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Abstract. In this paper we discuss the rigidity of the canonical isometric imbedding

fff0 of the Hermitian symmetric space Sp(n)/U(n) into the Lie algebra sp(n). We will

show that if n ≥ 2, then fff0 is strongly rigid, i.e., for any isometric immersion fff1 of a

connected open set U of Sp(n)/U(n) into sp(n) there is a euclidean transformation a of

sp(n) satisfying fff1 = afff0 on U .
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1. Introduction

In a series of our work [4], [5] and [7] we showed the strong rigidity
of the canonical isometric imbeddings of the projective planes P 2(CAY),
P 2(H) and the symplectic group Sp(n). In this paper we will investigate
the canonical isometric imbedding fff0 of the Hermitian symmetric space
Sp(n)/U(n) (n ≥ 2) and establish the strong rigidity theorem for fff0.

As is known, any Hermitian symmetric space M of compact type is
isometrically imbedded into the Lie algebra g of the holomorphic isometry
group of M (see Lichnérowicz [15]). Thus, Sp(n)/U(n) can be isometrically
imbedded into sp(n), which is the Lie algebra of the symplectic group Sp(n).
Identifying sp(n) with the euclidean space R2n2+n, we obtain an isometric
imbedding fff0 of Sp(n)/U(n) into R2n2+n, which is called the canonical
isometric imbedding of Sp(n)/U(n). In [2] we proved that any open set of
Sp(n)/U(n) cannot be isometrically immersed into the euclidean space RN

with N ≤ dim sp(n)−1. Accordingly, the canonical isometric imbedding fff0

gives the least dimensional (local) isometric imbedding of Sp(n)/U(n) into
the euclidean space (see Corollary 2.5 of [2]).

In this paper we will prove
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Theorem 1 Let fff0 be the canonical isometric imbedding of Sp(n)/U(n)
(n ≥ 2) into the euclidean space sp(n) (= R2n2+n). Then fff0 is strongly
rigid, i.e., for any isometric immersion fff1 of a connected open set U of
Sp(n)/U(n) into sp(n) there is a euclidean transformation a of sp(n) sat-
isfying fff1 = afff0 on U .

As for the rigidity on the canonical isometric imbeddings of connected
irreducible Hermitian symmetric spaces M of compact type, the following
results are known:
(1) fff0 is globally rigid in the following sense: Let fff1 be an isometric

imbedding of M into g. If fff1 is sufficiently close to fff0 with respect to
C3-topology, then there is a euclidean transformation a of g such that
fff1 = afff0 (see Tanaka [17]).

(2) If M is not isomorphic to any complex projective space Pn(C), then
fff0 is locally rigid in the following sense: Let U be a connected open
set of M and let fff1 be an isometric imbedding of U into g. If fff1 is
sufficiently close to fff0 with respect to C2-topology on U , then there is
a euclidean transformation a of g such that fff1 = afff0 holds on U (see
Kaneda-Tanaka [12]).

We note that the topological condition on the mappings are removed in the
statement of Theorem 1. In this sense Theorem 1 strengthens the rigidity
theorem in [17] and [12] for the Hermitian symmetric space Sp(n)/U(n)
(n ≥ 2).

The method of our proof is quite similar to the methods adopted in [4],
[5] and [7]. We will solve the Gauss equation on Sp(n)/U(n) in codimension
n2(= dim sp(n) − dimSp(n)/U(n)) and prove that any solution Ψ of the
Gauss equation is Hermitian, i.e., Ψ(IX, IY ) = Ψ(X, Y ). This fact, to-
gether with the criterion on the isometric imbeddings of almost Hermitian
manifolds (Theorem 5), indicates that any solution of the Gauss equation
is equivalent to the second fundamental form of fff0. Therefore by the con-
gruence theorem obtained in [4] (see Theorem 3 below) we can establish
Theorem 1.

Throughout this paper we will assume the differentiability of class C∞.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [11]. For the quaternion numbers and the symplectic group Sp(n),
see Chevalley [9].
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2. The Gauss equation and rigidity of isometric imbeddings

Let M be a Riemannian manifold and let T (M) be the tangent bundle of
M . We denote by ν the Riemannian metric of M and by R the Riemannian
curvature tensor of type (1, 3) with respect to ν. We also denote by C the
Riemannian curvature tensor of type (0, 4), which is, at each point p ∈ M ,
given by

C(x, y, z, w) = −ν
(
R(x, y)z, w

)
, x, y, z, w ∈ Tp(M).

Let NNN be a euclidean vector space, i.e., NNN is a vector space over R endowed
with an inner product

〈
,

〉
. Let S2T ∗p (M) ⊗NNN be the space of NNN -valued

symmetric bilinear forms on Tp(M). We call the following equation on Ψ ∈
S2T ∗p (M)⊗NNN the Gauss equation at p ∈ M modeled on NNN :

C(x, y, z, w) =
〈
Ψ(x, z), Ψ(y, w)

〉− 〈
Ψ(x, w), Ψ(y, z)

〉
, (2.1)

where x, y, z, w ∈ Tp(M). We denote by Gp(M, NNN) the set of all solutions
of (2.1), which is called the Gaussian variety at p ∈ M modeled on NNN . Let
O(NNN) be the orthogonal transformation group of NNN . We define an action
of O(NNN) on S2T ∗p (M)⊗NNN by

(hΨ)(x, y) = h
(
Ψ(x, y)

)
,

where Ψ ∈ S2T ∗p (M) ⊗ NNN , h ∈ O(NNN), x, y ∈ Tp(M). We say that two
elements Ψ and Ψ′ ∈ S2T ∗p (M)⊗NNN are equivalent if there is an element h ∈
O(NNN) such that Ψ′ = hΨ. It is easily seen that if Ψ and Ψ′ ∈ S2T ∗p (M)⊗NNN

are equivalent and Ψ ∈ Gp(M, NNN), then Ψ′ ∈ Gp(M, NNN). We say that the
Gaussian variety Gp(M, NNN) is EOS if Gp(M, NNN) 6= ∅ and if it consists of
essentially one solution, i.e., any solutions of the Gauss equation (2.1) are
equivalent to each other under the action of O(NNN). We proved

Proposition 2 ([4], p. 334) Let M be a Riemannian manifold and p ∈
M . Let NNN be a euclidean vector space such that Gp(M, NNN) is EOS. Then:
(1) Let Ψ be an arbitrary element of Gp(M, NNN). Then, the vectors Ψ(x, y)

(x, y ∈ Tp(M)) span the whole space NNN .
(2) Let NNN1 be a euclidean vector space. Then:

(2a) Gp(M, NNN1) = ∅ if dimNNN1 < dimNNN ;
(2b) Gp(M, NNN1) is EOS if dimNNN1 = dimNNN ;
(2c) Gp(M, NNN1) is not EOS if dimNNN1 > dimNNN .
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We say that a Riemannian manifold M is formally rigid in codimension
r if there is a euclidean vector space NNN with dimNNN = r such that the
Gaussian variety Gp(M, NNN) modeled on NNN is EOS at each p ∈ M . In [4] we
have obtained the following rigidity theorem for formally rigid Riemannian
manifolds:

Theorem 3 ([4], pp. 335–336) Let M be an m-dimensional Riemannian
manifold and let fff0 be an isometric immersion of M into the euclidean
space RN . Assume:
(1) M is connected;
(2) M is formally rigid in codimension r = N −m.
Then, any isometric immersion fff1 of M into the euclidean space RN co-
incides with fff0 up to a euclidean transformation of RN , i.e., there exists a
euclidean transformation a of RN such that fff1 = afff0.

In the subsequent sections we will prove

Theorem 4 The Hermitian symmetric space Sp(n)/U(n) (n ≥ 2) is for-
mally rigid in codimension n2 (= dim u(n)).

If Theorem 4 is true, then it is easily seen that Theorem 1 immediately
follows from Theorem 3.

Remark 1 We note that, in the case n = 1, Theorem 4 is not true. In
this case we have Sp(1)/U(1) ∼= S2 and the canonical isometric imbedding
fff0 coincides with the standard isometric imbedding of S2 into R3. Conse-
quently, fff0 is globally rigid (remember the rigidity theorem for ovaloids by
Cohn-Vossen [10]). However, it is not locally rigid, i.e., there are infinitely
many non-equivalent surfaces of revolution possessing constant positive cur-
vature. Therefore, the Gauss equation in codimension 1 admits infinitely
many non-equivalent solutions corresponding to the second fundamental
forms of these surfaces. For details, see Spivak [16].

