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Nonlinear stability of stationary solutions

for curvature flow with triple junction

Harald Garcke, Yoshihito Kohsaka and Daniel Ševčovič
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Abstract. In this paper we analyze the motion of a network of three planar curves

with a speed proportional to the curvature of the arcs, having perpendicular intersec-

tions with the outer boundary and a common intersection at a triple junction. As a

main result we show that a linear stability criterion due to Ikota and Yanagida [13]

is also sufficient for nonlinear stability. We also prove local and global existence of

classical smooth solutions as well as various energy estimates. Finally, we prove ex-

ponential stabilization of an evolving network starting from the vicinity of a linearly

stable stationary network.

Key words: curvature flow, triple junction, higher order estimates for the curvature,

nonlinear stability of stationary solutions.

1. Introduction

The motion of curves under the curvature flow has been widely studied
in the past [6], [11], [3]. Less is known about the evolution of networks
under the curvature flow [4], [13], [20]. In this case the arcs in the network
evolve in the normal direction with a speed proportional to the curvature
of the arcs. At intersections with an outer boundary and at triple junctions
boundary conditions have to hold. At the outer boundary one can prescribe
the position (see [16], [18]), or the angle with the outer boundary [4], [13].
At the triple junction Young’s law, a force balance, leads to angle conditions.
In this paper we are interested in the stability of stationary solutions to the
curvature flow with a triple junction when we prescribe the natural angle
condition of 90◦ at the outer boundary. For this case a linear stability
criterion has been derived by Ikota and Yanagida [13] (see also [14]). We
will demonstrate here that this criterion also leads to nonlinear stability.

We now specify the problem in detail. Let Ω be a bounded domain in
R2 with C3-boundary ∂Ω. We introduce a C3-function ψ : R2 → R with
∇ψ(x) 6= 0 if ψ(x) = 0 such that
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Ω = {x ∈ R2 | ψ(x) < 0}, ∂Ω = {x ∈ R2 | ψ(x) = 0}.

We search families of curves Γ1
t , Γ2

t , and Γ3
t which are parameterized by

time t and which are contained in Ω. The three curves are supposed to meet
at a triple junction p(t) ∈ Ω at their one end point and at the other end
point they are required to intersect with ∂Ω, see Figure 1. We require for
i = 1, 2, 3

βiV i = γiκi on Γi
t , (1.1)

3∑

i=1

γiT i = 0 at p(t), (1.2)

Γi
t⊥ ∂Ω at Γi

t ∩ ∂Ω. (1.3)

Here V i and κi are the normal velocity and curvature of Γi
t, respectively.

The constants βi and γi are given physical parameters and T i are unit
tangents to the curve which are chosen such that they point away from the
triple junction.

Equation (1.2) is a force balance and one can solve for the T i’s if the
condition

γi + γj ≥ γk for all {i, j, k} mutually different,

is fulfilled. In the following we assume strict inequalities and an argument
as in Bronsard and Reitich [4] gives that the angles θi between the tangents
Tj and Tk fulfill

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3

with 0 < θi < π (i = 1, 2, 3) and θ1 + θ2 + θ3 = 2π. Existence of solutions to
the evolution problem (1.1)–(1.3) has been shown by Bronsard and Reitich
[4]. We will show later that the energy functional

E[Γt] =
3∑

i=1

γiL[Γi
t]
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Figure 1. The curvature driven flow Γt of a network with a triple junction at p(t)
(left) and a steady state Γ∗ (right).

where Γt =
⋃3

i=1 Γi
t and L[Γi

t] is the length of Γi
t, is a Ljapunov functional.

The constants γi can be interpreted as surface free energy densities (sur-
face tensions) and the functional E is the total free energy of the systems.
Sternberg and Ziemer [21] showed the existence of isolated local minimizers
to E, which can be interpreted as solutions to a partitioning problem of two
dimensional domains into three subdomains having (locally) least interfacial
area.

The paper is organized as follows. In the next section we present a way
how to parameterize the problem. We derive a nonlinear nonlocal system of
parabolic equations governing the evolution of curves driven by curvature.
By means of the semi-group theory due to Lunardi [17] we prove local exis-
tence of a classical solution. Section 3 is devoted to the rigorous derivation
of the linearized system of equations. We recall the result of Yanagida and
Ikota stating an explicit condition for linearized stability of the governing
system of equations. In Section 4 we provide a usefull result guaranteeing
local uniqueness of a stationary solution proved by the inverse function the-
orem and the result is to our knowledge the first result in this direction for
networks. As a byproduct we also obtain an important bound for the dis-
placement of the network in terms of the curvature. We proceed by deriving
useful geometric equations for the curvature and other geometric quantities
in Section 5. Using the linearized stability criterion we show how to derive
a priori estimates for Sobolev norms of the solution. These geometric equa-
tions are then used in order to prove usefull bounds for a solution. With
the help of these energy type estimates we prove global existence of a clas-
sical solution. In the final Section 7 we prove exponential stability of the
stationary solution.
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Figure 2. Description of the local parametrization of the curve Γi.

