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On negatively curved G-manifolds of low cohomogeneity

R. Mirzaie

(Received September 22, 2008; Revised November 19, 2008)

Abstract. In this paper, we suppose that M is a negatively curved CK−G-manifold,

K ≤ 2, and MG 6= ∅. Then we characterize M from topological view point.
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1. Introduction

Let M be a complete Riemannian manifold and let G be a closed and
connected Lie subgroup of isometries of M . We denote by G(x) = {gx :
x ∈ G}, the orbit containing x. If m = max{dimG(x) : x ∈ M}, then the
number K = n −m, n = dim M , is called the G-cohomogeneity of M , and
M is called a CK−G-manifold. A C0−G-manifold is called homogeneous G-
manifold. Homogeneous manifolds are studied from various points of view.
A theorem by S. Kobayashi ([5]), states that a homogeneous Riemannian
manifold of negative curvature is simply connected. Therefore, it is diffeo-
morphic to Rn, n = dim M . This fact does not hold any longer for arbitrary
cohomogeneity. But there are interesting relations between topology of such
manifolds an of their orbits, when cohomogeneity is small.

F. Podesta and A. Spiro got interesting results about C1−G-manifolds
of negative curvature in [10]. Among other results, they proved that, if M

is a negatively curved Riemannian C1 −G-manifold and dim(M) ≥ 3, then
either M is diffeomorphic to Rk × T r, r + k = dim(M), or π1(M) = Z and
the principal orbits are covered by Sn−2 × R, n = dim(M). In this paper
we study C2 −G-manifolds of negative curvature. We show that, if M is a
non-simply connected and negatively curved C2 −G-manifold and MG 6= ∅
then M is diffeomorphic to S1 × Rn−1 or B2 × Rn−2 (B2 is the mobius
band).
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2. Preliminaries

In the following, M is a complete Riemannian manifold and G is a
connected and closed Lie subgroup of isometries of M , and M̃ is the universal
Riemannian covering manifold of M , by the covering map:

k : M̃ → M

We will denote the deck transformation group by ∆. Now we mention some
facts, which we will use in the sequel.

Facts 2.1 Let M be a CK −G-manifold. Then

(a) There exists a connected covering group G̃ of G, such that G̃ acts by
isometries on M̃ , and M̃ is a CK − G̃-manifold. If g̃ ∈ G̃ and δ ∈ ∆
then we have g̃δ = δg̃.

(b) If G has a fixed point in M then G̃ = G, and M̃
eG is the full inverse

image of MG.
(c) Following (b), if G̃ has only one fixed point in M̃ , then we have M̃ = M .

Proof. For (a) and (b) see [2, p. 63, 64]. For the proof of (c), note that, if
x0 is the fixed point of G in M then by (b), k−1(x0) must be a one point
set. Thus k is one to one and we have M̃ = M . ¤

For definition of singular and principal orbits, used in the following facts,
and details about cohomogeneity one Riemannian manifolds we refer to [1],
[6] or [10].

Fact 2.2 If Rn is of cohomogeneity one under the action of a connected
and compact Lie group G of isometries, then each principal orbit is isometric
to Sn−1(c), for some c > 0, and there is a unique singular orbit, which is a
one point set.

Proof. It is a simple consequence of the theorem 3.1 in [8]. ¤

Fact 2.3 If M is a simply connected C2 −G-manifold and G is compact
and connected, then there is a compact and connected subgroup H of O(n),
n = dim M , such that the G-action on M is orbit-equivalent to the H-action
on Rn.

Proof. It is a simple consequence of the theorem 8.5 in [2, p. 208]. ¤
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Fact 2.4 Let Rn+2 be a C2 − G-manifold, such that dim(Rn+2)G = 1.
Then the singular orbits are fixed points of G, and each principal orbit is
diffeomorphic to Sn.