3. The Gauss equation on almost Hermitian manifolds

For the proof of Theorem 4 we start from a general setting. Let M be an
even dimensional Riemannian manifold with Riemannian metric ν. Assume
that there is an almost complex structure I on M such that ν

(
Ix, Iy

)
=

ν(x, y) (x, y ∈ Tp(M)) at each p ∈ M . Then M is called an almost Hermi-
tian manifold.
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Let M be an almost Hermitian manifold and p ∈ M . Let NNN be a
euclidean vector space. An element Ψ ∈ S2T ∗p ⊗NNN is called Hermitian if
Ψ(IX, IY ) = Ψ(X, Y ) holds for any X, Y ∈ Tp(M). In what follows we
will consider the case where the Gauss equation (2.1) admits a Hermitian
solution. We will prove

Theorem 5 Let M be an almost Hermitian manifold and NNN a euclidean
vector space. Let Gp(M, NNN) be the Gaussian variety at p ∈ M modeled on
NNN . Assume:
(1) Gp(M, NNN) 6= ∅;
(2) Any solution Ψ ∈ Gp(M, NNN) is Hermitian.
Then, Gp(M, NNN) is EOS.

Let M be a 2m-dimensional almost Hermitian manifold and let p ∈
M . For simplicity, we set TTT = Tp(M). Let TTTC = TTT +

√−1TTT be the
complexification of TTT . By X we denote the complex conjugate of X ∈ TTTC

with respect to TTT . The almost complex structure I is extended to a C-linear
endomorphism of TTTC, which is also denoted by I. Set

TTT 1,0 = {Z ∈ TTTC | IZ =
√−1Z}, TTT 0,1 = {Z ∈ TTTC | IZ = −√−1Z}.

Then, as is known, TTTC = TTT 1,0 + TTT 0,1 (direct sum) and TTT 0,1 = TTT 1,0; TTT 1,0 =
TTT 0,1. Take a basis {Z1, . . . , Zm} of TTT 1,0 and put Zī = Zi (1 ≤ i ≤ m). Then
the set {Zi, Zī (1 ≤ i ≤ m)} forms a basis of TTTC. In the following we will
fix such a basis {Zi, Zī (1 ≤ i ≤ m)} and rewrite the Gauss equation (2.1).

As usual, the Riemannian curvature is extended to a tensor of type
(0, 4) on TTTC. Define Cabcd ∈ C by setting

Cabcd = C(Za, Zb, Zc, Zd),

where the suffices a, b, c, d run through the range 1, . . . , m, 1̄, . . . , m̄. We
also extend an element Ψ ∈ S2TTT ∗⊗NNN to an element of S2TTTC

∗⊗NNNC, where
NNNC = NNN +

√−1NNN denotes the complexification of a euclidean vector space
NNN . Define vectors Ψab ∈NNNC by setting

Ψab = Ψ(Za, Zb), a, b = 1, . . . , m, 1̄, . . . , m̄.

Then we easily have

Ψab = Ψāb̄, a, b = 1, . . . , m, 1̄, . . . , m̄,

where for an element vvv ∈ NNNC we mean by vvv the complex conjugate of vvv
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with respect to NNN and we promise ¯̄i = i for i = 1, . . . , m.
By use of Cabcd and Ψab we can rewrite the Gauss equation (2.1) as

follows:

Cabcd =
〈
Ψac, Ψbd

〉− 〈
Ψad, Ψbc

〉
,

a, b, c, d = 1, . . . , m, 1̄, . . . , m̄, (3.1)

where
〈

,
〉

means the symmetric bilinear form on NNNC which is a natural
extension of the inner product of NNN . We now prove

Lemma 6 Let Ψ ∈ Gp(M,NNN). Assume that Ψ is Hermitian. Then

Cik̄j̄l =
〈
Ψij̄ , Ψk̄l

〉
, 1 ≤ i, j, k, l ≤ m. (3.2)

Proof. Let i, j, k and l be integers such that 1 ≤ i, j, k, l ≤ m. Putting
a = i, b = k̄, c = j̄ and d = l into (3.1), we have

Cik̄j̄l =
〈
Ψij̄ , Ψk̄l

〉− 〈
Ψil, Ψk̄j̄

〉
.

Since Ψ is Hermitian, we have Ψil = Ψk̄j̄ = 0. Hence we get (3.2). ¤

Let us define a Hermitian inner product
(

,
)

of NNNC by setting
(
Y, Y ′) =

〈
Y, Y ′〉, Y, Y ′ ∈NNNC.

Then NNNC is considered as a Hermitian vector space.
We now define a quadratic form Ĉ(p) on TTT 1,0 ⊗ TTT 1,0 by

Ĉ(p)(X ⊗ Y , Z ⊗W ) = C(X, Z, Y , W ),

X ⊗ Y , Z ⊗W ∈ TTT 1,0 ⊗ TTT 1,0.

By C(p) we denote the matrix corresponding to Ĉ(p) with respect to the
basis {Zi ⊗ Zj̄ (1 ≤ i, j ≤ m)} of TTT 1,0 ⊗ TTT 1,0. As is easily seen, C(p) =
(C(p)αβ) is a complex square matrix of degree m2, where Greek letters α,
β, . . . run over the pairs of indices {ij̄} (i, j = 1, . . . , m) and

C(p)αβ = Cik̄j̄l, α = {ij̄}, β = {kl̄}.

It is easily checked that C(p) is a Hermitian matrix, i.e., tC(p) = C(p).
Moreover, the rank of C(p) and the cardinal number of positive or negative
eigenvalues of C(p) do not depend on the choice of the basis {Zi} of TTT 1,0.
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Now, let Ψ ∈ Gp(M, NNN). Assume that Ψ is Hermitian. Then by (3.2)
we have

C(p)αβ =
(
Ψα, Ψβ

)
, α, β = {11̄}, . . . , {ij̄}, . . . , {mm̄}, (3.3)

where we write Ψα = Ψij̄ when α = {ij̄}. The equality (3.3) indicates that
C(p) is nothing but the Gram matrix of the vectors {Ψα}α with respect
to

(
,

)
. Therefore, C(p) must be positive semi-definite and rank(C(p)) =

dimC(
∑

αCΨα), where α runs through the indices {11̄}, . . . , {mm̄}. Let
NNNΨ be the subspace of NNN spanned by the vectors Ψ(X, Y ), where X, Y ∈
TTT . Then we easily have NNNC

Ψ =
∑

αCΨα. Hence dimNNNΨ = dimC(
∑

αCΨα).
Therefore, we get

Lemma 7 Let Ψ ∈ Gp(M, NNN). Assume that Ψ is Hermitian. Then C(p)
is positive semi-definite and

dimNNNΨ = rank(C(p)).

Consequently, Gp(M, NNN) does not contain any Hermitian element if one of
the following conditions are satisfied:
(1) C(p) has at least one negative eigenvalue;
(2) dimNNN < rank

(C(p)
)
.

Example 1 Let M be a Kähler manifold of constant holomorphic sec-
tional curvature c (6= 0) and p ∈ M . Let (z1, . . . , zm) be a complex local
coordinate system of M around p. Put Zi = ∂/∂zi (1 ≤ i ≤ m). Then we
get a basis {Zi}1≤i≤m of TTT 1,0. By use of the basis {Zi, Zī (1 ≤ i ≤ m)} the
curvature tensor C of M can be written as

Cik̄j̄l =
1
2
c(νik̄νj̄l + νij̄νk̄l), 1 ≤ i, j, k, l ≤ m,

where we set νik̄ = ν(Zi, Zk̄) (1 ≤ i, k ≤ m) (see Kobayashi-Nomizu [14]).
By a suitable change of the coordinate (z1, . . . , zm) we may assume that
νik̄ = δik (1 ≤ i, k ≤ m) at p, where δ means the Kronecker delta. Conse-
quently, the component C(p)αβ of the matrix C(p) is given by

C(p)αβ =
1
2
c(δαβ + δαᾱδββ̄), α, β = {11̄}, . . . , {ij̄}, . . . , {mm̄},

where {ij̄} = {kl̄} means i = k and j = l; {ij̄} = {jī}, {kl̄} = {lk̄}.
Therefore, we have rank(C(p)) = m2, because c 6= 0. Further, if c < 0
(resp. c > 0), then C(p) is negative (resp. positive) definite. Accordingly,
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Gp(M, NNN) does not contain any Hermitian element in case c < 0 or dimNNN <

m2.

