometries
except the following ones have only totally geodesic submanifolds:
(1) the geometry of k-dimensional (0 < k < n) submanifolds of the sphere

Sn resp. of the real hyperbolic space RHn (n ≥ 2);
(2) the geometry of k-dimensional (0 < k < n) complex submanifolds of

the complex projective space CPn resp. of the complex hyperbolic space
CHn (n ≥ 2);

(3) the geometry of n-dimensional totally real submanifolds of the complex
projective space CPn resp. of the complex hyperbolic space CHn (n ≥
2);

(4) the geometry of 2n-dimensional totally complex submanifolds of the
quaternionic projective space HPn resp. of the quaternionic hyperbolic
space HHn (n ≥ 2);

(5) the geometries associated with irreducible symmetric R-spaces and
their noncompact dual geometries.
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In this paper, we will develop a fundamental theory of O-submanifolds
of strongly curvature-invariant type in a semi-simple Riemannian symmetric
space and discuss the fundamental theorem for O-submanifolds in a unified
way (§2 Theorem 2.8). As an application, we show the fundamental theo-
rem for the case (3) in the Theorem 1.1, that is, half dimensional totally real
submanifolds of the complex projective space CPn or the complex hyper-
bolic space CHn (Theorem 2.9). Subsequently we study half dimensional
totally complex submanifolds of the quaternion projective space HPn or the
quaternion hyperbolic space HHn in detail (the case (4) in the Theorem 1.1)
and show the fundamental theorem for them (§3 Theorem 3.5). This result
is an affirmative answer to the conjecture by Alekseevsky and Marchiafava
[1].

2. O-geometry of strongly curvarture-invariant type

Let M̄ be an n-dimensional semi-simple Riemannian symmetric space
and (G, K) be a Riemannian symmetric pair associated with M̄ . Then
M̄ is described as the Riemannian symmetric homogeneous space G/K.
We denote by π̄ the projection of G onto M̄ and by ρ the action of G
on M̄ . We put π̄(K) = o. Let g be the Lie algebra of G and k the Lie
subalgebra of g which corresponds to K and g = k + p be the canonical
decomposition associated with the Riemannian symmetric pair (G, K). The
Maurer-Cartan form ω̄ on G satisfies the structure equation:

dω̄ +
1
2
[ω̄, ω̄] = 0. (2.1)

Here for g-valued 1-forms ω1, ω2, we define a g-valued 2-form [ω1, ω2] by

[ω1, ω2](X, Y ) = [ω1(X), ω2(Y )]− [ω1(Y ), ω2(X)].

We fix a linear isometry ι : Rn → p and identify p with Rn via ι. Under
this identification Adp(K) is a subgroup of O(n), where Adp : K → O(p)
denotes the adjoint representation of K on p. Then uo = π̄∗e◦ι : Rn → ToM̄

is a linear isometry and induces an orthonormal frame for ToM̄ . Let O(M̄)
be the bundle of orthonormal frames over M̄ and π̄ : O(M̄) → M̄ be the
projection. We define a smooth map φ : G → O(M̄) by φ(g) = ρ(g)∗ouo.
Then φ is a K-bundle homomorphism which corresponds to the Lie group
homomorphism Adp : K → O(p) = O(n). Let θ be the canonical form of
M̄ , which is an Rn-valued 1-form on O(M̄). Then, via the identification
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Rn ∼= p, we have φ∗θ = ω̄p, where ω̄p denotes the p-component of ω̄ with
respect to the decomposition g = k + p.

We fix an integer m (0 < m < n). Let Grm(TM̄) be the Grassmann
bundle over M̄ of allm-dimensional linear subspaces in the tangent spaces of
M̄ , which is the fibre bundle associated with O(M̄) with the standard fibre
Grm(Rn) = O(n)/O(m)×O(n−m). For an m-dimensional subspace m in
p, we define the orbit O(m) = ρ(G)π̄∗em ⊂ Grm(TM̄) and the group K+ =
{k ∈ K | Adp(k)(m) = m}. The orbit O(m) is a fibre bundle G ×K K/K+

associated with the principal fibre bundle π̄ : G → M̄ . Let M be an m-
dimensional manifold and f be an immersion of M into M̄ . If f∗p(TpM) ∈
O(m) for any p ∈ M , then (M, f) is called an O(m)-submanifold. The
collection of all O(m)-submanifolds forms a class of submanifolds, which is
called an O(m)-geometry.

From now on we assume that m ⊂ p is a strongly curvature-invariant
subspace, that is,

[
[m, m], m

] ⊂ m,
[
[m⊥, m⊥], m⊥] ⊂ m⊥, where m⊥ de-

notes the orthogonal complement of m in p. Then there exists an involutive
automorphism τ of g = k + p such that τ(k) = k, τ(p) = p, τ = − Id on
m, and τ = Id on m⊥ (see e.g. Naitoh [6]). The automorphism τ induces
±1-eigenspaces decompositions k = k+ + k− and p = m+m⊥ of k and p. We
note that [k+, m] ⊂ m, [k+, m⊥] ⊂ m⊥, [k−, m] ⊂ m⊥, and [k−, m⊥] ⊂ m.
Moreover we have k+ = {T ∈ k | [T, m] ⊂ m}. Let (M, f) be an O(m)-
submanifold. Then we have the following two pull back bundles:
• the principal fibre bundle with the structure group K:

f∗G f̃−−−−→ G

π

y
yπ̄

M −−−−→
f

M̄

.

Here f∗G is given by

f∗G = {(p, g) ∈M ×G | f(p) = π̄(g)} ⊂M ×G,

and π : f∗G → M is the projection from M × G onto the first factor M
which is restricted to f∗G.
• the associated fibre bundle with the standard fibre K/K+
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f∗O(m) −−−−→ O(m)

π

y
yπ̄

M −−−−→
f

M̄

.

By the definition of an O(m)-submanifold, there exists a section of the fibre
bundle f∗O(m) →M . This implies that there exists a principal subbundle
P of f∗G with the structure group K+ such that the following diagram
holds:

P −−−−→ f∗G

π

y
yπ

M M

.

Here P is given by

P = {(p, g) ∈ f∗G | f(p) = π̄(g), ρ(g)∗o(π̄∗e(m)) = f∗p(TpM)}.
We restrict the pull back form f̃∗ω̄ of the Maurer-Cartan form ω̄ on G

to P , which is denoted by ω. According to the decomposition g = k + p =
k+ + k− + m + m⊥, we decompose

ω = ωk+ + ωk− + ωm + ωm⊥ .

Then ωm⊥ vanishes. Moreover by (2.1) it follows that

dω +
1
2
[ω, ω] = 0. (2.2)

Consequently for an O(m)-submanifold (M, f) we obtained the pair (P, ω)
of a principal fibre bundle P over M with the structure group K+ and a
(k+m)-valued 1-form ω on P . Moreover the 1-form ω satisfies the following
conditions:
(2.3.1) The map π′ ◦ ω : TuP → k+ + m is surjective at each point u ∈ P

(in particular, ω : TuP → k + m is injective), where π′ : k+ + k− +
m → k+ + m is the projection;

(2.3.2) R∗kω = Ad(k−1)ω for k ∈ K+, where Rk denotes the right transla-
tion;

(2.3.3) ω(X∗) = X for X ∈ k+, where X∗ denotes the fundamental vector
field on P which is generated by X.

In general we define a locally ambient O(m)-geometry following Defini-
tion 5.2 in Sharpe [11] Chapter 6.
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Definition 2.1 Let P be a principal fibre bundle over an m-dimensional
manifold M (m = dim m) with the structure group K+ and ω be a (k + m)-
valued 1-form on P satisfying the conditions (2.3.1), (2.3.2), and (2.3.3) in
the above. We call such the pair (P, ω) a locally ambient O(m)-geometry
on M .

By the definition, the pair (P, ω) which is constructed over an O(m)-
submanifold (M, f) is a locally ambient O(m)-geometry. Moreover in this
case the 1-form ω satisfies (2.2). We consider the converse. The following
result can be proved by a similar argument as for Proposition 5.8 in [11]
Chapter 6.