2. Parameterization and local existence

We consider line segments Γ1
∗, Γ2

∗ and Γ3
∗ meeting the outer boundary

with an angle of 90◦ at their one end point and having without loss of
generality p∗ = (0, 0)T as their common other end point where we assume
that (1.2) holds. Then we define an arc-length parameterization of Γi

∗ (i =
1, 2, 3) as

Γi
∗ =

{
Φi
∗(σ) | σ ∈ [0, li]

}

with Φi
∗(0) = p∗ = (0, 0)T , Φi

∗(l
i) ∈ ∂Ω. In particular, we obtain that li is

the length of Γi
∗. Then we will extend Φi

∗ as an arc-length parameterization
of the full line which contains Γi

∗. We will now introduce a certain stretched
coordinate system in order to allow for parameterizations of curves close to
Γi
∗ (i = 1, 2, 3) over fixed intervals [0, li].

Let T i
∗ be the unit tangent to Γi

∗ pointing from the triple junction p∗
to the outer boundary and let N i

∗ = RT i
∗ be a unit normal where R is the

anticlockwise rotation by π/2. We then define

µi =
(
p, T i

∗
)
R2 , µi

∂Ω(q) = max
{
σ | Φi

∗(σ) + qN i
∗ ∈ Ω

}
.

We remark that the parameter µi allows for a tangential movement of the
triple junction along Γi

∗. We now set

Ψi(σ, q, µi) = Φi
∗(ξ

i(σ, q, µi)) + qN i
∗,

where

ξi(σ, q, µi) = µi +
σ

li
(
µi

∂Ω(q)− µi
)
.

Note that ξi(σ, 0, 0) = σ and ξi(0, q, µi) = µi.
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We now define the parameterization of curves Γ = (Γ1,Γ2,Γ3) close to
Γ∗ = (Γ1

∗,Γ
2
∗,Γ

3
∗) having their triple junction at the point p with the help of

functions

ρi : [0, li] → R

which fulfill the conditions

ρi(0) =
(
p,N i

∗
)
R2 (i = 1, 2, 3) (2.1)

(see Fig. 2). Set

Φi(σ) = Ψi(σ, ρi(σ), µi), σ ∈ [0, li]. (2.2)

Then the functions Φi parameterize the curves Γi in the neighborhood of
Γ∗ as Γi = {Φi(σ) | σ ∈ [0, li]}. Since Φi

∗(µ
i) = µiT i

∗, we have Φi(0) =
µiT i

∗ + ρi(0)N i
∗ = p, which implies that

µ1T 1
∗ + ρ1(0)N1

∗ = µ2T 2
∗ + ρ2(0)N2

∗ = µ3T 3
∗ + ρ3(0)N3

∗ . (2.3)

By virtue of the definition of µi, equation (2.1), and Young’s law

3∑

i=1

γiT i
∗ = 0,

3∑

i=1

γiN i
∗ = 0,

we are led to

3∑

i=1

γiµi = 0,

3∑

i=1

γiρi(0) = 0.

Furthermore, identities (2.3) and the angle conditions give the following
lemma.

Lemma 2.1 Let us define the matrix

Q = − 1
1− c1c2c3




c3c1s2 s3 c3s1

c1s2 c1c2s3 s1

s2 c2s3 c2c3s1


 ,
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where ci = cos θi, si = sin θi. Then, for ρ = (ρ1, ρ2, ρ3), and µ =
(µ1, µ2, µ3), it holds µT = QρT (0).

Proof. It follows from (2.3) that

µi = µj
(
T j
∗ , T i

∗
)
R2 + ρj(0)

(
N j
∗ , T

i
∗
)
R2

for (i, j) = (1, 2), (2, 3), (3, 1). By the angle condition, we have

(
T i
∗, T

j
∗
)
R2 = cos θk,

(
T i
∗, N

j
∗
)
R2 = cos(θk + π/2) = − sin θk

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). This implies µi − ckµj = −skρj(0),
so that we are led to



−c2 0 1
1 −c3 0
0 1 −c1







µ1

µ2

µ3


 =



−s2 0 0
0 −s3 0
0 0 −s1







ρ1(0)
ρ2(0)
ρ3(0)


 .

Then we obtain



µ1

µ2

µ3


 =

−1
1− c1c2c3




c3c1 1 c3

c1 c1c2 1
1 c2 c2c3







s2 0 0
0 s3 0
0 0 s1







ρ1(0)
ρ2(0)
ρ3(0)




= Q




ρ1(0)
ρ2(0)
ρ3(0)




which completes the proof. ¤

We now consider evolving curves

Γi(t) = {Φi(σ, t) | σ ∈ [0, li]},

where Φi(·, t) are defined as in (2.2) such that ρi(·, t) (i = 1, 2, 3) satisfy
(2.1). We formulate the curvature flow for a network with the help of these
parameterizations. For that purpose, the following quantities are needed
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T i =
1
|Φi

σ|
Φi

σ, N i =
1
|Φi

σ|
RΦi

σ,

V i =
(
Φi

t, N
i
)
R2 , κi =

(
1
|Φi

σ|
T i

σ, N i

)

R2

, i = 1, 2, 3. (2.4)

Then we obtain the following formulation for the curvature flow of a network:

βi
(
Φi

t, N
i
)
R2 = γi

(
1
|Φi

σ|
T i

σ, N i

)

R2

, i = 1, 2, 3, (2.5)

3∑

i=1

γiρi = 0 at σ = 0, (2.6)

(T 1, T 2)R2 = cos θ3, (T 3, T 1)R2 = cos θ2 at σ = 0, (2.7)

(N i,∇ψ(Φi))R2 = 0 at σ = li, i = 1, 2, 3. (2.8)

Note that the conditions ψ(Φi(li, t)) = 0 (i = 1, 2, 3) and Φ1(0, t) =
Φ2(0, t) = Φ3(0, t) are always fulfilled with our choice of the parameteri-
zations. We can formulate the problem in terms of (ρ1, ρ2, ρ3) and obtain
a system of three second order parabolic equations where each equation is
defined on a different spatial interval [0, li]. We obtain one boundary con-
dition at σ = li for the i-th equation and the three equations are coupled
through the three boundary conditions at the triple junction.