With these preparations we prove Theorem 5.

Proof of Theorem 5. First suppose that dimNNN > rank(C(p)). Let Ψ be
an arbitrary element of Gp(M, NNN). Then by Lemma 7 we have dimNNNΨ <

dimNNN . Take a non-zero vector nnn ∈ NNN such that
〈
NNNΨ, nnn

〉
= 0 and take a

non-zero covector ξ ∈ TTT ∗. Set Ψ1 = Ψ + ξ2 ⊗ nnn. Then it is easily verified
that Ψ1 ∈ Gp(M, NNN) and that Ψ1 is not Hermitian. This contradicts the
assumption (2). Consequently, we have dimNNN = rank

(C(p)
)
. Moreover, we

have NNNΨ = NNN for any Ψ ∈ Gp(M, NNN).
We now prove that Gp(M, NNN) is EOS. Let Ψ and Ψ′ ∈ Gp(M, NNN). Since

Ψ and Ψ′ are Hermitian, they satisfy the equality (3.3). Hence we have
(
Ψα, Ψβ

)
=

(
Ψ′

α, Ψ′
β

)
, α, β = {11̄}, . . . , {ij̄}, . . . , {mm̄}.

Since NNNΨ = NNN , the vectors {Ψα}α span the whole NNNC. By an elementary
linear algebra we know that there is a unitary transformation h of NNNC

satisfying Ψ′
α = h(Ψα) (α = {11̄}, . . . , {ij̄}, . . . , {m, m̄}). Let α = {ij̄}.

Then we have

h(Ψα) = h(Ψjī) = Ψ′
jī = Ψ′

α = h(Ψα).

Consequently, we have h(NNN) ⊂NNN . Hence h is an orthogonal transformation
of NNN and satisfies Ψ′ = hΨ. This shows that Gp(M, NNN) is EOS. ¤

Remark 2 Let NNN be a euclidean vector space. Assume that Gp(M, NNN)
satisfies the conditions (1) and (2) in Theorem 5. Let NNN ′ be another eu-
clidean vector space such that dimNNN ′ = dimNNN . Then, Gp(M, NNN ′) also
satisfies the conditions (1) and (2) in Theorem 5. To observe this, take an
isometric isomorphism ϕ : NNN −→ NNN ′ and define a linear mapping S2T ∗p ⊗
NNN 3 Ψ 7−→ Ψ̂ ∈ S2T ∗p ⊗NNN ′ by Ψ̂(X, Y ) = ϕ(Ψ(X, Y )) (X, Y ∈ Tp(M)).
Then the following assertions can be easily verified:
(1) Ψ̂ is Hermitian if and only if Ψ is Hermitian;
(2) Ψ̂ ∈ Gp(M, NNN ′) if and only if Ψ ∈ Gp(M, NNN).
Thus, we note that the conditions (1) and (2) in Theorem 5 are the condi-
tions only related to the dimension of the eulidean space NNN . As seen in the
proof of Theorem 5, dimNNN equals rank(C(p)), which is uniquely determined
by the curvature of M at p.
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4. The canonical isometric imbeddings of Hermitian symmetric
spaces of compact type

We now review the canonical isometric imbeddings of Hermitian sym-
metric spaces of compact type defined by Lichnérowicz [15]. Let M be an
almost Hermitian manifold. A mapping g of M into itself is called holomor-
phic if g satisfies g∗ ◦ I = I ◦ g∗. A connected almost Hermitian manifold
M is called a Hermitian symmetric space if each p ∈ M is an isolated fixed
point of an involutive holomorphic isometry of M . Utilizing the identity
component G of the holomorphic isometry group of M , we can represent
M as a Riemannian symmetric space G/K, where K is an isotropy group
at a suitable point o ∈ M ; usually o is called the origin of G/K (see Helga-
son [11]). We say a Hermitian symmetric space G/K is of compact type if
the Lie algebra g of G is compact and semisimple.

Let M = G/K be a Hermitian symmetric space of compact type. Let k

be the Lie algebra of K and g = k + m be the canonical decomposition of g

with respect to the Riemannian symmetric pair (G, K). As usual, we iden-
tify m with the tangent space To(M). It is known that there is an element
I0 ∈ k such that: (i) I0 belongs to the center of k; (ii) ad(I0)|m coincides with
the almost complex structure I at o (see [14], [11]). Consider the Ad(G)-
orbit in g passing through I0, i.e., Ad(G)I0 ⊂ g. Since Ad(K)I0 = I0, we
get a differential mapping

fff0 : G/K 3 gK 7−→ Ad(g)I0 ∈ g.

We may regard g as a euclidean vector space with a suitable Ad(G)-invariant
inner product. The induced Riemannian metric ν of G/K via fff0 is easily
understood to be G-invariant. The mapping fff0 is called the canonical iso-
metric imbedding of M = G/K.

Let ∇ be the Riemannian connection on M = G/K associated with
ν. By ∇fff0 (resp. ∇∇fff0) we denote the first order (resp. second order)
covariant derivative of the canonical isometric imbedding fff0. The second
order covariant derivative ∇∇fff0 is called the second fundamental form of
the canonical isometric imbedding fff0. In view of Tanaka [17], Kaneda-
Tanaka [12] we know that at the origin o, ∇fff0 and ∇∇fff0 are given as
follows:

∇Xfff0 = [X, I0] = −IX, X ∈ m; (4.1)

∇X∇Y fff0 = [X, [Y, I0]] = −[X, IY ], X, Y ∈ m. (4.2)
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Let TTT (resp. NNN) be the tangent (resp. normal) vector space of fff0(G/K)
at I0 (= fff0(o) ∈ g). By (4.1) we know that the tangent space TTT , which
is generated by the first order covariant derivatives of fff0 at o, coincides
with m. Consequently, the normal vector space NNN at o is given by NNN = k.
Similarly, by (4.2) we know that the value of the second order covariant
derivative ∇X∇Y fff0 (X, Y ∈ m) belongs to the normal vector space NNN = k.
As for the second fundamental form we have

Proposition 8 ([17], [12]) Let G/K be a Hermitian symmetric space of
compact type and let fff0 be the canonical isometric imbedding of G/K into
g. Then the second fundamental form Ψ0 ∈ S2m∗ ⊗ k of fff0 at the origin o

satisfies the following
(1) Ψ0 ∈ Go(G/K, k);
(2) The vectors Ψ0(X, Y ) (X, Y ∈ m) span the whole k;
(3) Ψ0 is Hermitian, i.e., Ψ0(IX, IY ) = Ψ0(X, Y ) for X, Y ∈ m.

By this proposition we have

Proposition 9 Let G/K be a Hermitian symmetric space of compact type.
Then for each p ∈ G/K the following assertions hold:
(1) rank

(C(p)
)

= dim k;
(2) Let NNN be a euclidean vector space with dimNNN = dim k. Then,

Gp(G/K, NNN) is EOS if and only if any element Ψ ∈ Go(G/K, k) is
Hermitian.