Proposition 2.2 Let M be an m-dimensional (m = dim m) simply con-
nected manifold and (P, ω) be a locally ambient O(m)-geometry on M . If
ω satisfies

dω +
1
2
[ω, ω] = 0,

then there exists an immersion f : M → M̄ which is an O(m)-submanifold
in M̄ such that the locally ambient O(m)-geometry which corresponds to
(M, f) is equivalent to (P, ω). Moreover, such an immersion f is unique
up to the action by G.

Now let (P, ω) be a locally ambient O(m)-geometry on M . We investi-
gate the geometric properties induced by (P, ω) and the geometric meaning
of the integrability condition (2.2). Firstly, we decompose the equation (2.2)
according to the decomposition g = k + p = k+ + k− + m + m⊥. Then we
have the following.

Proposition 2.3 The equation (2.2) is equivalent to a quadruplet of the
following equations:

dωk+ +
1
2
[ωk+ , ωk+ ] +

1
2
[ωk− , ωk− ] +

1
2
[ωm, ωm] = 0; (2.4.1)

dωk− + [ωk+ , ωk− ] = 0; (2.4.2)

dωm + [ωk+ , ωm] = 0; (2.4.3)

[ωk− , ωm] = 0. (2.4.4)

We denote by ρ′ : K+ → O(m) and ρ′′ : K+ → O(m⊥) the represen-
tations of K+ which are obtained by restricting Adp(K+) to m and m⊥,
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respectively. We put K ′ = ρ′(K+) and K ′′ = ρ′′(K+) and denote by k′ and
k′′ their Lie algebras. We put P ′ = P/ ker ρ′ and denote by h′ the projec-
tion of P onto P ′. Then P ′ is a principal K ′-bundle over M and h′ is a
bundle homomorphism. Similarly, the representation ρ′′ induces a principal
K ′′-bundle P ′′ over M and a bundle homomorphism h′′ : P → P ′′.

Lemma 2.4 The principal K ′-bundle P ′ is a subbundle of the orthonormal
frame bundle O(M) over M . Let θ be the canonical form on O(M) which
is restricted to P ′. Then we have h′∗θ = ωm, where we identify m with Rm.

Proof. We define a smooth map φ′ of P into the linear frame bundle L(M)
over M as follows: at u ∈ P we define a linear isomorphism φ′(u) : m →
Tπ(u)M by

φ′(u)(ξ) = π∗u(π′ ◦ ω)−1
u (ξ) for ξ ∈ m.

Then φ′(uk)(ξ) = φ′(u)(Adp(k)(ξ)) = φ′(u)(ρ′(k)(ξ)) holds for k ∈ K+. We
introduce a Riemannian metric on M such that φ′(u) is a linear isometry of
m onto Tπ(u)M at any point u ∈ P . Thus φ′ is a bundle homomorphism of P
into O(M) with a Lie group homomorphism ρ′ : K+ → O(m). In particular
it yields an injective homomorphism ι′ : P ′ → O(M). We view P ′ as a
subbundle of O(M) and omit the inclusion map ι′ and hence φ′ = h′. By
the definition of φ′, it follows that h′∗θ = ωm. ¤

By (2.3.2) and (2.3.3) it follows that ωk+ is a connection form on P .
We denote by ω′ the connection form on P ′ which is the pushforward form
of ωk+ ; ω′ is a k′-valued 1-form on P ′ such that h′∗ω′ = ρ′ωk+ . Then by
Proposition 2.3 (2.4.3), we have h′∗{dθ + ω′ ∧ θ} = 0, which shows that ω′

is a torsion-free connection. Hence we have proved

Lemma 2.5 ω′ is the Riemannian connection on M .

Corollary 2.6 The holonomy algebra of an O(m)-submanifold is a subal-
gebra of k′.

Suppose that (P, ω) is a locally ambient O(m)-geometry constructed on
an O(m)-submanifold (M, f). By an argument similar to the case of P ′, we
see that P ′′ is a subbundle of the orthonormal frame bundle O(T⊥M) of the
normal bundle T⊥M . We denote by ω′′ the connection form on P ′′ which
is the pushforward form of ωk+ ; ω′′ is a k′′-valued 1-form on P ′′ such that
h′′∗ω′′ = ρ′′ωk+ . The connection ω′′ coincides with the normal connection
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in the normal bundle T⊥M .
Let R̄ be the curvature tensor of M̄ . Since m ⊂ p is a strongly curvature-

invariant subspace, we have R̄(m, m)m ⊂ m. From R̄, we define a curvature-
like tensor field R̄M on M as follows: for a point p ∈ M , we choose u ∈ P
with π(u) = p, then h′(u) is a linear isometry of Rm ∼= m onto TpM . We
put

R̄M (X, Y )Z = h′(u)R̄(h′(u)−1X, h′(u)−1Y )h′(u)−1Z

for X, Y, Z ∈ TpM.

The right hand side in the equation above does not depend on the choice of
u ∈ P with π(u) = p. Therefore we can define a tensor field on M . Since
R̄(m, m)m⊥ ⊂ m⊥, similarly we can define a End(T⊥M)-valued 2-form R̄M

by

R̄M (X, Y )ξ = h′′(u)R̄(h′(u)−1X, h′(u)−1Y )h′′(u)−1ξ

for X, Y ∈ TpM , ξ ∈ T⊥p M , and u ∈ P with π(u) = p.
We introduce the second fundamental form. We define an m⊥-valued

bilinear form σ̃ on P as follows:

σ̃(X, Y ) = [ωk−(X), ωm(Y )] for X, Y ∈ TuP.

By Proposition 2.3 (2.4.4), σ̃ is symmetric, that is, σ̃(X, Y ) = σ̃(Y, X). The
following lemma can be proved by an argument similar to that of Proposi-
tion 3.5 in Kobayashi and Nomizu [5], Chapter VII.

Lemma 2.7 σ̃ is a tensorial form of type (ρ′′, m⊥) and defines a symmet-
ric tensor field σ on M whose values are in the normal bundle T⊥M . More-
over it coincides with the second fundamental form of an O(m)-submanifold
(M, f).

Now we will describe the geometric meaning of the equations (2.4.1)
and (2.4.2). We view the T⊥M -valued symmetric bilinear form σ on M

in Lemma 2.7 as a Hom(TM, T⊥M)-valued 1-form and denote by σ̂ a
Hom(m, m⊥)-valued 1-form on P which corresponds to such the
Hom(TM, T⊥M)-valued 1-form σ. Then we have

σ̂(X)(ξ) = [ωk−(X), ξ] for X ∈ TuP and ξ ∈ m.

We define a linear map ψ : k− → Hom(m, m⊥) by ψ(T )(ξ) = [T, ξ] for T ∈
k− and ξ ∈ m. Then ψ is injective. Since σ̂ = ψωk− , the equation (2.4.2)



Fundamental theorem for totally complex submanifolds 649

implies

0 =ψ{dωk−(X, Y ) + [ωk+(X), ωk−(Y )]− [ωk+(Y ), ωk−(X)]}
= dσ̂(X, Y ) + [ωk+(X), σ̂(Y )]− [ωk+(Y ), σ̂(X)],

where [ωk+(X), σ̂(Y )] means

[ωk+(X), σ̂(Y )](ξ) = ρ′′(ωk+(X))σ̂(Y )(ξ)− σ̂(Y )(ρ′(ωk+(X))ξ).

Therefore the equation (2.4.2) corresponds to the Codazzi equation:

(∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z), (2.4.2)′

for the tangent vectors X, Y, Z of M , where ∇̄ denotes the covariant dif-
ferentiation with respect to the connection in TM ⊕ T⊥M .