Proof. Let F = (Rn+2)G. Since the fixed point set of G is a totally geodesic
submanifold, then F is a straight line in Rn+2. Without loss of generality,
we assume that F = {(x, 0, . . . , 0) ∈ Rn+2, x ∈ R}. Let (b, 0, . . . , 0) ∈ F

and let Tb be the hyperplane in Rn+2, which is perpendicular to F at the
point (b, 0, . . . , 0) (i.e., Tb = {b} × Rn+1). It is easy to show that for each
b, G(Tb) = Tb. Thus we have G ⊆ {I} × O(n + 1) (I is the identity map
of R). Let G = {I} ×H, H ⊆ O(n + 1). Since the action of G on Rn+2 is
of cohomogeneity two, then the action of H on Rn+1 is of cohomogeneity
one. The origin of Rn+1 is a fixed point of H, so H is compact. Using the
Fact 2.2, we get that the origin of Rn+1 is the unique fixed point of H and
the other H-orbits of Rn+1 are diffeomorphic to Sn. Since each G-orbit of
Rn+2 is in the form

G(b, x1, . . . , xn+1) = {b} ×H(x1, . . . , xn+1)

We get the result. ¤

Fact 2.5 If Mn+2 is a simply connected Riemannian C2−G-manifold and
dimMG = 1 then the principal orbits are homeomorphic to Sn.

Proof. Since the fixed point set of G on M is not empty, then G is compact.
Thus by using the Facts 2.3 and 2.4 we get the result. ¤

Lemma 2.6 If M is a connected and complete CK −G-manifold of non-
positive sectional curvature, then we have K > dimMG.

Proof. This lemma is true in more general case for Riemannian manifolds.
We give a simple proof for our special case. By Fact 2.1, without loss of
generality, we can assume that M is simply connected. Let F = MG and
q ∈ F . The map exp : TqM → M is a diffeomorphism (see [4, p. 149]). Let
F̃q = {exp(V ) : V ∈ (TqF )⊥}. F̃q is a submanifold of M . For each g ∈ G

the map g : F → F is the identity map. Thus the map dg : TqF → TqF is
the identity map and we have dg(TqF )⊥ = (TqF )⊥, so GF̃q = F̃q. Thus for
each point x ∈ M , the orbit G(x) is contained in F̃q, for some q ∈ F . Also
it is easy to show that dimG(x) 6= dim F̃q. Therefore, we have:
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dimG(x) < dim F̃q = dim M − dimF ⇒ K > dimF. ¤

3. Results

Let M be a Riemannian manifold of negative sectional curvature. A
subset C of M is called totally convex, if it contains every geodesic segment
of M , whose endpoints are in C. Thus, when C is a submanifold, it is totally
geodesic in M . A c∞ function f : M → R is said to be strictly convex at a
point, if the hessian ∇2f(V, W ) = V Wf − (∇V W )f is positive definite at
that point.

Fact 3.1 (see [3])
(a) If δ be an isometry of M then the function d2

δ : M → R, d2
δ(x) =

d2(x, δx) is strictly convex on M except at the minimum point set of
d2

δ, which is at most a one point set or the image of a geodesic. If
δ preserves a geodesic γ (i.e., δ(γ) = γ) then the image of γ is the
minimum point set of d2

δ.
(b) If S is a closed and totally convex submanifold of M then the map

exp : ⊥S → M is a diffeomorphism (⊥S is the normal bundle of S).

Lemma 3.2 Let M be a Riemannian manifold of negative curvature and
let M̃ be its universal covering, by the covering map k : M̃ → M . If there is
a geodesic γ in M̃ and an element δ in the center of ∆, such that δγ = γ.
Then M is diffeomorphic to the one of the following spaces:

S1 ×Rn−1, B2 ×Rn−2

(n = dim M and B2 is the mobius band).