Proof. By Proposition 8 and Lemma 7 we immediately know that
rank(C(o)) = dim k. Then, by homogeneity of G/K, we have (1). Also,
by homogeneity, we easily see that Gp(G/K, NNN) is EOS if and only if
Go(G/K, k) is EOS. Note that Go(G/K, k) contains a Hermitian element
Ψ0. Hence, if Go(G/K, k) is EOS, then any element Ψ ∈ Go(G/K, k) is
Hermitian. The converse part follows from Theorem 5. ¤

Remark 3 Let G/K be a Hermitian symmetric space of compact type
and let p ∈ G/K. Then, the equality rank(C(p)) = dim k in Proposition 9
indicates that dim k is the least dimension of a euclidean vector space NNN such
that Gp(G/K, NNN) contains a Hermitian element. In fact, if NNN1 is a euclidean
vector space with dimNNN1 < dim k, then Gp(G/K, NNN1) does not contain any
Hermitian element (see Lemma 7). However, we note that this fact does not
imply Gp(G/K, NNN1) = ∅. Agaoka [1] proved that for the complex projective
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Table 1. Irreducible Hermitian symmetric spaces of compact type
G/K rank(G/K) dim G/K dim g dim k

P n(C) (n ≥ 1) 1 2n n2 + 2n n2

Gp,q(C) (p ≥ q ≥ 2) q 2pq (p + q)2 − 1 p2 + q2 − 1

Qn(C) (n ≥ 5) 2 2n 1
2
(n + 1)(n + 2) 1

2
n(n− 1) + 1

SO(2n)/U(n) (n ≥ 5) [n/2] n2 − n 2n2 − n n2

Sp(n)/U(n) (n ≥ 1) n n2 + n 2n2 + n n2

E6/Spin(10) · SO(2) 2 32 78 46

E7/E6 · SO(2) 3 54 133 79

space Pn(C) (n ≥ 2), Go(Pn(C), NNN1) 6= ∅ when dimNNN1 = n2 − 1. We note
that in this case we have dim k = dim u(n) = n2 and hence Go(Pn(C), k) is
not EOS. It seems to the authors that this is a special case. For the other
irreducible Hermitian symmetric space G/K except Pn(C) (n ≥ 1), such as
the complex Grassmann manifold Gp,q(C) (p ≥ q ≥ 2), the complex quadric
Qn(C) (n ≥ 4), etc., we conjecture that the Gaussian variety Go(G/K, k) is
EOS. As will be seen in the following sections, our conjecture is true for the
Hermitian symmetric space Sp(n)/U(n) (n ≥ 2). In Table 1 we show all
irreducible Hermitian symmetric spaces G/K of compact type and related
data.

5. The Hermitian symmetric space Sp(n)/U(n)

Let H be the field of quaternion numbers. As is well-known, H is an
associative algebra over the field R of real numbers generated by 111 (∈ R)
and three elements iii, jjj, kkk satisfying the following multiplication rule:
(1) 111iii = iii111 = iii, 111jjj = jjj111 = jjj, 111kkk = kkk111 = kkk;
(2) iii2 = jjj2 = kkk2 = −111;
(3) iiijjj = −jjjiii = kkk, jjjkkk = −kkkjjj = iii, kkkiii = −iiikkk = jjj.

Let qqq ∈ H. Then qqq is written as qqq = q0111 + q1iii + q2jjj + q3kkk, where
q0, q1, q2, q3 ∈ R. We define the norm |qqq|, the real part Re(qqq) and the
conjugate qqq by

|qqq|2 =
3∑

i=0

q2
i ; Re(qqq) = q0; qqq = q0111− q1iii− q2jjj − q3kkk.

Then we easily have |qqq| = |qqq|, Re(qqq) = Re(qqq), qqq = qqq and qqqqqq = qqqqqq = |qqq|2.
Further, we have
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|qqqqqq′| = |qqq||qqq′|; Re(qqqqqq′) = Re(qqq′qqq); qqqqqq′ = qqq′qqq, ∀qqq, qqq′ ∈ H.

By the identification a ∈ R with a111 ∈ H the field R is canonically considered
as a subfield of H. By the identification a + b

√−1 7−→ a + biii (a, b ∈ R) we
may regard the field C of complex numbers as the subfield R+Riii of H. In
this meaning we will write C = R + Riii. The real part and the conjugate
of a quaternion number defined above are compatible with the usual one
defined on C.

For later convenience we set D = Rjjj + Rkkk. Then we easily have

H = C+ D (direct sum); CC = DD = C, CD = DC = D.

We now define a bracket in H by [qqq, qqq′] = qqqqqq′ − qqq′qqq. Then it is known
that H endowed with [ , ] is a Lie algebra over R. Moreover, it is easily
verified
(1) [111, qqq] = [qqq, 111] = 0, qqq ∈ H;
(2) [iii, iii] = [jjj, jjj] = [kkk, kkk] = 0;
(3) [iii, jjj] = −[jjj, iii] = 2kkk, [jjj, kkk] = −[kkk, jjj] = 2iii, [kkk, iii] = −[iii, kkk] = 2jjj.
Consequently, we have

[C, C] = 0, [D, D] = Riii, [C, D] = [D, C] = D.

Let n be a positive integer. By M(n;H) we denote the space of square
matrices of degree n over the field H. We will regard M(n;H) as a 4n2-
dimensional vector space over R. Define a bracket in M(n;H) by [X, Y ] =
XY − Y X (X, Y ∈ M(n;H)). Then M(n;H) endowed with [ , ], which is
a natural extension of the bracket [ , ] defined in H = M(1;H), forms a Lie
algebra over R. For an element X =

(
Xj

i

)
1≤i, j≤n

∈ M(n;H) we mean by

X the conjugate matrix X =
(
Xj

i

)
1≤i, j≤n

. Then we have X = X and

tXY = tY tX, X, Y ∈ M(n;H).

Now define a real bilinear form
〈

,
〉

of M(n;H) by
〈
X, Y

〉
= Re(Trace(XtY )), X, Y ∈ M(n;H).

It can be easily verified that
〈

,
〉

is symmetric and positive definite on
M(n;H), i.e.,

〈
,

〉
is an inner product of M(n;H). With this inner product〈

,
〉

we may regard M(n;H) as the euclidean space R4n2
.

Let Sp(n) denote the symplectic group of degree n, i.e., Sp(n) is the
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subset of M(n;H) consisting of all g ∈ M(n;H) such that

g tg = tgg = 1n,

where 1n is the identity matrix of order n. Let sp(n) be the Lie algebra of
Sp(n). As is known, sp(n) is a real subspace of M(n;H) consisting of all
X ∈ M(n;H) such that

X + tX = 0.

As is easily seen, dim sp(n) = 2n2+n and the inner product
〈

,
〉

is invariant
under the actions of Ad(Sp(n)) and ad(sp(n)):

〈
Ad(g)X, Ad(g)Y

〉
=

〈
X, Y

〉
, g ∈ Sp(n), X, Y ∈ M(n;H);〈

ad(Z)X, Y
〉

+
〈
X, ad(Z)Y

〉
= 0, Z ∈ sp(n), X, Y ∈ M(n;H).

In the following we regard sp(n) with the inner product
〈

,
〉

as the eu-
clidean space R2n2+n. By M(n;C) (resp. M(n;D)) we denote the subspace
of M(n;H) consisting of all matrices X ∈ M(n;H) whose components are
all contained in C (resp. D). Then the unitary group U(n) of degree n and
its Lie algebra u(n) are represented by U(n) = Sp(n)∩M(n;C) and u(n) =
sp(n) ∩M(n;C).

Lemma 10 Let m(n) be the space of symmetric matrices of degree n whose
components are all contained in D. Then the sum sp(n) = u(n) + m(n) is
an orthogonal direct sum with respect to

〈
,

〉
and

[u(n), u(n)] ⊂ u(n); [m(n), m(n)] ⊂ u(n); [u(n), m(n)] ⊂ m(n).

In other words, sp(n) = u(n) + m(n) gives the canonical decomposition of
sp(n) associated with the symmetric pair (Sp(n), U(n)).

Hereafter, we consider the symmetric space M = Sp(n)/U(n). Identi-
fying m(n) with the tangent space To(Sp(n)/U(n)) at the origin o, we define
an Sp(n)-invariant metric ν on Sp(n)/U(n) by

ν
(
X, Y

)
=

〈
X, Y

〉
, X, Y ∈ m(n).

As is known, the Riemannian curvature R of type (1, 3) associated with ν

is given as follows (see [14, Ch. XI]):

R(X, Y )Z = −[
[X, Y ], Z

]
, X, Y, Z ∈ m(n).
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Set I0 = (1/2)iii1n (∈ M(n;C)). Then I0 is included in the center of u(n)
and satisfies

ad(I0)X = iiiX; ad(I0)2X = −X, X ∈ m(n);〈
ad(I0)X, ad(I0)Y

〉
=

〈
X, Y

〉
, X, Y ∈ m(n);

Ad(a) · ad(I0)|m(n) = ad(I0)|m(n) ·Ad(a), a ∈ U(n).

Thus, it is easy to see that ad(I0)|m(n) can be extended to an Sp(n)-invariant
almost complex structure I. Thus the symmetric space Sp(n)/U(n) en-
dowed with the Riemannian metric ν and the almost complex structure I

becomes a Hermitian symmetric space of compact type.