Finally we will show that the equation (2.4.1) is nothing but the Gauss
and Ricci equations. The form ωk+ is the connection form on P and Ω =
dωk+ + (1/2)[ωk+ , ωk+ ] is the curvature form of ωk+ . We denote by Ω′ the
curvature form of the Riemannian connection ω′. Since ω′ is the pushfor-
ward connection of ωk+ , ρ′Ω = h′∗Ω′. Similarly, we have ρ′′Ω = h′′∗Ω′′,
where Ω′′ is the curvature form of the connection ω′′ of the normal bundle
T⊥M . On G, Ω̄ = dω̄k +(1/2)[ω̄k, ω̄k] is the curvature form of the canonical
connection on the Riemannian symmetric space M̄ = G/K, which coin-
cides with the Riemannian connection. By the structure equation (2.1) of
the Maurer-Cartan form ω̄, we have

dω̄k +
1
2
[ω̄k, ω̄k] +

1
2
[ω̄p, ω̄p] = 0.

This implies Ω̄ = −(1/2)[ω̄p, ω̄p] and

f̃∗Ω̄ = −1
2
[f̃∗ω̄p, f̃

∗ω̄p] = −1
2
[ωm, ωm] ∈ k+.

Applying ρ′ and ρ′′ to (2.4.1), respectively, we have

h′∗Ω′ +
1
2
ρ′([ωk− , ωk− ])− ρ′f̃∗Ω̄ = 0, (2.4.1)′

h′′∗Ω′′ +
1
2
ρ′′([ωk− , ωk− ])− ρ′′f̃∗Ω̄ = 0. (2.4.1)′′

Let R be the Riemannian curvature tensor of M and R⊥ be the cur-
vature tensor of the normal bundle T⊥M , respectively. Then (2.4.1)′ and
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(2.4.1)′′ are described as follows:

R(X, Y )Z = R̄M (X, Y )Z + Sσ(Y, Z)X − Sσ(X, Z)Y, (2.4.1)′

R⊥(X, Y )ξ = R̄M (X, Y )ξ + σ(X, SξY )− σ(Y, SξX), (2.4.1)′′

for X, Y, Z ∈ TM and ξ ∈ T⊥M , where Sξ denotes the shape operator
which is defined by 〈SξX, Y 〉 = 〈σ(X, Y ), ξ〉.

Following the arguments above, we apply Proposition 2.2 to show funda-
mental theorem for O(m)-submanifolds. As before, M̄ is an n-dimensional
semi-simple Riemannian symmetric space and m ⊂ p is a strongly curvature-
invariant subspace (dimm = m). Let ι1 : Rm → m and ι2 : Rn−m → m⊥ be
linear isometries. We define Lie group homomorphisms ρ1 : K+ → O(m)
and ρ2 : K+ → O(n − m) by ρ1(k) = ι−1

1 ρ′(k)ι1 and ρ2(k) = ι−1
2 ρ′′(k)ι2,

where ρ′ : K+ → O(m) and ρ′′ : K+ → O(m⊥) denote the representations of
K+ as before. Going backward on the way of our arguments and applying
Proposition 2.2, we can prove the following:

Theorem 2.8 (Fundamental theorem for O(m)-submanifolds)
Assumption: Let M be an m-dimensional simply connected Riemannian
manifold with the curvature tensor R, E →M a Riemannian vector bundle
of rank (n−m) with a metric connection and its curvature tensor RE and σ
be an E-valued symmetric covariant tensor field of order 2 over M such that
the Codazzi equation (2.4.2)′ holds with respect to the connection in TM ⊕
E. Suppose that there exist a locally ambient O(m)-geometry (P, ω) over
M and bundle homomorphisms h′ : P → O(M) and h′′ : P → O(E) with the
corresponding homomorphisms ρ1 : K+ → O(m) and ρ2 : K+ → O(n −m)
such that the induced diffeomorphisms of M are identity, where O(M) and
O(E) denote the bundles of orthonormal frames of M and E, respectively.
We denote by P ′ and P ′′ the principal subbundles h′(P ) of O(M) and h′′(P )
of O(E). Now we assume that they satisfy the following conditions:
(1) For the canonical form θ on O(M), h′∗(ι1θ) = ωm,
(2) The Riemannian connection of M reduces to P ′ and its connection

form ω′ on P ′ satisfies h′∗ω′ = ρ1ωk+,
(3) The metric connection in E reduces to P ′′ and its connection form ω′′

on P ′′ satisfies h′′∗ω′′ = ρ2ωk+,
(4) At any point u ∈ P ,

[ωk−(X̃), ωm(Ỹ )] = ι2h
′′(u)−1σ(π∗X̃, π∗Ỹ ),
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for X̃, Ỹ ∈ TuP ,
(5) They satisfy Gauss and Ricci equations: at any point p ∈M ,

R(X, Y )Z = R̄M (X, Y )Z + Sσ(Y, Z)X − Sσ(X, Z)Y,

RE(X, Y )ξ = R̄M (X, Y )ξ + σ(X, SξY )− σ(Y, SξX),

for X, Y, Z ∈ TpM, ξ ∈ Ep.
Conclusion: there exist an isometric immersion f : M → M̄ which is an
O(m)-submanifold in M̄ and a vector bundle isomorphism f̃ : E → T⊥M
which preserves the metrics and the connections such that for every X, Y ∈
TM ,

σ̃(X, Y ) = f̃σ(X, Y ),

where σ̃ is the second fundamental form of f . Moreover, such an immersion
f is unique up to the action by G.

After Theorem 2.8, it becomes a problem how to construct a locally am-
bient O(m)-geometry (P, ω) from the geometric ingredients (a Riemannian
manifold, a Riemannian vector bundle E, and an E-valued tensor field).
In the rest of this section, we deal with the case (3) in Theorem 1.1 as an
example.

Let M̄n(c̃) be a (complex) n-dimensional simply connected complete
Kähler manifold of constant holomorphic sectional curvature c̃ (c̃ 6= 0),
that is, a complex projective space CPn or a complex hyperbolic space
CHn according as c̃ is positive or negative. We denote by I and 〈 , 〉 the
complex structure and the Kähler metric on M̄n(c̃), respectively. Let Mn

be a (real) n-dimensional Riemannian manifold isometrically immersed in
M̄n(c̃) which satisfies ITpM = T⊥p M for all p ∈ M . Then M is called
a totally real submanifold. Totally real submanifolds have the following
remarkable properties (cf. Chen and Ogiue [2]): The complex structure I
defines a bundle isomorphism of TM to T⊥M which preserves the metrics
and the connections. For the second fundamental form σ, we define an
End(TM)-valued 1-form σ̂ by σ̂(X)(Y ) = −Iσ(X, Y ). Then it satisfies

〈σ̂(X)(Y ), Z〉 = 〈Y, σ̂(X)(Z)〉, σ̂(X)(Y ) = σ̂(Y )(X). (2.5)

Moreover we have SIXY = σ̂(Y )(X), where SIX denotes the shape operator
for the normal vector IX. Then the Gauss equation is given by
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R(X, Y )Z =
c̃

4
{〈Y, Z〉X − 〈X, Z〉Y }+ [σ̂(X), σ̂(Y )](Z).

The Ricci equation coincides with the Gauss equation by the bundle iso-
morphism I.

Now we show the fundamental theorem for half dimensional totally real
submanifolds of CPn or CHn.

Theorem 2.9 Let Mn be an n-dimensional simply connected Riemannian
manifold and σ̂ an End(TM)-valued 1-form on M which satisfies the iden-
tities (2.5). Suppose that σ̂ satisfies the following equations of Gauss and
Codazzi

R(X, Y )Z =
c̃

4
{〈Y, Z〉X − 〈X, Z〉Y }+ [σ̂(X), σ̂(Y )](Z),

(∇X σ̂)(Y ) = (∇Y σ̂)(X).

Then there exists an isometric immersion f : Mn → M̄n(c̃) which is a to-
tally real submanifold in M̄n(c̃) = CPn or CHn according as c̃ is positive
or negative such that the second fundamental form of f coincides with σ̂.
Moreover, such an immersion f is unique up to the action by holomorphi-
cally isometries of M̄n(c̃).