Let us derive the form of the nonlinear system for ρi(σ, t) (i = 1, 2, 3).
Set Ii = [0, li] and Qi

t0,t1 = Ii × (t0, t1]. Equations (2.5) give

ρi
t = Li

(
ρi, ρi

σ, µi
)
κi

(
ρi, ρi

σ, ρi
σσ, µi

)
+ Λi

(
ρi, ρi

σ, µi
)
µi

t

for (σ, t) ∈ Qi
0,T , (2.9)

where Li(ρi, ρi
σ, µi) and Λi(ρi, ρi

σ, µi) are

Li
(
ρi, ρi

σ, µi
)

=
γi

βi
(
Ψi

q, RΨi
σ

)
R2

J i
(
ρi, ρi

σ, µi
)
,

Λi
(
ρi, ρi

σ, µi
)

= − 1(
Ψi

q, RΨi
σ

)
R2

{(
Ψi

µ, RΨi
σ

)
R2 +

(
Ψi

µ, RΨi
q

)
R2ρ

i
σ

}
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with the notation J i = |Φi
σ|, and the curvature κi = κi(ρi, ρi

σ, ρi
σσ, µi) is

represented as

κi
(
ρi, ρi

σ, ρi
σσ, µi

)

=
1{

J i(ρi, ρi
σ, µi)

}3

[(
Ψi

q, RΨi
σ

)
R2ρ

i
σσ+

{
2
(
Ψi

σq, RΨi
σ

)
R2 +

(
Ψi

σσ, RΨi
q

)
R2

}
ρi

σ

+
{(

Ψi
qq, RΨi

σ

)
R2 +2

(
Ψi

σq, RΨi
q

)
R2 +

(
Ψi

qq, RΨi
q

)
R2ρ

i
σ

}(
ρi

σ

)2

+
(
Ψi

σσ, RΨi
σ

)
R2

]
.

By virtue of Lemma 2.1 and (2.9), we have




µ1
t

µ2
t

µ3
t


 = Q T 0




ρ1
t

ρ2
t

ρ3
t


 = Q

[T 0M(ρ,ρσ,µ)
]−1T 0




L1(u1)κ1(u1)
L2(u2)κ2(u2)
L3(u3)κ3(u3)


 ,

where Q is the matrix as in Lemma 2.1, T 0 is the trace operator onto σ = 0,
i.e. T 0f = f

∣∣
σ=0

, and M(ρ,ρσ,µ) is the matrix

M(ρ,ρσ,µ) = Id− diag(Λ1(u1),Λ2(u2),Λ3(u3))Q

with the notation ui = (ρi, ρi
σ, µi).

Remark 2.2 The matrix M(ρ,ρσ,µ) is invertible provided that

3∑

i=1

(
sup

t∈[0,T ]

‖ρi(·, t)‖C1(Ii) + sup
t∈[0,T ]

|µi(t)|
)

< δ0 (2.10)

for some δ0 > 0. Indeed, we have detM(ρ,ρσ,µ) = d{−1 + (c2 −
Λ1(u1)s2)(c3−Λ2(u2)s3)(c1−Λ3(u3)s1)}, where d = −1/(1−c1c2c3). Then,
Λi(0) = 0 (i = 1, 2, 3) imply that detM(0,0,0) = d(−1 + c1c2c3) = 1 6= 0.
Since detM(ρ,ρσ,µ) is continuous with respect to ρ, ρσ, and µ, we can
conclude that for ε < 1 there exists a δ0 > 0 such that detM(ρ,ρσ,µ) >

1− ε > 0 provided that (2.10) holds.

As a consequence, we are led to the following nonlinear nonlocal partial
differential equations for ρi(σ, t) (i = 1, 2, 3):



Stability for curvature flow with triple junction 729

ρi
t = ai

(
ρi, ρi

σ, µi
)
ρi

σσ + Λi
(
ρi, ρi

σ, µi
) 3∑

j=1

aij
1

(T 0ρ, T 0ρσ,µ
)T 0ρj

σσ

+ f i
(
ρi, ∂σρi, T 0ρ, T 0ρσ,µ

)
for (σ, t) ∈ Qi

0,T

where ai(ρi, ρi
σ, µi) = γi/[βi{J i(ρi, ρi

σ, µi)}2] and aij
1 (T 0ρ, T 0ρσ,µ) is the

(i, j)-component of the matrix

a1

(T 0ρ, T 0ρσ,µ
)

= Q
[T 0M(ρ,ρσ,µ)

]−1diag
(T 0a1(u1), T 0a2(u2), T 0a3(u3)

)
.