6. The Gauss equation on Sp(n)/U(n)

In this section, we consider the Gauss equation (2.1) at o modeled on
the space u(n), which is written in the form

〈[
[X, Y ], Z

]
, W

〉

=
〈
Ψ(X, Z), Ψ(Y, W )

〉− 〈
Ψ(X, W ), Ψ(Y, Z)

〉
, (6.1)

where Ψ ∈ S2m(n)∗ ⊗ u(n) and X, Y, Z, W ∈ m(n). The inner product
of u(n) is taken to be the restriction of

〈
,

〉
to the subspace u(n) (⊂

M(n;H)). Notations are the same in the previous sections. For simplicity,
we set G(n) = Go(Sp(n)/U(n), u(n)). In the following we will prove

Theorem 11 Assume that n ≥ 2. Then any solution Ψ ∈ G(n) is Her-
mitian, i.e.,

Ψ(IX, IY ) = Ψ(X, Y ), X, Y ∈ m(n).

If Theorem 11 is true, then by Proposition 9 we conclude that at each
p ∈ Sp(n)/U(n), Gp(Sp(n)/U(n), NNN) is EOS when n ≥ 2 and dimNNN = n2.
This shows that Sp(n)/U(n) (n ≥ 2) is formally rigid in codimension n2,
proving Theorem 4.

For the proof of Theorem 11 we make several preparations. Let Ψ ∈
G(n). For each X ∈ m(n) we define a linear map ΨX of m(n) to u(n) by
ΨX(Y ) = Ψ(X, Y ) (Y ∈ m(n)). By KKKΨ(X) we denote the kernel of ΨX .
Then we have

Proposition 12 Let Ψ ∈ G(n) and X ∈ m(n). Then
(1) dimKKKΨ(X) ≥ n.
(2)

[
[KKKΨ(X), KKKΨ(X)], X

]
= 0.
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Proof. (1) is clear from dimKKKΨ(X) ≥ dimm(n) − dim u(n) = n. Let Y ,
Z ∈KKKΨ(X) and let W be an arbitrary element of m(n). Then by the Gauss
equation (6.1) we have

〈[
[Y, Z], X

]
, W

〉

=
〈
Ψ(Y, X), Ψ(Z, W )

〉− 〈
Ψ(Y, W ), Ψ(Z, X)

〉
= 0.

Since W is an arbitrary element, we have
[
[Y, Z], X

]
= 0, proving (2). ¤

Let X ∈ m(n). We define a subspace C(X) ⊂ m(n) by C(X) = {Y ∈
m(n) | [X, Y ] = 0}. Then we have dim C(X) ≥ rank(Sp(n)/U(n)) = n. We
say an element X ∈ m(n) is regular if dimC(X) = n. It is obvious that for
a regular element X ∈ m(n), C(X) is a unique maximal abelian subspace
of m(n) containing X. More strongly, since rank

(
Sp(n)

)
= n, C(X) is a

unique maximal abelian subalgebra of sp(n) containing X. We note that
the set of regular elements forms an open dense subset of m(n) and that
any maximal abelian subspace a contains regular elements as an open dense
subset with respect to the induced topology of a.

Proposition 13 Let Ψ ∈ G(n) and X ∈ m(n).
(1) If X 6= 0, then X 6∈KKKΨ(X).
(2) If X is regular, then KKKΨ(X) is a maximal abelian subspace of m(n).

Moreover,

Ψ
(
KKKΨ(X), C(X)

)
= 0. (6.2)

(3) If X is not regular, then dimKKKΨ(X) ≥ dimC(X) (> n).

Proof. Let X ∈ m(n). Putting Y = W = IX and Z = X into (6.1), we
have

〈[
[X, IX], X

]
, IX

〉

=
〈
Ψ(X, X), Ψ(IX, IX)

〉− 〈
Ψ(X, IX), Ψ(IX, X)

〉
.

Assume that X ∈ KKKΨ(X), i.e., Ψ(X, X) = 0. Then the right side of the
above equality becomes −|Ψ(X, IX)|2 ≤ 0, where | · | means the norm
determined by

〈
,

〉
. On the other hand, since Sp(n)/U(n) has positive

holomorphic sectional curvature, the left side of the above equality becomes
> 0 when X 6= 0. This is a contradiction. Hence we have X 6∈ KKKΨ(X) if
X 6= 0.
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Next we show (2). Assume that X ∈ m(n) is regular. Since [m(n), m(n)]
⊂ u(n) and [u(n), m(n)] ⊂ m(n), it follows that

[
[KKKΨ(X), KKKΨ(X)], C(X)

]
⊂ m(n). In view of (2) of Proposition 12, we easily get

[
X,

[
[KKKΨ(X), KKKΨ(X)], C(X)

]]
= 0.

Consequently,
[
[KKKΨ(X),KKKΨ(X)], C(X)

] ⊂ C(X). Since C(X) is an abelian
subspace, we have

〈[
[KKKΨ(X), KKKΨ(X)], C(X)

]
, C(X)

〉

=
〈
[KKKΨ(X), KKKΨ(X)], [C(X), C(X)]

〉
= 0.

This implies that
[
[KKKΨ(X), KKKΨ(X)], C(X)

]
=0. Let W∈[KKKΨ(X), KKKΨ(X)].

Then the sum C(X) + RW forms an abelian subalgebra of sp(n). Since
C(X) is a unique maximal abelian subalgebra of sp(n) containing X, we
have C(X) = C(X)+RW . Therefore W ∈ C(X). However, since W ∈ u(n)
and C(X) ⊂ m(n), we have W = 0. This proves [KKKΨ(X), KKKΨ(X)] = 0, i.e.,
KKKΨ(X) is an abelian subspace of m(n). Since dimKKKΨ(X) ≥ n, it follows
that dimKKKΨ(X) = n and hence KKKΨ(X) is a maximal abelian subspace of
m(n).

Now take a regular element Y∈KKKΨ(X). Then it follows that Ψ(Y,C(X))
= 0. In fact, as we have shown, KKKΨ(Y ) is a maximal abelian subspace of
m(n) and satisfies ΨY (X) = Ψ(X, Y ) = ΨX(Y ) = 0, i.e., X ∈ KKKΨ(Y ).
Since C(X) is a unique maximal abelian subspace containing X, we have
KKKΨ(Y ) = C(X), which proves Ψ

(
Y, C(X)

)
= 0. Note that regular el-

ements of KKKΨ(X) form an open dense subset of KKKΨ(X). Therefore by
continuity of Ψ we have Ψ

(
Y ′, C(X)

)
= 0 for any Y ′ ∈ KKKΨ(X), i.e.,

Ψ
(
KKKΨ(X), C(X)

)
= 0, completing the proof of (2).

Finally, assume that X ∈ m(n) is not regular. Let a be a maximal
abelian subspace containing X. Since X is not regular, we have C(X) ) a.
Take a regular element H ∈ a. Then, since KKKΨ(H) is a maximal abelian
subspace of m(n) (see (2)), we can take a regular element Z ∈KKKΨ(H). We
now show that the image of C(X) via the map ΨZ is isomorphic to the
quotient C(X)/a, i.e., ΨZ(C(X)) ∼= C(X)/a. In fact, since C(H) = a, it
follows that

ΨZ(a) = Ψ(Z, a) ⊂ Ψ
(
KKKΨ(H), C(H)

)
= 0,

i.e., KKKΨ(Z) ⊃ a (see (6.2)). Since KKKΨ(Z) is a maximal abelian subspace of
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m(n) (see (2)), we have KKKΨ(Z) = a, proving our assertion.
Now let Y ∈ C(X). Then by the Gauss equation (6.1) we have

〈[
[X, Y ], Z

]
, W

〉

=
〈
Ψ(X, Z), Ψ(Y, W )

〉− 〈
Ψ(X, W ), Ψ(Y, Z)

〉
, W ∈ m(n).

Since [X, Y ] = 0 and Ψ(X, Z) = ΨZ(X) = 0, we have
〈
Ψ(X, W ), Ψ(Y, Z)

〉
=

〈
ΨX(W ), ΨZ(Y )

〉
= 0.

Consequently, the subspace ΨX(m(n)) of u(n) is perpendicular to the sub-
space ΨZ

(
C(X)

)
. Hence we have dimΨX(m(n))≤dimu(n)−dimΨZ

(
C(X)

)
.