Proof. The proof of this lemma is as like as the proof of Theorem 4.9 in
[3]. Consider the function f̃ = d2

δ : M̃ → R. Since δ preserves a geodesic γ,
then the image of γ is the minimum point set of f̃ . Now define the function
f on M as:

f(x) = f̃(y), y ∈ k−1(x)

Since δ belongs to the center of ∆, f is well defined. In fact if y1, y2 belong
to k−1(x), then there is δ1 in ∆ such that y1 = δ1y2. So we have:
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f̃(y1) = d2(y1, δy1) = d2(δ1y2, δδ1y2)

= d2(δ1y2, δ1δy2) = d2(y2, δy2) = f̃(y2)

The minimum point set of f is the image of the geodesic koγ, which we
denote it by C. Since C is totally convex, it is simply closed geodesic in
M (i.e., it is diffeomorphic to S1). By Fact 3.1(b), exp : ⊥C → M is
a diffeomorphism. Thus M is a vector bundle over the circle C. If M is
orientable then it is diffeomorphic to S1×Rn−1, otherwise it is diffeomorphic
to B2 ×Rn−2. ¤

Theorem 3.3 Let Mn+2 be a complete negatively curved and non-simply
connected Riemannian C2 − G-manifold, under the action of a closed and
connected Lie subgroup G of isometries. If MG 6= ∅, then

(a) M is diffeomorphic to S1×Rn+1 or B2×Rn (B2 is the mobius band).
(b) MG is homeomorphic to S1.
(c) Each principal orbit is homeomorphic to Sn.

Proof. (a), (b): Consider M̃, G̃ as Fact 2.1. By Fact 2.1(b), we have
M̃
eG = k−1(MG). Let F̃ = M̃

eG. If dim F̃ = 0, then by Fact 2.1(c), M

is simply connected, which is a contradiction. Thus we have dim F̃ > 0.
If dim F̃ ≥ 2, then by Lemma 2.6, the cohomogeneity must be > 2. This
contradicts the assumptions of the theorem. So we have dim F̃ = 1 and F̃

is equal to the image of a geodesic γ. By Fact 2.1(a) each δ in ∆ commutes
with the elements of G̃, so for each x in γ and each g̃ in G̃ we have

g̃(δx) = δg̃(x) = δx ⇒ δx ∈ γ

Thus we have ∆(γ) = γ and by Lemma 3.3 we get (a). Also by theorem 3.4
in [4, p. 261], ∆ is isomorphic to (Z, +). Thus we have

MG = k
(
M̃
eG)

= kγ =
γ

∆
' R

Z
' S1

This gives (b).

(c): For each x = γ(t) ∈ γ, let Nx = {exp(V ) : V ∈ (Txγ)⊥}. As like as the
proof of the lemma 2.6, we can show that each orbit of M̃ is contained in
Nx, for some x ∈ γ. Consider δ ∈ ∆ and let xi = γ(ti), i = 1, 2, such that
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t1 6= t2 and δ(x1) = x2. δ preserves γ, so we have:

dδ(γ′(t1)) = γ′(t2) ⇒ dδ(Tx1γ)⊥ = (Tx2γ)⊥ ⇒ δ(Nx1) = Nx2

Thus, for each x ∈ γ, the restriction of the map k : M̃ → M on Nx, gives a
one to one map k : Nx → k(Nx) (i.e., it is a diffeomorphism). This means
that each orbit of M is diffeomorphic to an orbit in M̃ . By the proof of
(a) we have dim M̃

eG = 1. Thus by Fact 2.5, the principal orbits of M̃ are
homeomorphic to Sn. Therefore we get (c). ¤

Corollary 3.4 If M is a negatively curved C1−G-manifold and MG 6= ∅,
then M is simply connected and MG is a one point set.

Proof. Let F = MG. If dimF ≥ 2, then by Lemma 2.6, the cohomogeneity
can not be one. Thus dimF ≤ 1. If dimF = 1 then we would have infinitely
many singular orbits (since each fixed point is a singular orbit). This is a
contradiction (because by a theorem in [10], each negatively curved C1−G-
manifold has at most one singular orbit). Thus we have dimF = 0. Since
F is connected, it is a one point set. Now by Fact 2.1(c), we get that M is
simply connected. ¤
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