Proof. First we will investigate the structure of Lie algebras of the ambi-
ent space. Let (G, K) be the Riemannian symmetric pair associated with
M̄n(c̃). Let g be the Lie algebra of G and k the subalgebra of g which
corresponds to K and g = k + p be the canonical decomposition. Let Cn be
the complex vector space of column n-tuples of complex numbers with the
standard Hermitian inner product 〈 , 〉C and U(n) be the unitary group.
Then K is isomorphic to U(n) and p is isomorphic to Cn and the adjoint
representation Adp(K) of K on p is given by the canonical action of U(n)
on Cn. We define a real linear endomorphism I of Cn by I(x) = ix for
x ∈ Cn. We denote by 〈 , 〉 the real inner product on Cn defined by taking
the real part of 〈 , 〉C. The curvature tensor R̄ of M̄n(c̃) on p is of the form

R̄(x, y)z =
c̃

4
{〈y, z〉x− 〈x, z〉y

+ 〈Iy, z〉Ix− 〈Ix, z〉Iy − 2〈Ix, y〉Iz}
(2.6)

for x, y, z ∈ p = Cn. We define real subspaces m and m⊥ of p = Cn by
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m =








x1
...
xn


 ∈ Cn

∣∣ xj ∈ R





= Rn,

m⊥ =




i




x1
...
xn


 ∈ Cn

∣∣ xj ∈ R




' Rn.

Then m and m⊥ are mutually orthogonal with respect to 〈 , 〉. Since Im =
m⊥, both m and m⊥ are totally real subspaces. By (2.6), we see that both m

and m⊥ are curvature-invariant and in particular m is a strongly curvature-
invariant subspace of p. It is evident that the class of n-dimensional to-
tally real submanifolds in M̄n(c̃) coincides with that of O(m)-submanifolds,
where m ⊂ p is given above.

Let K+ be the subgroup of K = U(n) which leaves the subspace m

invariant. Then K+ consists of unitary matrices whose entries are all real
numbers and hence K+ coincides with the orthogonal group O(n). The
representation ρ′ : K+ → O(m) is the canonical action of O(n) on Rn and
ρ′′ : K+ → O(m⊥) is equivalent to ρ′ under the isomorphism by the complex
structure I. The Lie algebra k+ of K+ coincides with the Lie algebra so(n)
consisting of real skew-symmetric matrices. We define the subspace k− of k

as follows

k− =
{
iX

∣∣ X ∈ Sym(n, R)
} ' Sym(n, R),

where Sym(n, R) denotes the space of real n×n symmetric matrices. Then
we have the direct sum decomposition k = k+ + k− and adp(k−)(m) ⊂ m⊥,
adp(k−)(m⊥) ⊂ m. Let Sym(m) be the space of symmetric transformations
of m. We define a map ψ : k− → Sym(m) by ψ(X)(x) = −iXx for X ∈ k−
and x ∈ m = Rn. Then ψ is a real linear isomorphism and we identify k−
with Sym(m) by ψ.

To apply Theorem 2.8, we will construct a locally ambient O(m)-geom-
etry (P, ω) which satisfies the assumptions in Theorem 2.8. Let O(M) be
the bundle of orthonormal frames over M with the Riemannian connection
form ω′ and the canonical 1-form θ. We put P = O(M), which is the
principal fibre bundle with the structure group K+ = O(n). We view forms
ω′ and θ on P as a k+-valued 1-form and a m-valued 1-form, respectively.
Under the identification of k− with Sym(m), we put
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ωk−(X̃) = u−1σ̂(π∗X̃)u for X̃ ∈ TuP, u ∈ P = O(M),

where π : P →M denotes the projection. Now putting ω = ω′+ωk− +θ, we
define a k+ + k− + m-valued 1-form ω on P . It is easily seen that (P, ω) is
a locally ambient O(m)-geometry. If we view the tangent bundle TM as a
Riemannian vector bundle E in Theorem 2.8, the conditions in Theorem 2.8
are satisfied. Therefore Theorem 2.9 has been proved. ¤

3. Totally complex submanifolds

In this section, applying the results in §2 we show the fundamental
theorem for half dimensional totally complex submanifolds of the quaternion
projective space HPn or the quaternion hyperbolic space HHn.

First we recall the basic definitions and facts on totally complex sub-
manifolds of a quaternionic Kähler manifold. Let (M̃4n, g̃, Q̃) be a quater-
nionic Kähler manifold with the quaternionic Kähler structure (g̃, Q̃), that
is, g̃ is the Riemannian metric on M̃ and Q̃ is a rank 3 subbundle of EndTM̃
which satisfies the following conditions:
(a) For each p ∈ M̃ , there is a neighborhood U of p over which there exists

a local frame field {Ĩ , J̃ , K̃} of Q̃ satisfying

Ĩ2 = J̃2 = K̃2 = − id, ĨJ̃ = −J̃ Ĩ = K̃,

J̃K̃ = −K̃J̃ = Ĩ , K̃Ĩ = −ĨK̃ = J̃ .

(b) For any element L ∈ Q̃p, g̃p is invariant by L, i.e., g̃p(LX, Y ) +
g̃p(X, LY ) = 0 for X, Y ∈ TpM̃, p ∈ M̃ .

(c) The vector bundle Q̃ is parallel in EndTM̃ with respect to the Rie-
mannian connection ∇̃ associated with g̃.

In this paper we assume that the dimension of M̃4n is not less than 8
and that M̃4n has nonvanishing scalar curvature. A submanifold M2m of
M̃ is said to be almost Hermitian if there exists a section Ĩ of the bundle
Q̃|M such that (1) Ĩ2 = − id, (2) ĨTM = TM (cf. D.V. Alekseevsky and
S. Marchiafava [1]). We denote by I the almost complex structure on M

induced from Ĩ. Evidently (M, I) with the induced metric g is an almost
Hermitian manifold. If (M, g, I) is Kähler, we call it a Kähler submanifold
of a quaternionic Kähler manifold M̃ . An almost Hermitian submanifold
M together with a section Ĩ of Q̃|M is said to be totally complex if at each
point p ∈ M we have LTpM ⊥ TpM , for each L ∈ Q̃p with g̃(L, Ĩp) = 0
(cf. S. Funabashi [3]). It is known that a 2m (m ≥ 2)-dimensional almost
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Hermitian submanifold M2m is Kähler if and only if it is totally complex
([1] Theorem 1.12).

Let M2m be a 2m (m ≥ 2)-dimensional totally complex submanifold
of (M̃4n, g̃, Q̃) together with a section Ĩ of Q̃|M . The bundle Q̃|M has the
following decomposition:

Q̃|M = RĨ +Q′, (3.1)

where Q′ is defined by Q′p = {L ∈ Q̃p|g̃(L, Ĩp) = 0} at each point p ∈ M .
Then the section Ĩ of Q̃|M and the vector subbundle Q′ are parallel with
respect to the induced connection ∇̃ on Q̃|M ([13] Lemma 2.10). At each
point p ∈ M , we define a complex structure I on the fibre Q′p by IL = ĨL

for L ∈ Q′p. Hence Q′ becomes a complex line bundle over M . Moreover
the induced connection ∇̃ is complex linear on Q′. The curvature form R′

of the connection ∇̃ on Q′ is given by

R′(X, Y ) = − τ̃

4n(n+ 2)
Ω(X, Y )I,

where τ̃ is the scalar curvature of M̃ and Ω is the Kähler form of M defined
by Ω(X, Y ) = g(IX, Y ) for X, Y ∈ TpM . Since the curvature R′ is of
degree (1, 1), there is a unique holomorphic line bundle structure in Q′ such
that a (local) holomorphic section L is defined by ∇̃IXL = I∇̃XL for any
vector field X. The normal bundle T⊥M is a complex vector bundle with
the complex strucutre I induced from Ĩ which satisfies ∇⊥XI = 0, where
∇⊥ denotes the connection of T⊥M . Let σ be the second fundamental
form of M in M̃ . Then we have the following at each point p ∈ M ([13]
Proposition 2.11 and Lemma 2.13):
(1) σ(IX, Y ) = σ(X, IY ) = Iσ(X, Y ) for X, Y ∈ TpM ,
(2) g̃(σ(X, Y ), LZ) = g̃(σ(X, Z), LY ) for L ∈ Q′p, X, Y, Z ∈ TpM .