On the other hand, since ΨZ

(
C(X)

) ∼= C(X)/a, it follows that
dimΨZ

(
C(X)

)
= dim C(X)− n. Therefore,

dimKKKΨ(X) = dim m(n)− dimΨX(m(n))

≥ dimm(n)− (dim u(n)− dimΨZ(C(X)))

= (dim m(n)− dim u(n)) + dimΨZ(C(X))

= n + (dimC(X)− n)

= dim C(X),

completing the proof of (3). ¤

Proposition 14 Let Ψ ∈ G(n). Let a be a maximal abelian subspace of
m(n). Then:
(1) There exists a unique maximal abelian subspace a′ of m(n) such that

Ψ(a, a′) = 0. (6.3)

(2) Let {H1, . . . , Hn} be a basis of a. Then the maximal abelian subspace
a′ stated in (1) can be written as

a′ =
n⋂

i=1

KKKΨ(Hi).

Proof. First we prove the existence of a′ satisfying (6.3). Take a regular
element X ∈ a and set a′ = KΨ(X). Then, we know that a′ is a maximal
abelian subspace of m(n) (see Proposition 13 (2)). Since C(X) = a, by
(6.2) we obtain Ψ(a, a′) = Ψ(C(X), KKKΨ(X)) = 0. Next, we prove the
uniqueness of a′. Let a′ be a maximal abelian subspace satisfying (6.3).
Take an arbitrary regular element X contained in a. Then by (6.3) it is
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clear that KKKΨ(X) ⊃ a′. Since KKKΨ(X) is a maximal abelian subspace of
m(n), we have KKKΨ(X) = a′. This proves the uniqueness of a′.

Let {H1, . . . , Hn} be a basis of a. Then by (6.3) we have Ψ(Hi, a′) =
0 and hence KKKΨ(Hi) ⊃ a′. Therefore, a′ ⊂ ⋂n

i=1 KKKΨ(Hi). On the other
hand, by linearity of Ψ, we have KKKΨ(X) ⊃ ⋂n

i=1 KKKΨ(Hi) for any X ∈ a.
In particular, if X is regular, then we have a′ = KKKΨ(X) and hence a′ ⊃⋂n

i=1 KKKΨ(Hi). This completes the proof of (2). ¤

Let Ψ ∈ S2m(n)∗ ⊗ u(n) and a ∈ U(n). Define an element Ψa ∈
S2m(n)∗ ⊗ u(n) by

Ψa(X, Y ) = Ψ(Ad(a−1)X, Ad(a−1)Y ), X, Y ∈ m(n).

Then, since Ad(a−1) preserves the curvature, we have Ψa ∈ G(n) if and
only if Ψ ∈ G(n). We can easily show the following

Lemma 15 Let Ψ ∈ G(n) and a ∈ U(n). Then

KKKΨa(Ad(a)X) = Ad(a)(KKKΨ(X)), X ∈ m(n).

Proof. The proof is obtained by the following

Y ∈KKKΨa(Ad(a)X) ⇐⇒ Ψa(Ad(a)X, Y ) = 0

⇐⇒ Ψ(X, Ad(a−1)Y ) = 0

⇐⇒ Ad(a−1)Y ∈KKKΨ(X)

⇐⇒ Y ∈ Ad(a)(KKKΨ(X)).

¤

Finally, we state Theorem 11 in a different form, which is somewhat
easy to prove. Let Eij (1 ≤ i, j ≤ n) denote the matrix

(
δisδjt

)
1≤s, t≤n

∈
M(n;H). Then it is easily seen that the sum a0 =

∑n
i=1RjjjEii forms a

maximal abelian subspace of m(n). Now consider the following:

Proposition 16 Assume that n ≥ 2. Let Ψ ∈ G(n). Then

Ψ(a0, Ia0) = 0.

We now show that Proposition 16 implies Theorem 11. Assume that
Proposition 16 is true. Under this setting we will show that any element
Ψ ∈ G(n) is Hermitian. Let X be an arbitrary element of m(n). As is
known, there is an element a ∈ U(n) such that H = Ad(a)X ∈ a0. By
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Proposition 16 we have Ψa(H, IH) = 0, because Ψa ∈ G(n). Noticing the
relation Ad(a−1)I = I Ad(a−1), we have

0 = Ψa(H, IH) = Ψ(Ad(a−1)H, Ad(a−1)IH) = Ψ(X, IX).

Consequently, for any X ∈ m(n) we have Ψ(X, IX) = 0, which means that
Ψ is Hermitian. Thus we get Theorem 11.

7. Proof of Proposition 16

In this section we will prove Proposition 16. Let n′ be a non-negative
integer such that n′ < n. By the assignment

m(n′) 3 X 7−→
(

X 0
0 0

)
∈ m(n)

we may regard m(n′) as a subspace of m(n). In the special case n′ = n− 1
we have the direct sum

m(n) = m(n− 1) + DEnn +
n−1∑

i=1

D(Ein + Eni). (7.1)

For simplicity we set Hi = jjjEii (i = 1, . . . , n). Then we have IHi = iiiHi =
kkkEii. Consequently, we have

CHi = RHi + RIHi = DEii, i = 1, . . . , n.

As in the previous section we set a0 =
∑n

i=1RHi. In the following we will
prove Ψ(a0, Ia0) = 0 for any Ψ ∈ G(n). First we show

Lemma 17 Let Ψ ∈ G(n). Then there exists a real number a ∈ R such
that

KKKΨ(Hn) = m(n− 1) + R(IHn − aHn) (direct sum). (7.2)

Accordingly, dimKKKΨ(Hn) = dim m(n− 1) + 1.

Proof. First assume that the following inclusion holds:

KKKΨ(Hn) ⊂ m(n− 1) + CHn. (7.3)

Then, since Hn 6∈KKKΨ(Hn), we have dimKKKΨ(Hn) ≤ dimm(n− 1) + 1. On
the other hand, by a simple calculation we can verify that C(Hn) = m(n−
1) + RHn. On account of the relation dimKKKΨ(Hn) ≥ dimC(Hn) we have
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dimKKKΨ(Hn) = dim m(n− 1) + 1. Moreover, we have

KKKΨ(Hn) + RHn = m(n− 1) + CHn. (7.4)

Now we show m(n− 1) ⊂KKKΨ(Hn). By (7.4) it is known that there is a real
number a such that IHn−aHn ∈KKKΨ(Hn). Similarly, for any X ∈ m(n−1),
there is a real number b ∈ R such that X − bHn ∈ KKKΨ(Hn). Consider the
equality

[
[IHn − aHn, X − bHn

]
, Hn] = 0. By a direct calculation we have

[Hn, X] = [IHn, X] = 0 and
[
[IHn, Hn], Hn

]
= −4IHn. Consequently,[

[IHn− aHn, X − bHn], Hn

]
= 4bIHn = 0, implying b = 0. Hence we have

X ∈ KKKΨ(Hn), i.e., m(n − 1) ⊂ KKKΨ(Hn). Thus if (7.3) is true, then we
obtain the lemma.

Now we suppose that (7.3) is not true, i.e., KKKΨ(Hn) 6⊂ m(n−1)+CHn.
Let r and s be non-negative integers. By M(r, s;D) we denote the space of
D-valued r × s-matrices. As is easily seen, each element X ∈ m(n) can be
written in the form

X =
(

X ′ ξ
tξ xxx

)
, X ′ ∈ m(n− 1), ξ ∈ M(n− 1, 1;D), xxx ∈ D.