Furthermore, f i is a smooth function in R which is evaluated at lower order
terms. Then, recalling the boundary conditions (2.6)–(2.8) and Lemma 2.1,
we have the following nonlinear system:





ρi
t = ai

(
ρi, ρi

σ, µi
)
ρi

σσ + Λi
(
ρi, ρi

σ, µi
) 3∑

j=1

aij
1

(T 0ρ, T 0ρσ,µ
)T 0ρj

σσ

+f i
(
ρi, ρi

σ, T 0ρ, T 0ρσ,µ
)

for (σ, t) ∈ Qi
0,T ,

3∑

i=1

γiρi = 0, g12(u12) = 0, g13(u13) = 0 at σ = 0,

bi
∂Ω(ρi, µi)ρi

σ + gi
∂Ω(ρi, µi) = 0 at σ = li (i = 1, 2, 3),

µT = QT 0ρT for t ∈ (0, T ]

(2.11)

where u1j = (ρ1, ρj , ρ1
σ, ρj

σ, µ1, µj) (j = 2, 3) and

g12(u12) =
(
Ψ1

σ,Ψ2
σ

)
R2 +

(
Ψ1

σ,Ψ2
q

)
R2ρ

2
σ+

(
Ψ1

q,Ψ
2
σ

)
R2ρ

1
σ+

(
Ψ1

q,Ψ
2
q

)
R2ρ

1
σρ2

σ

− J1
(
ρ1, ρ1

σ, µ1
)
J2

(
ρ2, ρ2

σ, µ2
)
cos θ3,

g13(u13) =
(
Ψ3

σ,Ψ1
σ

)
R2 +

(
Ψ3

σ,Ψ1
q

)
R2ρ

1
σ+

(
Ψ3

q,Ψ
1
σ

)
R2ρ

3
σ+

(
Ψ3

q,Ψ
1
q

)
R2ρ

3
σρ1

σ

− J3
(
ρ3, ρ3

σ, µ3
)
J1

(
ρ1, ρ1

σ, µ1
)
cos θ2,

bi
∂Ω(ρi, µi) =

(
RΨi

q,∇ψ(Ψi)
)
R2 , gi

∂Ω(ρi, µi) = −(
RΨi

σ,∇ψ(Ψi)
)
R2 .

Now we are ready to state a local existence result.
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Theorem 2.3 (Local existence) Let α ∈ (0, 1) and let us assume that
ρi
0 ∈ C2+α(Ii) and µi

0 (i = 1, 2, 3) with sufficiently small norms ‖ρi
0‖C1+α(Ii)

and |µi
0| fulfill the compatibility conditions





3∑

i=1

γiρi
0 = 0, g12

(
u12

0

)
= 0, g13

(
u13

0

)
= 0 at σ = 0,

bi
∂Ω

(
ρi
0, µ

i
0

)
ρi
0,σ + gi

∂Ω

(
ρi
0, µ

i
0

)
= 0 at σ = li (i = 1, 2, 3),

where u1j
0 = (ρ1

0, ρ
j
0, ρ

1
0,σ, ρj

0,σ, µ1
0, µ

j
0) (j = 2, 3). Then there exists a

T0 = T0

(
1/

3∑

i=1

‖ρi
0‖C2+α(Ii)

)
> 0,

T0 being an increasing function of its argument and such that the problem
(2.11) with (ρi(·, 0), µi(0)) = (ρi

0, µ
i
0) (i = 1, 2, 3) has a unique solution

(ρ1, ρ2, ρ3, µ1, µ2, µ3)

∈ C2+α,1
(Q1

0,T0

)× C2+α,1
(Q2

0,T0

)× C2+α,1
(Q3

0,T0

)× [
C1[0, T0]

]3

satisfying (2.10).

In order to prove Theorem 2.3 by using a contraction principle, we need
some preparations which consist of three steps: 1) the linearization of (2.11)
around the initial data; 2) the verification of the complementary conditions
for the linearized system; 3) the derivation of suitable a priori estimate for
solutions of the linearized system.

Step 1 Let us derive the linearization of (2.11) around the initial data
ρi
0 ∈ C2+α(Ii) and µi

0 (i = 1, 2, 3). First we define differential operators as

A0 = diag
(
a1(u1

0), a
2(u2

0), a
3(u3

0)
)
∂2

σ,

A1 = diag
(
Λ1(u1

0),Λ
2(u2

0),Λ
3(u3

0)
)
a1

(T 0ρ0, T 0ρ0,σ,µ0

)T 0∂2
σ,

and also define, for given functions (ρi, µi) ∈ C2+α,1(Qi
0,T ) × C1[0, T ] (i =

1, 2, 3),
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F i(σ, t) =
{
ai(ui)− ai(ui

0)
}
ρi

σσ

+
3∑

j=1

{
Λi(ui)aij

1 (T 0ρ, T 0ρσ,µ)

− Λi(ui
0)a

ij
1 (T 0ρ0, T 0ρ0,σ,µ0)

}T 0ρj
σσ

+ f i
(
ρi, ρi

σ, T 0ρ, T 0ρσ,µ
)
,

where ui
0 =(ρi

0, ρ
i
0,σ, µi

0), ρ0 =(ρ1
0, ρ

2
0, ρ

3
0), µ0 =(µ1

0, µ
2
0, µ

3
0), ui =(ρi, ρi

σ, µi),
ρ = (ρ1, ρ2, ρ3), and µ = (µ1, µ2, µ3). Then, setting F = (F 1, F 2, F 3), we
have the linearization of the differential equation given as

∂tρ
T = A0ρ

T +A1ρ
T + F T (σ, t).