We study half dimensional totally complex submanifolds of the quater-
nion projective space or the quaternion hyperbolic space from the view
point of a locally ambient O(m)-geometry. For this purpose, we describe
the structure of Lie algebras of the ambient space. Let (G, K) be a Rieman-
nian symmetric pair associated with a (real) 4n-dimensional quaternion pro-
jective space HPn or a (real) 4n-dimensional quaternion hyperbolic space
HHn. Let g be the Lie algebra of G and k the Lie subalgebra of g which
corresponds to K and g = k + p be the canonical decomposition. First
we describe the adjoint representation of K on p. Let Hn be the space
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of column n-tuples with entries in the field H of quaternions. The space
Hn is considered as a right H-vector space, i.e., vectors are multiplied by
quaternions from the right. We define a H-Hermitian inner product 〈 , 〉H
by

〈x, y〉H =
n∑

i=1

xiyi, x, y ∈ Hn

and its real inner product 〈 , 〉R by

〈x, y〉R = the real part of 〈x, y〉H.
Let Sp(1) be the Lie group of unit quaternions, i.e.,

Sp(1) =
{
µ ∈ H

∣∣ 〈µ, µ〉R = 1
}

and Sp(n) be the Lie group of H-linear transformations of Hn which leave
the H-Hermitian inner product invariant. The Lie algebra sp(n) of Sp(n)
is the space of H-linear transformations which are skew-Hermitian with
respect to 〈 , 〉H. The product Lie group Sp(n) × Sp(1) acts on Hn as
R-linear transformations which leave the real inner product 〈 , 〉R invariant
by letting Sp(n) act on the left and Sp(1) act on the right:

(Sp(n)× Sp(1))×Hn → Hn
(
(A, λ), x

) 7→ Axλ−1 = Axλ̄.

We remark that the right multiplication by a quaternion λ ∈ H is real linear
but not necessarily quaternion linear. We put p = Hn and K = Sp(n) ×
Sp(1). Then the action of K on p is the adjoint representation of K on p

which corresponds to the Riemannian symmetric pair of HPn or HHn. We
put real linear transformations Ĩ , J̃ , and K̃ as follows:

Ĩx = xi, J̃x = xj, for x ∈ Hn, and K̃ = Ĩ J̃ , (3.2)

where {1, i, j, k} denotes the standard basis of H. Then it follows that

Ĩ2 = J̃2 = K̃2 = − id, ĨJ̃ = −J̃ Ĩ = K̃,

J̃K̃ = −K̃J̃ = Ĩ , K̃Ĩ = −ĨK̃ = J̃ .

The Lie group Sp(1) is given by
{
a0 id+a1Ĩ + a2J̃ + a3K̃

∣∣ aα ∈ R, a2
0 + a2

1 + a2
2 + a2

3 = 1
}

and its Lie algebra sp(1) is spanned over R by Ĩ , J̃ , and K̃. The curvature
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tensor R̄ on p of HPn or HHn is of the form

R̄(x, y)z =
c̃

4
{〈y, z〉x− 〈x, z〉y + 〈Ĩy, z〉Ĩx− 〈Ĩx, z〉Ĩy +

〈J̃y, z〉J̃x− 〈J̃x, z〉J̃y + 〈K̃y, z〉K̃x− 〈K̃x, z〉K̃y

− 2〈Ĩx, y〉Ĩz − 2〈J̃x, y〉J̃z − 2〈K̃x, y〉K̃z
}
, (3.3)

for x, y, z ∈ p = Hn, where c̃ is a positive or negative constant according
as the space is HPn or HHn and we simply write 〈 , 〉 for 〈 , 〉R.

The quaternion vector space Hn can be considered as a complex vector
space in a variety of natural ways. We choose a real linear transformation
Ĩ defined by (3.2) as a complex structure and define a complex scalar mul-
tiplication on Hn by (a+ bi)x = (a id+bĨ)x for a, b ∈ R and x ∈ Hn. From
now on we fix this complex structure Ĩ on Hn. We denote by EndH(Hn) the
space of H-linear transformations of Hn and by EndC(Hn, Ĩ) the space of
C-linear transformations of (Hn, Ĩ). Clearly EndH(Hn) ⊂ EndC(Hn, Ĩ). It
is known that for A ∈ EndH(Hn), the complex determinant detCA viewed
as a C-linear transformation of (Hn, Ĩ) is a non-negative real number. If
L = aJ̃ + bK̃, a, b ∈ R, then L is a semi-linear transformation of (Hn, Ĩ),
i.e.,

L(λx) = λ̄L(x) for x ∈ Hn, λ ∈ C.
Given A ∈ EndC(Hn, Ĩ), we see that A ∈ EndH(Hn) if and only if AJ̃ = J̃A.
As usual we use the subfield C ⊂ H generated by 1 and i and put

〈x, y〉C = the complex part of 〈x, y〉H.
Then 〈 , 〉C is a C-Hermitian inner product on (Hn, Ĩ). Since 〈x, y〉H =
〈x, y〉C + j〈J̃x, y〉C, we can show that

Sp(n) =
{
A ∈ EndC(Hn, Ĩ)

∣∣ AJ̃ = J̃A,

〈Ax, Ay〉C = 〈x, y〉C for x, y ∈ Hn
}
, (3.4)

sp(n) =
{
X ∈ EndC(Hn, Ĩ)

∣∣ XJ̃ = J̃X,

〈Xx, y〉C + 〈x, Xy〉C = 0 for x, y ∈ Hn
}
. (3.5)

Let {e1, e2, . . . , en} be the standard quaternion basis of Hn (i.e., ei is the
vector of Hn whose i-th component is 1 and the other components are zero).
Then {e1, e2, . . . , en, J̃e1, J̃e2, . . . , J̃en} is a unitary basis of (Hn, Ĩ) with



658 K. Tsukada

respect to 〈 , 〉C. Using this complex basis, we identify Hn with C2n: for
x = t(x1, x2, . . . , xn) ∈ Hn, we put xα = vα + jwα, vα, wα ∈ C (α =
1, 2, . . . , n) and v = t(v1, v2, . . . , vn) and w = t(w1, w2, . . . , wn). Then

the identification of Hn with C2n is given by Hn 3 x 7→
(

v

w

)
∈ C2n.

Given A ∈ EndC(Hn, Ĩ), we represent A by 2n× 2n-matrix with entries in
C with respect to the basis {e1, e2, . . . , en, J̃e1, J̃e2, . . . , J̃en}. Then the
Lie group Sp(n) and its Lie algebra sp(n) are given as follows:

Sp(n) =
{(

A11 −A21

A21 A11

) ∣∣∣∣ A11, A21 ∈Mn(C)
}
∩ U(2n) (3.6)

sp(n) =
{(

X11 −X21

X21 X11

) ∣∣∣∣
X11, X21 ∈Mn(C)

tX11 +X11 = O, tX21 = X21

}
, (3.7)

where Mn(C) denotes the space of n × n-matrices with entries in C. For
Sp(1), we have

Ĩ

(
v

w

)
=

(
iv

iw

)
, J̃

(
v

w

)
=

(−w

v

)
, K̃

(
v

w

)
=

(−iw
iv

)
.

We define complex subspaces m and m⊥ of p = Hn ' C2n by

m =
{(

v

0

)
∈ C2n

∣∣∣∣ v ∈ Cn

}
, m⊥ =

{(
0
w

)
∈ C2n

∣∣∣∣ w ∈ Cn

}
.