Under our assumption KKKΨ(Hn) 6⊂ m(n−1)+CHn we know that there is an
element X =

(
X′ ξ
tξ xxx

)
∈KKKΨ(Hn) such that ξ 6= 0. Let ϕ : m(n) −→ M(n−

1, 1;D) be the natural projection defined by ϕ(
(

X′ ξ
tξ xxx

)
) = ξ. By ϕ(KKKΨ(Hn))

we denote the image of KKKΨ(Hn) by ϕ. Then we have ϕ(KKKΨ(Hn)) 6= 0. As
is easily seen, from the right multiplication ξ 7−→ ξc of c ∈ C, M(n−1, 1;D)
may be regarded as a complex vector space with dimCM(n−1, 1;D) = n−1.
By ϕ(KKKΨ(Hn))C we mean the complex subspace of M(n−1, 1;D) generated
by ϕ(KKKΨ(Hn)), i.e., ϕ(KKKΨ(Hn))C = ϕ(KKKΨ(Hn)) + ϕ(KKKΨ(Hn))iii. Set s =
dimC ϕ(KKKΨ(Hn))C. Then, clearly we have 1 ≤ s ≤ n−1, dim ϕ(KKKΨ(Hn)) ≤
2s and

dimKKKΨ(Hn) = dim
(
(m(n− 1) + CHn) ∩KKKΨ(Hn)

)

+ dimϕ(KKKΨ(Hn)). (7.5)

Now, let us show

dim(m(n− 1) ∩KKKΨ(Hn)) ≤ (n− s− 1)(n− s). (7.6)

Let m(n − 1)′ be the subspace of m(n − 1) consisting of all Y ′ ∈ m(n − 1)
satisfying Y =

(
Y ′ 0
0 0

) ∈ m(n − 1) ∩KKKΨ(Hn). To show (7.6) it suffices to
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prove dimm(n − 1)′ ≤ (n − s − 1)(n − s). For the proof we prepare the
following formula:

[
[X, Y ], Hn

]
=

(
0 (ξyyy − Y ′ξ)jjj

−jjj(tξY ′ − yyytξ)
[
[xxx, yyy], jjj

]
)

, (7.7)

where X =
(

X′ ξ
tξ xxx

)
∈ m(n) and Y =

(
Y ′ 0
0 yyy

) ∈ m(n − 1) + CHn. This
formula can be easily obtained by a simple calculation. Utilizing (7.7), we
show (7.6). Let X =

(
X′ ξ
tξ xxx

)
∈ KKKΨ(Hn) and Y =

(
Y ′ 0
0 0

) ∈ m(n − 1) ∩
KKKΨ(Hn). Since

[
[X, Y ], Hn

]
= 0, by (7.7) it follows that Y ′ξ = 0. We note

that this equality holds for any ξ ∈ ϕ(KKKΨ(Hn)) and Y ′ ∈ m(n− 1)′. Since
Y ′(ξiii) = (Y ′ξ)iii, we have

Y ′ξ = 0, ∀Y ′ ∈ m(n− 1)′, ∀ξ ∈ ϕ(KKKΨ(Hn))C. (7.8)

Select a basis {η1, . . . , ηn−s−1, ξ1, . . . , ξs} of the complex vector space
M(n−1, 1;D) such that {ξ1, . . . , ξs} forms a basis of ϕ(KKKΨ(Hn))C. Define
a matrix U ∈ M(n − 1;H) by U = (η1, . . . , ηn−s−1, ξ1, . . . , ξs). Let Y ′ ∈
m(n−1)′. Since Y ′ξ1 = · · · = Y ′ξs = 0 and tξ1Y

′ = · · · = tξsY
′ = 0, we have

tU ·Y ′ ·U ∈ m(n− s− 1). This means that tU ·m(n− 1)′ ·U ⊂ m(n− s− 1).
Since U is a non-singular matrix, we have dimRm(n− 1)′ ≤ dimRm(n− s−
1) = (n− s− 1)(n− s), proving the desired inequality (7.6).

Next we consider the intersection (m(n− 1) + CHn) ∩KKKΨ(Hn). Since
(m(n−1)+CHn)∩KKKΨ(Hn) ⊃ m(n−1)∩KKKΨ(Hn), the following two cases
are possible:
( i ) (m(n− 1) + CHn) ∩KKKΨ(Hn) = m(n− 1) ∩KKKΨ(Hn).
(ii) (m(n− 1) + CHn) ∩KKKΨ(Hn) ) m(n− 1) ∩KKKΨ(Hn).

In the case (i), we have dim((m(n− 1) + CHn) ∩KKKΨ(Hn)) ≤ (n− s−
1)(n− s). Since dim ϕ(KKKΨ(Hn)) ≤ 2s, by (7.5) we have

dimKKKΨ(Hn) ≤ (n− s− 1)(n− s) + 2s

= s2 − (2n− 3)s + n(n− 1).
(7.9)

Since 1 ≤ s ≤ n−1, the right side of (7.9) attains its maximum when s = 1.
Consequently, we have dimKKKΨ(Hn) ≤ 4−2n+n(n−1) < 1+dim m(n−1),
because dim m(n − 1) = n(n − 1) and n ≥ 2. This contradicts the fact
dimKKKΨ(Hn) ≥ 1 + dimm(n − 1). Therefore we know that the case (i) is
impossible.

Next we show the case (ii) is also impossible. Let Y =
(

Y ′ 0
0 yyy

)
be an
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element of (m(n−1)+CHn)∩KKKΨ(Hn) satisfying yyy 6= 0. Let X =
(

X′ ξ
tξ xxx

)
be

an arbitrary element of KKKΨ(Hn). Then, since
[
[X, Y ], Hn

]
= 0, we obtain

by (7.7)
[
[xxx, yyy], jjj

]
= 0; ξyyy − Y ′ξ = 0. (7.10)

From the first equality in (7.10) we have xxx ∈ Ryyy. In fact, since xxx, yyy ∈ D,
we have [xxx, yyy] ∈ Riii. However, since [iii, jjj] = 2kkk 6= 0, we have [xxx, yyy] = 0,
implying xxx ∈ Ryyy. This fact means that for any element X ∈ (m(n − 1) +
CHn) ∩KKKΨ(Hn) there is a real number c such that X − cY ∈ m(n − 1) ∩
KKKΨ(Hn). Consequently, we have (m(n − 1) + CHn) ∩KKKΨ(Hn) ⊂ RY +
(m(n− 1) ∩KKKΨ(Hn)) and hence

dim((m(n− 1)+CHn)∩KKKΨ(Hn))≤ 1+ (n− s− 1)(n− s). (7.11)

Moreover, in this case we have dim ϕ(KKKΨ(Hn)) = s. In fact, we have

ϕ(KKKΨ(Hn))C = ϕ(KKKΨ(Hn)) + ϕ(KKKΨ(Hn))iii (direct sum). (7.12)

It is easily seen that to show (7.12) it suffices to prove ϕ(KKKΨ(Hn)) ∩
ϕ(KKKΨ(Hn))iii = 0. Assume that ξ ∈ ϕ(KKKΨ(Hn)) satisfies ξiii ∈ ϕ(KKKΨ(Hn)).
Take elements X, X1 ∈ KKKΨ(Hn) such that ϕ(X) = ξ, ϕ(X1) = ξiii. Then,
since

[
[X, Y ], Hn

]
=

[
[X1, Y ], Hn

]
= 0, by the second equality in (7.10) we

have ξyyy− Y ′ξ = 0 and (ξiii)yyy− Y ′(ξiii) = 0. Since iiiyyy = −yyyiii, the last equality
becomes (ξiii)yyy − Y ′(ξiii) = −(ξyyy + Y ′ξ)iii = 0. Consequently, ξyyy + Y ′ξ = 0,
showing ξyyy = 0. Hence we get ξ = 0, because yyy 6= 0.

Thus by (7.5) we have

dimKKKΨ(Hn) ≤ 1 + (n− s− 1)(n− s) + s

= s2 − 2(n− 1)s + dimm(n− 1) + 1.
(7.13)

The right side of (7.13) attains its maximum when s = 1 and therefore
dimKKKΨ(Hn) ≤ 4− 2n + dim m(n− 1) < 1 + dim m(n− 1), which is also a
contradiction.

Thus, assuming KKKΨ(Hn) 6⊂ m(n− 1) + CHn, we meet a contradiction.
Hence we have KKKΨ(Hn) ⊂ m(n − 1) + CHn, completing the proof of the
lemma. ¤

In a similar manner we can prove the following lemma:
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Lemma 18 Let Ψ ∈ G(n). Then

dimKKKΨ(Hi) = dimKKKΨ(IHi) = dim m(n− 1) + 1, i = 1, . . . , n.

Moreover there exist real numbers a′ and b ∈ R such that

KKKΨ(IHn) = m(n− 1) + R(Hn − a′IHn) (direct sum);

KKKΨ(Hn−1) = m(n− 2) +
n−2∑

i=1

D(Ein + Eni) + CHn

+ R(IHn−1 − bHn−1) (direct sum).