Let us derive the linearization of the boundary conditions. For ρi
0 ∈

C2+α(Ii) and µi
0 (i = 1, 2, 3), we define differential operators as

(
Bki(T 0ρ0, T 0ρ0,σ,µ0)∂σ

)
i=1,2,3

=





(γ1, γ2, γ3) for k = 1,
(
b21(T 0u12

0 )∂σ, b22(T 0u12
0 )∂σ, 0

)
for k = 2,

(
b31(T 0u13

0 )∂σ, 0, b33(T 0u13
0 )∂σ

)
for k = 3.

Here the components are represented as follows:

b21(u12) =
`
Ψ1

q, Ψ
2
σ

´
R2 +

`
Ψ1

q, Ψ
2
q

´
R2 ρ2

σ −
˘
(Ψ1

σ, Ψ1
q)R2 + |Ψ1

q|2 ρ1
σ

¯J2(u2)

J1(u1)
cos θ3,

b22(u12) =
`
Ψ1

σ, Ψ2
q

´
R2 +

`
Ψ1

q, Ψ
2
q

´
R2 ρ1

σ −
˘
(Ψ2

σ, Ψ2
q)R2 + |Ψ2

q|2 ρ2
σ

¯J1(u1)

J2(u2)
cos θ3,

b31(u13) =
`
Ψ3

σ, Ψ1
q

´
R2 +

`
Ψ3

q, Ψ
1
q

´
R2 ρ3

σ −
˘
(Ψ1

σ, Ψ1
q)R2 + |Ψ1

q|2 ρ1
σ

¯J3(u3)

J1(u1)
cos θ2,

b33(u13) =
`
Ψ3

q, Ψ
1
σ

´
R2 +

`
Ψ3

q, Ψ
1
q

´
R2 ρ1

σ −
˘
(Ψ3

σ, Ψ3
q)R2 + |Ψ3

q|2 ρ3
σ

¯J1(u1)

J3(u3)
cos θ2.

Also, we define differential operators as
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(
Bki

∂Ω(T liρi
0, µ

i
0)∂σ

)
i=1,2,3

=





(
b1
∂Ω(T l1ρ1

0, µ
1
0)∂σ, 0, 0

)
for k = 1,

(
0, b2

∂Ω(T l2ρ2
0, µ

2
0)∂σ, 0

)
for k = 2,

(
0, 0, b3

∂Ω(T l3ρ3
0, µ

3
0)∂σ

)
for k = 3,

where T li (i = 1, 2, 3) is the trace operator onto σ = li, i.e. T lif = f |σ=li .
Then we set

B0(0 ; ∂σ) =
(
Bki(T 0ρ0, T 0ρ0,σ,µ0)∂σ

)
k,i=1,2,3

,

B0(li; ∂σ) =
(
Bki

∂Ω(T liρi
0, µ

i
0)∂σ

)
k,i=1,2,3

,

and also set, for (ρi, µi) ∈ C2+α,1(Qi
0,T )× C1[0, T ] (i = 1, 2, 3),

G1(t) = 0,

Gj(t) = T 0

[
bj1(u1j

0 )ρ1
0,σ + bjj(u1j

0 )ρj
0,σ −

∂g1j

∂ρ1
(u1j

0 )(ρ1 − ρ1
0)

− ∂g1j

∂ρj
(u1j

0 )(ρj−ρj
0)−

∂g1j

∂µ1
(u1j

0 )(µ1−µ1
0)−

∂g1j

∂µj
(u1j

0 )(µj−µj
0)

− 1
2

∫ 1

0

〈
D2g1j(ηu1j + (1− η)u1j

0 )(u1j − u1j
0 ),u1j − u1j

0

〉
dη

]

(j = 2, 3),

Gi
∂Ω(t) = T li

[− {
bi
∂Ω(ρi, µi)− bi

∂Ω(ρi
0, µ

i
0)

}
ρi

σ + gi
∂Ω(ρi, µi)

]
(i = 1, 2, 3),

where Dg1j is the Fréchet derivative of g1j and the bracket 〈·, ·〉 is the
respective inner product. Then we have the linearization of the boundary
conditions:

B0(0 ; ∂σ)ρT = GT (t), B0(li; ∂σ)ρT = GT
∂Ω(t)

for G(t) = (G1(t), G2(t), G3(t)) and G∂Ω(t) = (G1
∂Ω(t), G2

∂Ω(t), G3
∂Ω(t)).

Step 2 Let us verify that the complementary conditions hold for the
linearized system. We refer to Lunardi [17] for more information on the
role of the complementary conditions. For that purpose, we make some



Stability for curvature flow with triple junction 733

preparations. Let L0(r, i ζ) = (aij
0 )i,j=1,2,3 where

aii
0 =

1
{J i(ui

0)}2
ζ2 + r, aij

0 = 0 for i 6= j.

Then we have

detL0 =
3∏

i=1

[
1

{J i(ui
0)}2

ζ2 + r

]
.