Then m and m⊥ are mutually orthogonal with respect to 〈 , 〉C and hence
〈 , 〉R. Since J̃(m) = m⊥, both m and m⊥ are totally complex subspaces.
By (3.3), we see that m and m⊥ are curvature-invariant. In particular
m is a strongly curvature-invariant subspace of p. We will describe the
decomposition of the Lie algebra k = sp(n) ⊕ sp(1) corresponding to the
subspace m. We use the same notations as in §2. Let K+ be the subgroup
of K = Sp(n) × Sp(1) whose adjoint representation leaves the subspace m

invariant. Then K+ is given as follows:

K+ =
{((

A 0
0 A

)
, a id+bĨ

) ∣∣∣∣A ∈ U(n), a, b ∈ R, a2 + b2 = 1
}

∪
{((

0 −A
A 0

)
, aJ̃ + bK̃

) ∣∣∣∣A ∈ U(n), a, b ∈ R, a2 + b2 = 1
}
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In particular the identity component (K+)o of K+ is given by
{((

A 0
0 A

)
, a id+bĨ

) ∣∣∣∣ A ∈ U(n), a, b ∈ R, a2 + b2 = 1
}
.

Therefore (K+)o is identified with the product Lie group U(n) × U(1) by

the isomorphism
((

A 0
0 A

)
, a id+bĨ

)
7→ (A, a+ bi). From now on we use

this identification. The Lie algebra k+ of (K+)o is given by

k+ =
{((

X 0
0 X

)
, xĨ

) ∣∣∣∣ X ∈ u(n), x ∈ R
}

and we denote the ideals of k+ by

k1+ =
{(

X 0
0 X

) ∣∣∣∣ X ∈ u(n)
}

and k2+ =
{
xĨ

∣∣ x ∈ R}
.

Then k1+ and k2+ are naturally identified with u(n) and u(1) by the iso-

morphisms
(
X 0
0 X

)
7→ X and xĨ 7→ xi, respectively. The Lie group

homomorphisms ρ′ : (K+)o → O(m) and ρ′′ : (K+)o → O(m⊥) are written
as follows:

ρ′
(
(A, λ)

)
(v) = λAv, (3.8)

ρ′′
(
(A, λ)

)
(v) = λAv, (3.9)

for (A, λ) ∈ U(n) × U(1) ' (K+)o and v ∈ Cn, where we identify m and
m⊥ with Cn, respectively. The Lie algebra homomorphisms ρ′ : k+ → so(m)
and ρ′′ : k+ → so(m⊥) are written as follows:

ρ′
(
(X, xi)

)
(v) = Xv + xiv, (3.10)

ρ′′
(
(X, xi)

)
(v) = Xv + xiv, (3.11)

for (X, xi) ∈ u(n)⊕ u(1) ' k+.
The subspace k− of the Lie algebra k = sp(n)⊕ sp(1) is given by

k− =
{((

0 −X
X 0

)
, xJ̃ + yK̃

) ∣∣∣∣ X ∈ Sym(n, C), x, y ∈ R
}
,

where Sym(n, C) denotes the space of complex n × n symmetric matrices.
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We put the subspaces k1− and k2− as follows:

k1− =
{(

0 −X
X 0

) ∣∣∣∣ X ∈ Sym(n, C)
}
⊂ sp(n)

k2− =
{
xJ̃ + yK̃

∣∣ x, y ∈ R
}
⊂ sp(1).

Then we have the direct sum decomposition k− = k1− ⊕ k2−. We consider k2−
as a 1-dimensional complex vector space with the complex structure Ĩ, i.e.,
i(xJ̃ + yK̃) = Ĩ(xJ̃ + yK̃) = −yJ̃ + xK̃. Then the adjoint representation
of (K+)o on k2− is given by

Ad
(
(A, λ)

)
(xJ̃ + yK̃) = λ2(xJ̃ + yK̃),

for (A, λ) ∈ U(n)× U(1) ' (K+)o.

Lemma 3.1 The space m⊥ is equivalent to the tensor product k2− ⊗C m

over C as the representation spaces by (K+)o, where m denotes the complex
conjugate vector space of m.

Proof. We define a map ϕ : k2− × m → m⊥ by ϕ
(
(L, v)

)
= Lv, for L ∈

k2−, v ∈ m. Then ϕ is a complex linear map for the first factor k2− and a
semi-linear map for the second factor m. For (A, λ) ∈ U(n)×U(1) ' (K+)o,
we have

ϕ
(
(A, λ) · (L, v)

)
=ϕ

(
(Ad

(
(A, λ)

)
(L), ρ′

(
(A, λ)

)
(v))

)

=ϕ(λ2L, λAv)

= λ2L(λAv) = λ2λ̄AL(v)

= λAL(v) = ρ′′
(
(A, λ)

)
ϕ(L, v).

Therefore there exists a (K+)o-equivariant complex linear map ϕ̃ : k2− ⊗C
m → m⊥ which satisfies ϕ̃(L ⊗ v) = ϕ

(
(L, v)

)
. Since J̃ is a semi-linear

isomorphism of m onto m⊥, ϕ̃ is a linear isomorphism. ¤

Let ψ : k− → Hom(m, m⊥) be a linear map defined by the action of k−
on m. It is injective as is stated in §2. The image ψ(k1−) is characterized as
follows:

Lemma 3.2 For C ∈ Hom(m, m⊥), C is in ψ(k1−) if and only if C is a
complex linear map which satisfies 〈Cv, Lw〉R = 〈Cw, Lv〉R for any L ∈ k2−
and v, w ∈ m.



Fundamental theorem for totally complex submanifolds 661

Proof. For T ∈ k1−, T is a H-linear transformation of p and skew-symmetric
with respect to 〈 , 〉H and hence 〈 , 〉R. Therefore we have

〈Tv, Lw〉R = −〈v, TLw〉R = −〈v, LTw〉R
= 〈Lv, Tw〉R = 〈Tw, Lv〉R.

This implies that C = ψ(T ) satisfies the requirements.
Conversely let C be a complex linear map which satisfies 〈Cv, Lw〉R =

〈Cw, Lv〉R. We define a linear map C∗ of m⊥ into m by 〈C∗ξ, v〉R =
−〈ξ, Cv〉R for v ∈ m, ξ ∈ m⊥. Then C∗ is a complex linear map. We define
a complex linear transformation T of p by T (v + ξ) = Cv + C∗ξ. Then T

is skew-symmetric with respect to 〈 , 〉R. Using the equation 〈Cv, Lw〉R =
〈Cw, Lv〉R, we can easily prove T J̃ = J̃T . Therefore T is a H-linear trans-
formation of p and hence T is in sp(n). Moreover since T (m) ⊂ m⊥ and
T (m⊥) ⊂ m, T is in k1−. ¤

It is evident that a 2n (n ≥ 2)-dimensional totally complex submani-
fold of M̄ = HPn or HHn is an O(m)-submanifold and vice versa, where
m is a totally complex subspace discussed above. Let M be a (real) 2n
(n ≥ 2)-dimensional totally complex submanifold of M̄ = HPn or HHn.
For simplicity we assume that M is simply connected. Let (P, ω) be the
corresponding locally ambient O(m)-geometry on M . Now we may assume
that the structure group of P is the identity component (K+)o of K+. Let
ρo : (K+)o → End(sp(1)) be the representation of (K+)o which is obtained
by restricting the adjoint representation of (K+)o to sp(1) and sp(1) = k2+⊕
k2− be the decomposition to the invariant subspaces by this representation.
Then we have

ker ρo =
{
(A, ±1)

∣∣ A ∈ U(n)
} ⊂ U(n)× U(1) ' (K+)o

and the identity component of ker ρo is isomorphic to U(n). We put Po =
P/U(n) and denote by ho the projection of P onto Po. Then Po is a principal
fibre bundle with the structure group U(1). Let Q̃|M = RĨ + Q′ be the
decomposition of the quaternionic Kähler structure Q̃ given by (3.1). Then
Q′ is the complex line bundle with the standard fibre k2− associated with the
principal fibre bundle Po corresponding to the representation ρo(λ) = λ2 idC
for λ ∈ U(1). The 1-form ω on P is decomposed as follows:

ω = ωk+ + ωk− + ωm = ωk1+
+ ωk2+

+ ωk1−
+ ωk2−

+ ωm. (3.12)
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Let ωo be the connection form on Po which is the pushforward form of
the connection form ωk+ on P ; ωo is a u(1)-valued 1-form on Po such that
h∗oωo = ωk2+

. We obtain the following for ωk2−
and ωo.