With the aid of Lemma 18 we can prove the refinement of Lemma 17.

Lemma 19 Let Ψ∈G(n). Then KKKΨ(Hn) = m(n−1)+RIHn (direct sum).

Proof. Let Ψ ∈ G(n). Take real numbers a, a′ and b ∈ R stated in
Lemma 17 and Lemma 18 and set Y = IHn − aHn, Z = IHn−1 − bHn−1

and W = Hn − a′IHn. Then clearly we have

Y = (kkk − ajjj)Enn, Z = (kkk − bjjj)En−1, n−1, W = (jjj − a′kkk)Enn.

In the following we will show that a = a′ = b = 0. If this can be done, the
lemma follows immediately.

First we prove a = b. For this purpose we consider the space KKKΨ(Hn−1+
Hn). By an easy calculation we can verify that C(Hn−1 +Hn) = m(n−2)+
RHn−1 +RHn +Rjjj(En−1, n + En, n−1). Therefore we have dimKKKΨ(Hn−1 +
Hn) ≥ dimC(Hn−1+Hn) = dim m(n−2)+3. Since KKKΨ(Hn−1)∩KKKΨ(Hn) =
m(n−2)+RY +RZ, it follows that dim(KKKΨ(Hn−1)∩KKKΨ(Hn)) = dimm(n−
2) + 2. Consequently, we can take an element X ∈ KKKΨ(Hn−1 + Hn) such
that X 6∈KKKΨ(Hn−1) ∩KKKΨ(Hn). Write

X =




X ′′ η ξ
tη yyy zzz
tξ zzz xxx


 , (7.14)

where X ′′ ∈ m(n− 2), ξ, η ∈ M(n− 2, 1;D), xxx, yyy, zzz ∈ D. Since X, Y , Z ∈
KKKΨ(Hn−1 +Hn), we have

[
[X, Y ], Hn−1 +Hn

]
=

[
[X, Z], Hn−1 +Hn

]
= 0.

Set hhh = kkk − ajjj and hhh′ = kkk − bjjj. Then we have

ξhhhjjj = ηhhh′jjj = 0; (7.15)[
[xxx, hhh], jjj

]
=

[
[yyy, hhh′], jjj

]
= 0; (7.16)
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[zzzhhh, jjj] = [zzzhhh′, jjj] = 0. (7.17)

By (7.15) and (7.16) we easily have ξ = η = 0, xxx ∈ Rhhh, and yyy ∈ Rhhh′. Thus,
if zzz = 0, then we have X ∈ m(n− 2) + RY + RZ = KKKΨ(Hn−1) ∩KKKΨ(Hn).
This contradicts the assumption X 6∈KKKΨ(Hn−1) ∩KKKΨ(Hn). Hence zzz 6= 0.
Now consider (7.17). First note that zzzhhh, zzzhhh′ ∈ C = R+Riii. Since [iii, jjj] 6= 0,
[zzzhhh, jjj] = [zzzhhh′, jjj] = 0 holds if and only if zzzhhh, zzzhhh′ ∈ R. Since zzz 6= 0, we have
hhh ∈ Rzzz−1 and hhh′ ∈ Rzzz−1. Consequently, we have Rhhh = Rzzz−1 and hence
hhh′ ∈ Rhhh = R(kkk − ajjj). Therefore we have a = b, because hhh′ = kkk − bjjj.

Next we prove a′ = −a. For this purpose we consider the space
KKKΨ(Hn−1 + IHn). We can easily see that C(Hn−1 + IHn) = m(n − 2) +
RHn−1+RIHn+R(jjj+kkk)(En−1, n+En, n−1). Hence dimKKKΨ(Hn−1+IHn) ≥
dimm(n− 2) + 3. Since KKKΨ(Hn−1)∩KKKΨ(IHn) = m(n− 2) +RZ +RW , it
follows that dim(KKKΨ(Hn−1)∩KKKΨ(IHn)) = dim m(n−2)+2. Consequently,
we can take an element X ∈KKKΨ(Hn−1 + IHn) such that X 6∈KKKΨ(Hn−1)∩
KKKΨ(IHn). Since X, Z, W ∈ KKKΨ(Hn−1 + IHn), we have

[
[X, Z], Hn−1 +

IHn

]
=

[
[X, W ], Hn−1 + IHn

]
= 0. Writing X in the form (7.14), we have

ξhhh′′kkk = ηhhhjjj = 0; (7.18)[
[xxx, hhh′′], kkk

]
=

[
[yyy, hhh], jjj

]
= 0; (7.19)

zzzhhh′′kkk − jjjzzzhhh′′ = hhhzzzkkk − jjjhhhzzz = 0, (7.20)

where we set hhh = kkk − ajjj and hhh′′ = jjj − a′kkk. By (7.18) and (7.19) we have
ξ = η = 0, xxx ∈ Rhhh′′ and yyy ∈ Rhhh. Hence if zzz = 0, then X ∈ m(n − 2) +
RZ +RW = KKKΨ(Hn−1)∩KKKΨ(IHn). This contradicts the assumption X 6∈
KKKΨ(Hn−1) ∩KKKΨ(IHn). Hence zzz 6= 0. Now consider (7.20). It is easily
verified that zzzhhh′′kkk−jjjzzzhhh′′ = hhhzzzkkk−jjjhhhzzz = 0 holds when and only when zzzhhh′′ ∈
R(1 − iii) and hhhzzz ∈ R(1 − iii). Since zzz 6= 0, we have hhh′′ ∈ Rzzz−1(1 − iii) and
hhh ∈ R(1 − iii)zzz−1. Therefore, (1 + iii)hhh(1 − iii) ∈ Rzzz−1(1 − iii). Consequently,
R(1+ iii)hhh(1− iii) = Rzzz−1(1− iii) and hence hhh′′ ∈ R(1+ iii)hhh(1− iii) = R(jjj +akkk).
Accordingly, we have a′ = −a, because hhh′′ = jjj − a′kkk.

Finally, we prove a = 0. By the definition we have Y = IHn − aHn ∈
KKKΨ(Hn). Moreover, by the above discussion we know W = Hn + aIHn ∈
KKKΨ(IHn). Hence

Ψ(Hn, IHn − aHn) = Ψ(IHn, Hn + aIHn) = 0.

Consequently, we have Ψ(Hn, IHn) = aΨ(Hn, Hn) and Ψ(Hn, IHn) =
−aΨ(IHn, IHn). If a 6= 0, then we have Ψ(IHn, IHn) = −Ψ(Hn, Hn).
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Putting X = Z = Hn and Y = W = IHn into (6.1), we have
〈[

[Hn, IHn], Hn

]
, IHn

〉

=
〈
Ψ(Hn, Hn), Ψ(IHn, IHn)

〉− 〈
Ψ(Hn, IHn), Ψ(IHn, Hn)

〉

= −(1 + a2)
〈
Ψ(Hn, Hn), Ψ(Hn, Hn)

〉

≤ 0.

On the other hand, the left side is > 0, which is a contradiction. Thus we
have a = 0, completing the proof of the lemma. ¤

We now complete the proof of Proposition 16.

Proof of Proposition 16. Assume that n ≥ 2. Let Ψ ∈ G(n). We will
prove

KKKΨ(Hi) ⊃ Ia0, i = 1, . . . , n. (7.21)

Let i be an integer such that 1 ≤ i ≤ n. If i = n, then (7.21) follows from
Lemma 19. Now assume that i < n. Set a = Eni−Ein+

∑n−1
j=1, j 6=i Ejj . Then

it is easy to see that a ∈ SO(n) (⊂ U(n)), Ad(a)Hi = Hn and Ad(a)a0 =
a0. Consequently, by Lemma 15 we have KKKΨa(Hn) = Ad(a)(KKKΨ(Hi)).
On the other hand, since Ψa ∈ G(n), we have KKKΨa(Hn) ⊃ Ia0. This
shows Ad(a)(KKKΨ(Hi)) ⊃ Ia0 and hence KKKΨ(Hi) ⊃ Ad(a−1)(Ia0) = Ia0.
Consequently, we get (7.21), which implies

⋂n
i=1 KKKΨ(Hi) ⊃ Ia0. Therefore,

in view of Proposition 14, we have Ψ(a0, Ia0) = 0, proving the proposition.
¤
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