Setting L̂0 = (âij
0 ) = (detL0)(L0)−1, we are led to

âii
0 =

3∏

k=1,i 6=k

[
1

{J i(ui
0)}2

ζ2 + r

]
, âij

0 = 0 for i 6= j.

The matrix of the boundary conditions at σ = 0 is denoted by

(
Bki

0 (0 ; i ζ)
)
i=1,2,3

=





(γ1, γ2, γ3) for k = 1,
(
i b21(T 0u12

0 )ζ, i b22(T 0u12
0 )ζ, 0

)
for k = 2,

(
i b31(T 0u13

0 )ζ, 0, i b33(T 0u13
0 )ζ

)
for k = 3,

and at σ = li by

(
Bki

0 (li; i ζ)
)
i=1,2,3

=





(
i b1

∂Ω(T l1ρ1
0, µ

1
0)ζ, 0, 0

)
for k = 1,

(
0, i b2

∂Ω(T l2ρ2
0, µ

2
0)ζ, 0

)
for k = 2,

(
0, 0, i b3

∂Ω(T l3ρ3
0, µ

3
0)ζ

)
for k = 3.

To verify the complementary condition we will show that the rows of the
matrix B0L̂0 are linearly independent for all r ∈ C, Re r > 0, modulo the
polynomial

P (r, ζ) =
3∏

i=1

{
ζ − ζi

0(r)
}

where ζi
0(r) = J i(ui

0)|r|
1
2 ei (Θ

2 + π
2 ) (i = 1, 2, 3). Here we note that ζi

0(r) are
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the roots of the polynomial detL0(r, i ζ) which have a positive imaginary
part.

First let us verify the complementary condition at σ = 0. To determine
whether or not the complementary condition is satisfied, we have to verify
that the system

3∑

k=1

ωkBki
0 (0 ; i ζ)âii

0 (ζ) ≡ 0 mod P (r, ζ) =
3∏

i=1

(ζ − ζi
0) (i = 1, 2, 3)

has the unique solution (ω1, ω2, ω3)T = 0 or equivalently that
(ω1, ω2, ω3)T = 0 is the only vector satisfying

∑3
k=1 ωkBki

0 (0 ; i ζ) ≡ 0
mod ζ − ζi

0 (i = 1, 2, 3). That is, we may investigate that (ω1, ω2, ω3)T = 0
is the only vector satisfying

∑3
k=1 ωkBki

0 (0 ; i ζi
0) = 0 (i = 1, 2, 3). Thus it

suffices to show that

det




γ1 γ2 γ3

b21
(T 0u12

0

)
b22

(T 0u12
0

)
0

b31
(T 0u13

0

)
0 b33

(T 0u13
0

)


 6= 0. (2.12)

Indeed, in the case (ρi
0, µ

i
0) ≡ (0, 0) (i = 1, 2, 3), we have

det




γ1 γ2 γ3

b21(0) b22(0) 0

b31(0) 0 b33(0)


 = det




γ1 γ2 γ3

sin θ3 − sin θ3 0

− sin θ2 0 sin θ2




= −(γ1 + γ2 + γ3) sin θ2 sin θ3 6= 0.

Since the determinant in (2.12) is continuous with respect to ρi
0 and µi

0

(i = 1, 2, 3), we are led to (2.12) provided that ‖ρi
0‖C1(Ii) and |µi

0| are small
enough.

Next let us verify the complementary conditions at σ = li. Similarly as
in the case σ = 0, it suffices to show that

diag
(
b1
∂Ω(T l1ρ1

0, µ
1
0), b

2
∂Ω(T l2ρ1

0, µ
2
0), b

3
∂Ω(T l3ρ1

0, µ
3
0)

) 6= 0.

Indeed, in the case (ρi
0, µ

i
0) ≡ (0, 0) (i = 1, 2, 3), we have
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det
{
diag(b1

∂Ω(0, 0), b2
∂Ω(0, 0), b3

∂Ω(0, 0))
}

= det
{
diag(|∇ψ(Φ1

∗)|, |∇ψ(Φ2
∗)|, |∇ψ(Φ3

∗)|)
}

= −
3∏

i=1

∣∣∇ψ(Φi
∗)

∣∣ 6= 0.

Since the determinant is also continuous with respect to ρi
0 and

µi
0 (i = 1, 2, 3), we conclude det

{
diag(b1

∂Ω(T l1ρ1
0, µ

1
0), b

2
∂Ω(T l2ρ1

0, µ
2
0),

b3
∂Ω(T l3ρ1

0, µ
3
0))

} 6= 0 provided that ‖ρi
0‖C1(Ii) and |µi

0| are small enough.

Step 3 Let us analyze the linearized system. Set X = C(I1) × C(I2) ×
C(I3) and Y = C2(I1)× C2(I2)× C2(I3). Define the realization of A0 in
X with homogeneous boundary conditions as follows

D(A0) =
{
ϕ ∈ Y | ϕ, A0ϕ ∈ X, B0(0 ; ∂σ)ϕ = 0, B0(li; ∂σ)ϕ = 0

}
,

A0ϕ = A0ϕ.

Then we have the following lemma which, in particular, characterizes the
interpolation spaces DA0(β,∞). For a definition of DA0(β,∞) we refer to
Lunardi [17].