Lemma 3.3 The 1-form ωk2−
vanishes on P . The curvature form dωo of

ωo is given by dωo = −(c̃/2)ΩĨi, where ΩĨ is the R-valued 2-form on Po

defined by ΩĨ(X, Y ) = g(Ĩπ∗X, π∗Y ) for X, Y ∈ TuPo, where π : Po → M

is the projection.

Proof. We put ωk2+
(X) = α(X)Ĩ and ωk2−

(X) = β(X)J̃ + γ(X)K̃ for X ∈
TuP at any point u ∈ P , where α, β, and γ are R-valued 1-forms on P . By
taking the k2−-component of the equation (2.4.2), we have dωk2−

+[ωk2+
, ωk2−

] =
0. Therefore

dβ + 2γ ∧ α = 0, (3.13)

dγ + 2α ∧ β = 0. (3.14)

By taking the k2+-component of the equation (2.4.1), we have

dωk2+
+

1
2
[ωk2−

, ωk2−
] = (f̃∗Ω̄)k2+

.

Here Ω̄ is the curvature form of M̄ = HPn or HHn. From the form (3.3)
of the curvature tensor, it follows that (f̃∗Ω̄)k2+

= −(c̃/2)ΩĨ Ĩ. Therefore we
have

dα+ 2β ∧ γ = − c̃
2
ΩĨ . (3.15)

Differentiating (3.13), we have dγ ∧α− γ ∧ dα = 0. By (3.14) and (3.15), it
follows (c̃/2)γ∧ΩĨ = 0. Similarly differentiating (3.14), we have −(c̃/2)ΩĨ∧
β = 0. Since dimRM = 2n ≥ 4, we obtain β = γ = 0. This together with
(3.15) implies that dα = −(c̃/2)ΩĨ and hence dωk2+

= −(c̃/2)ΩĨ Ĩ. Since

h∗o(dωo) = dh∗oωo = dωk2+
= −(c̃/2)ΩĨ Ĩ, the curvature form dωo of ωo is

given by −(c̃/2)ΩĨi. ¤

Let ρ′ : (K+)o → O(m) be the representation of (K+)o on m. Under the
identification of m with Cn, by (3.8) it follows that ρ′

(
(K+)o

)
= U(n). By

Corollary 2.6, M is a Kähler manifold. We note that this property holds
for totally complex submanifolds in a quaternionic Kähler manifold with
nonvanishing scalar curvature as explained in the beginning of this section.
The normal bundle T⊥M is the complex vector bundle with the standard
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fibre m⊥ associated with the principal fibre bundle P corresponding to the
Lie group homomorphism ρ′′ : (K+)o → O(m⊥) given by (3.9). Then by
Lemma 3.1 we obtain the following.

Lemma 3.4 The normal bundle T⊥M is naturally isomorphic to the ten-
sor product Q′⊗C TM , where TM denotes the complex conjugate bundle of
the tangent bundle TM .

As is shown in §2, the second fundamental form σ is obtained from the
Hom(m, m⊥)-valued 1-form σ̂ = ψ ◦ ωk− on P . By Lemma 3.3, ωk2−

= 0.
Therefore σ̂ has its value in ψ(k1−). Then for X ∈ TuP , σ̂(X) is a complex
linear map which satisfies 〈σ̂(X)v, Lw〉R = 〈σ̂(X)w, Lv〉R for any L ∈ k2−
and v, w ∈ m.

Now we show the fundamental theorem for totally complex submani-
folds of M̄ = HPn or HHn. We assume that the scalar curvature of M̄ is
4n(n+ 2)c̃. First we prepare geometric objects and the assumptions which
they need to satisfy so that we can apply Theorem 2.8. Let M be a (real)
2n (n ≥ 2)-dimensional simply connected Kähler manifold with the com-
plex structure I and the Kähler metric 〈 , 〉. We denote by Ω its Kähler
form. Let Po be the principal U(1)-bundle over M with the connection ωo

whose curvature form is given by −(c̃/2)(π∗Ω)i, where π : Po → M is the
projection. Let Q′ be the complex line bundle over M associated with the
principal fibre bundle Po corresponding to the homomorphism ρo : U(1) →
End(C), λ 7→ λ2 idC. Then Q′ has the Hermitian fibre metric 〈 , 〉 and
the metric connection induced from Po. Here we mean by the Hermitian
fibre metric a real inner product 〈 , 〉 which satisfies 〈ia, ib〉 = 〈a, b〉 for
a, b ∈ Q′p, p ∈M . We denote by TM the complex conjugate vector bundle
of the tangent bundle TM with the complex structure Ī = −I. Let E =
Q′ ⊗C TM be the tensor product of Q′ and TM over C with the complex
structure Ĩ and the Hermitian fibre metric 〈 , 〉 (an Ĩ-invariant real inner
product), where Ĩ and 〈 , 〉 are given by

Ĩ(a⊗X) = (ia)⊗X = a⊗ ĪX = −a⊗ IX,

and

〈a⊗X, b⊗ Y 〉 = 〈a, b〉〈X, Y 〉 − 〈ia, b〉〈ĪX, Y 〉
= 〈a, b〉〈X, Y 〉 + 〈ia, b〉〈IX, Y 〉,
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for a, b ∈ Q′p, X, Y ∈ TpM , p ∈ M . The connection in E is induced from
those of Q′ and TM . We define a smooth section

ϕ ∈ Γ(Hom(Q′, EndR(TM + E)))

as follows: for a, b ∈ Q′p, X, Y ∈ TpM , p ∈M
ϕa(X) = a⊗X, ϕa(b⊗ Y ) = −〈a, b〉Y + 〈ia, b〉IY.

Then ϕa satisfies the following properties:
(1) ϕa is a semi-linear map, i.e., ϕa ◦ I = −Ĩ ◦ ϕa on TpM and ϕa ◦ Ĩ =

−I ◦ ϕa on Ep = (Q′ ⊗C TM)p.
(2) ϕ2

a = −‖a‖2 id.
(3) ϕa is skew-symmetric, i.e.,

〈ϕa(X + b⊗ Y ), X ′ + b′ ⊗ Y ′〉+ 〈X + b⊗ Y, ϕa(X ′ + b′ ⊗ Y ′)〉= 0.

We consider a Hom(TM, E)-valued 1-form σ̂ on M which satisfies the fol-
lowing conditions: for X, Y, Z ∈ TpM , a ∈ Q′p, p ∈M

σ̂(X)(IY ) = Ĩ σ̂(X)(Y ), (3.16.1)

〈σ̂(X)(Y ), ϕaZ〉 = 〈σ̂(X)(Z), ϕaY 〉, (3.16.2)

σ̂(X)(Y ) = σ̂(Y )(X). (3.16.3)

We define an E = Q′ ⊗C TM -valued covariant tensor field σ of order 2 on
M by σ(X, Y ) = σ̂(X)(Y ) for X, Y ∈ TpM , p ∈M .

Theorem 3.5 (Fundamental theorem for totally complex submanifolds)
Let M be a (real) 2n (n ≥ 2)-dimensional simply connected Kähler manifold
with the Kähler form Ω and Po be the principal U(1)-bundle over M with the
connection whose curvature form is −(c̃/2)(π∗Ω)i. We define the complex
vector bundle E = Q′ ⊗C TM as above. Let σ̂ be a Hom(TM, E)-valued 1-
form on M which satisfies (3.16.1), (3.16.2), (3.16.3). In addition, suppose
that the tensor field σ satisfies the following equations of Gauss and Codazzi

R(X, Y )Z =
c̃

4
{〈Y, Z〉X − 〈X, Z〉Y + 〈IY, Z〉IX
− 〈IX, Z〉IY − 2〈IX, Y 〉IZ}

+ Sσ(Y, Z)X − Sσ(X, Z)Y,

(∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z)
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for the tangent vectors X, Y, Z of M , where R denotes the curvature tensor
of M and ∇̄ denotes the covariant differentiation with respect to the con-
nection in TM + E. Then there exist an isometric immersion f : M → M̄

which is a totally complex submanifold in M̄ = HPn or HHn according as
c̃ is positive or negative and a vector bundle isomorphism f̃ : E = Q′ ⊗C
TM → T⊥M which preserves the complex structure, the metrics and the
connections such that for every X, Y ∈ TM , σ̃(X, Y ) = f̃σ(X, Y ), where
σ̃ is the second fundamental form of f . Moreover, such an immersion f

is unique up to the action by G, where G is the identity component of the
isometry group of M̄ .