Lemma 2.4
( i ) The linear operator A0 : D(A0) → X is sectorial.
( ii ) The characterization of the interpolation spaces DA0(α,∞) is given as

DA0(β,∞) =





{
ϕ ∈ Xβ |

∑3
i=1 γiϕi(0) = 0

}
if β ∈ (0, 1/2),

{
ϕ ∈ Xβ | B0(0 ; ∂σ)ϕ = 0, B0(li; ∂σ)ϕ = 0

}

if β ∈ (1/2, 1),
(2.13)

where Xβ := C2β(I1)× C2β(I2)× C2β(I3).

Proof. See [22, Section 2] or adapt the argument in [17, Section 3.1.5] for
the case of systems with the estimates in [2, Theorem 12.2]. ¤

Set A1ϕ = A1ϕ for ϕ ∈ D(A0). Then we obtain the following lemma.
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Lemma 2.5 Let A = A0 + A1. Then A : D(A0) → X is a sectorial
operator.

Proof. According to [17, Proposition 2.4.1(ii)], A is a sectorial operator in
X if A1 is a bounded linear operator from D(A0) to DA0(α/2,∞). Indeed,
by means of (2.13) and the definition of a1, we have, for ϕ ∈ D(A0),

‖A1ϕ‖DA0 (α/2,∞)

≤ C0

( 3∑

i=1

∥∥Λi(ui
0)

∥∥
Cα(Ii)

)∥∥a1(T 0ρ0, T 0ρ0,σ,µ0)
∥∥

Xα/2

∥∥T 0∂2
σϕ

∥∥
X

≤ Ĉ0‖ϕ‖D(A0)

where α ∈ (0, 1) and C0, Ĉ0 are constants which depend on ‖ρi
0‖C1+α(Ii)

and |µi
0|. This completes the proof. ¤

Using an estimate as in the proof of [17, Proposition 2.4.1(ii)], we see that
A : D(A) = D(A0) → X is a sectorial operator such that c1‖ϕ‖D(A0) ≤
‖ϕ‖D(A) ≤ c2‖ϕ‖D(A0) for ϕ ∈ D(A0) and some constants c1, c2 > 0. Hence
DA(α,∞) = DA0(α,∞) with equivalence of the respective norms.

By virtue of Lemma 2.5, we find that A generates the analytic semigroup
etA. Then we are led to the following proposition guaranteeing the existence
of a unique solution for our linearized system.

Proposition 2.6 Let us assume that ρi
0 ∈ C2+α(Ii) (i = 1, 2, 3) satisfy

the compatibility conditions

B0(0 ; ∂σ)ρT
0 = GT (0), B0

(
li; ∂σ

)
ρT

0 = GT
∂Ω(0).

For (ρi, µi) ∈ C2+α,1(Qi
0,T )× C1[0, T ] (i = 1, 2, 3), the linearized system





∂tρ
T = AρT + F T (σ, t),

B0(0 ; ∂σ)ρT = GT (t), B0(li; ∂σ)ρT = GT
∂Ω(t),

ρi
0(·, 0) = ρi

0 (i = 1, 2, 3)

(2.14)

with the notation A = A0 +A1 has a unique solution such that
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3∑

i=1

‖ρi‖
C2+α,1(Qi

0,T )
≤ C

3∑

i=1

(‖ρi
0‖C2+α(Ii) + ‖F i‖

Cα,0(Qi
0,T )

+ ‖Gi‖C(1+α)/2[0,T ] + ‖Gi
∂Ω‖C(1+α)/2[0,T ]

)
.

(2.15)

Proof. Adapt the argument in the proof of [17, Theorem 5.1.19] to our
linearized system (2.14). ¤

Now we are ready to prove Theorem 2.3 by using the contraction prin-
ciple.

Proof of Theorem 2.3. Set

D =
{
(ρ,µ) ∈ C2+α,1(Q1

0,T )× C2+α,1(Q2
0,T )× C2+α,1(Q3

0,T )× [
C1[0, T ]

]3 ∣∣

(ρi(·, 0), µi(0)) = (ρi
0, µ

i
0) (i = 1, 2, 3), ‖ρ‖C2+α,1

T
+ ‖µ‖C1

T
≤ K

}

for some bounded positive parameters K and T where

‖ρ‖C2+α,1
T

=
3∑

i=1

‖ρi‖
C2+α,1(Qi

0,T )
, ‖µ‖C1

T
=

3∑

i=1

‖µi‖C1[0,T ].

Then, for (ρ,µ) ∈ D, we define the mapping

F : D 3 (ρ,µ) 7→ (ρ,µ)

where ρ is the solution of (2.14) and µ is given by µT = Q T 0ρT for such
solution ρ. Once we prove that the mapping F is a contraction on D for
suitable K and T , the mapping F has a unique fixed point in D which
implies that the nonlinear problem (2.11) admits a unique solution in [0, T ].