Remark 3.6 In Alekseevsky and Marchiafava ([1] p. 889) it was con-
jectured that the fundamental theorem of submanifold geometry holds for
half-dimensional totally complex submanifolds in M̄ = HPn or HHn. The-
orem 3.5 gives an affirmative answer to this conjecture.

Proof of Theorem 3.5. To apply Theorem 2.8, we will construct a locally
ambient O(m)-geometry (P, ω) which satisfies the assumptions in Theo-
rem 2.8. At first we construct the principal fibre bundle P with the struc-
ture group U(n)×U(1) ' (K+)o. At each point p ∈M , we view the tangent
space TpM as a C-Hermitian vector space and consider a C-linear isometry
u : Cn → TpM , which is called a unitary frame at p ∈ M . Let P ′ be the
bundle of unitary frames over M . Then it is a principal fibre bundle with
the structure group U(n). We denote by P = P ′ ×M Po the fibre product
of two principal fibre bundles P ′ and Po with the structure groups U(n)
and U(1). Now we define a new right action R(A, λ) on P = P ′ ×M Po

for (A, λ) ∈ U(n) × U(1) by R(A, λ)(u, a) = (u(λA), aλ). Let h′ : P → P ′

be the projection from P = P ′ ×M Po onto the first factor P ′. Then h′

is a bundle homomorphism corresponding to the Lie group homomorphism
ρ′ : (K+)o ' U(n)× U(1) → U(n) ⊂ O(m) given by (3.8). Let ho : P → Po

is the projection from P = P ′ ×M Po onto the second factor Po. Then ho is
a bundle homomorphism corresponding to the homomorphism ρ′o : (K+)o '
U(n)× U(1) → U(1), (A, λ) 7→ λ.

Let P ′′ be the bundle of unitary frames of the complex vector bundle
E = Q′ ⊗C TM . We will construct a bundle homomorphism h′′ of P onto
P ′′. We recall the construction of the associated fibre bundle Q′ from Po (cf.
Kobayashi and Nomizu [5] Vol. I, Chapter 1, §5). We define the right action
of U(1) on the product manifold Po × C as follows: an element λ ∈ U(1)
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maps (a, z) ∈ Po × C into (aλ, λ−2z). Then Q′ is the quotient space of
Po×C by this group action. We denote by µ the projection of Po×C onto
Q′ and simply write µ(a) for the mapping a ∈ Po into µ(a, 1) ∈ Q′. Then
µ is the fibre-preserving immersion of Po into Q′ which satisfies µ(aλ) =
λ2µ(a) for λ ∈ U(1). Let τ be the complex conjugation of Cn defined by
τ(v) = v̄ for v ∈ Cn. For (u, a) ∈ P = P ′ ×M Po, the mapping ϕµ(a) ◦ u ◦ τ
is a C-linear isometry of Cn onto Ep = (Q′ ⊗C TM)p, p = π(u, a), where
ϕµ(a) is a semi-linear map of TpM into Ep defined by µ(a) ∈ Q′p and hence
ϕµ(a)◦u◦τ is a unitary frame of Ep. We define a mapping h′′ of P into P ′′ by
h′′(u, a) = ϕµ(a) ◦ u ◦ τ . Then h′′ is a bundle homomorphism corresponding
to the homomorphism ρ′′ : (K+)o ' U(n) × U(1) → U(n) ⊂ O(m⊥) given
by (3.9). We note that each a ∈ Po gives an identification of k2− with Q′p,
p = π(a) by the mapping xJ̃ + yK̃, x, y ∈ R into µ(a, x + iy) ∈ Q′p.
Moreover the linear map ψ : k2− → Hom(m, m⊥) is equivalent to the linear
map ϕ : Q′p → Hom(TpM, Ep). That is, we have

h′′(u, a)−1 ◦ ϕµ(a, x+iy) ◦ h′(u, a)(v) = ψ(xJ̃ + yK̃)(v) (3.17)

for v ∈ Cn ∼= m, x, y ∈ R, at (u, a) ∈ P . Here as usual we identify m

and m⊥ with Cn, respectively and remark that under these identifications
ψ(J̃)(v) = v̄ and ψ(K̃)(v) = iv̄.

Next we construct a k+ + k− + m-valued 1-form ω on P . Since M is
Kählerian, the Riemannian connection of M is reduced to the bundle of
unitary frames P ′, whose connection form is denoted by ω′. We denote by
θ the canonical 1-form on P ′, i.e., a Cn-valued 1-form which is defined by
θ(X) = u−1(π∗X) for X ∈ TuP

′. We define a k1+ = u(n)-valued 1-form ωk1+
,

a k2+ = u(1)-valued 1-form ωk2+
, and a m = Cn-valued 1-form ωm on P as

follows:

ωk1+
= h′∗ω′ − (h∗oωo)In

ωk2+
= h∗oωo

ωm = h′∗θ,

where In denotes the n × n-identity matrix and ωo is the connection form
on Po. Then we have h′∗ω′ = ρ′ωk+ and ho

∗ωo = ρ′oωk+ . Let ω′′ be the con-
nection form on P ′′ which corresponds to the connection on E = Q′⊗C TM
induced from those of Q′ and TM . By the straightforward computation,
we see that h′′∗ω′′ = ρ′′ωk+ . Using σ̂ we will define a k1−-valued 1-form ωk1−
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on P . As previous arguments, we identify both m and m⊥ with Cn, respec-
tively and hence Hom(m, m⊥) with End(Cn). At (u, a) ∈ P , we define an
End(Cn)-valued 1-form σ̃ as follows:

σ̃(X̃)(v) = h′′(u, a)−1(σ̂(π∗X̃)(h′(u, a)(v)))

for X̃ ∈ T(u, a)P, v ∈ Cn.

Then by (3.16.1), σ̃(X̃) is a complex linear endomorphism of Cn and by
(3.16.2) and (3.17) we have 〈σ̃(X̃)v, Lw〉R = 〈σ̃(X̃)w, Lv〉R for any L ∈ k2−.
By Lemma 3.2, it follows that σ̃(X̃) ∈ ψ(k1−). Since ψ : k− → Hom(m, m⊥)
is injective, we can define ωk1−

by ψ(ωk1−
(X̃)) = σ̃(X̃).

Now puting ω = ωk1+
+ ωk2+

+ ωk1−
+ ωm, we define a k+ + k− + m-

valued 1-form ω on P . By straightforward computation, we can show that
ω satisfies (2.3.1), (2.3.2) and (2.3.3). Consequently we have constructed a
locally ambient O(m)-geometry (P, ω). By the construction, it follows that
the conditions (1) ∼ (4) in Theorem 2.8 are satisfied. The condition (5) in
Theorem 2.8 is equivalent to that of (2.4.1) in Proposition 2.3. We denote
by Ψ the k+-valued 2-form defined by the left hand side of (2.4.1). We apply
ρ′o to Ψ, where ρ′o : k+ ' u(n)⊕u(1) → u(1) is the projection. Then we have

ρ′oΨ = dρ′oωk+ +
1
2
ρ′o[ωk+ , ωk+ ] +

1
2
ρ′o[ωk− , ωk− ] +

1
2
ρ′o[ωm, ωm]

= h∗odωo − Ω̄k2+
,

where Ω̄ denotes the curvature form of M̄ . Since dωo = Ω̄k2+
= −(c̃/2)(π∗Ω)i,

ρ′oΨ = 0. By the Gauss equation, it follows that ρ′Ψ = 0. These imply
Ψ = 0. Thus the requirements of Theorem 2.8 are all saitisfied. Therefore
Theorem 3.5 has been proved. ¤
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