Let us first prove that F maps D into itself. Note that the lower order
terms in F i and Gi

∂Ω can be rewritten as

f i(u) = f i(u0) +
∫ 1

0

〈
Df i(ηu + (1− η)u0),u− u0

〉
dη,

gi
∂Ω(ui

1) = gi
∂Ω(ui

1,0) +
∫ 1

0

〈
Dgi

∂Ω(ηui
1 + (1− η)ui

1,0),u
i
1 − ui

1,0

〉
dη.
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Here u = (ρi, ρi
σ, T 0ρ, T 0ρσ,µ), u0 = (ρi

0, ρ
i
0,σ, T 0ρ0, T 0ρ0,σ,µ0), ui

1 =
(ρi, µi), and ui

1,0 = (ρi
0, µ

i
0). Moreover, Df i and Dgi

∂Ω are the Fréchet
derivative of f i and gi

∂Ω, respectively, and the bracket 〈·, ·〉 is the respective
inner product. Then, by means of (2.15) and µT = Q T 0ρT , we have

‖ρ‖C2+α,1
T

+ ‖µ‖C1
T

≤ Ĉ

{ 3∑

i=1

(‖ρi
0‖C2+α(Ii) + ‖f i(u0)‖Cα(Ii) + |gi

∂Ω(T liui
0)|

)

+
3∑

j=2

(|bj1(T 0u1j
0 )||T 0ρ1

0,σ|+ |bjj(T 0u1j
0 )||T 0ρj

0,σ|
)}

+ CKT ν

for ν = min{α/2, (1− α)/2}. Thus, choosing

K = 2Ĉ

{ 3∑

i=1

(‖ρi
0‖C2+α(Ii) + ‖f i(u0)‖Cα(Ii) + |gi

∂Ω(T liui
0)|

)

+
3∑

j=2

(|bj1(T 0u1j
0 )||T 0ρ1

0,σ|+ |bjj(T 0u1j
0 )||T 0ρj

0,σ|
)}

, (2.16)

we conclude that there exists a time T1 > 0 such that

‖ρ‖C2+α,1
T

+ ‖µ‖C1
T
≤ K for T ≤ T1. (2.17)

That is, F maps D into itself.
Let us prove that the mapping F is a contraction. For (ρ1,µ1),

(ρ2,µ2) ∈ D with T ≤ T1, let

(ρ1,µ1) = F(ρ1,µ1), (ρ2,µ2) = F(ρ2,µ2)

be the solutions associated with the linearized problem (2.14). Then, ap-
plying a similar argument to [4, pp. 373–375] with µT = Q T 0ρT , we are led
to

‖ρ1 − ρ2‖C2+α,1
T

+ ‖µ1 − µ2‖C1
T
≤ ĈKT ν

(‖ρ1 − ρ2‖C2+α,1
T

+ ‖µ1 − µ2‖C1
T

)
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for ν = min{α/2, (1 − α)/2}. Thus, F is a contraction for T ≤ T2, which
satisfies ĈKT ν

2 ≤ 1/2. Consequently, choosing T∗ = min{T1, T2}, we find
that F has a unique fixed point in D for T ≤ T∗, so that the nonlinear
problem (2.11) has a unique solution in [0, T ] with (2.17) for T ≤ T∗. Fur-
ther, checking the details of the estimate for the linear system, we obtain
for t ∈ [0, T ]

3∑

i=1

‖ρi(·, t)‖C1+α(Ii) ≤ m0 + CKT ν ,

where m0 depends on ‖ρi
0‖C1+α(Ii) and |µi

0|. Then, there exists a time
T3 > 0 such that m0 + CKT ν ≤ 2m0 for T ≤ T3. Thus, choosing T0 =
min{T∗, T3}, we have

∑3
i=1 ‖ρi(·, t)‖C1+α(Ii) ≤ 2m0 for t ∈ [0, T ] with T ≤

T0. It is possible to guarantee 2m0 ≤ δ0 for sufficiently small ‖ρi
0‖C1+α(Ii)

and |µi
0|, where δ0 is as in (2.10). By Lemma 2.1, |µi(t)| is estimated by∑3

i=1 ‖ρi(·, t)‖C0(Ii), so that |µi(t)| can be smaller than δ0 if ‖ρi
0‖C1+α(Ii)

and |µi
0| are small enough. This completes the proof of Theorem 2.3. ¤

3. Linearization

In order to linearize the nonlinear system (2.11) around the stationary
solution Γ∗ =

⋃3
i=1 Γi

∗, we need to establish the following properties of Ψ at
(q, µi) = (0, 0).

Lemma 3.1 For the parameterizations Ψi, i = 1, 2, 3, in Section 2, the
following properties hold :

( i ) Ψi(σ, 0, 0) = Φi
∗(σ) and Ψi(σ, q, 0) = Φi

∗(σµi
∂Ω(q)/li) + qN i

∗(σµi
∂Ω(q)/

li).
( ii ) Ψi

σ(σ, 0, 0) = T i
∗, Ψi

q(σ, 0, 0) = N i
∗, and Ψi

µ(σ, 0, 0) = (1− σ/li)T i
∗.

(iii) Ψi
σσ(σ, 0, 0) = (0, 0)T , Ψi

σq(σ, 0, 0) = (0, 0)T , and Ψi
σµ(σ, 0, 0) =

(−1/li)T i
∗.

(iv) Ψi
σσq(σ, 0, 0) = (0, 0)T and Ψi

σσµ(σ, 0, 0) = (0, 0)T .

Proof. By the definition of Ψi, (i) is obvious. Let us prove (ii). Differenti-
ating Ψi(σ, 0, 0) = Φi

∗(σ) with respect to σ, we readily derive Ψi
σ(σ, 0, 0) =

T i
∗(σ). Applying a similar argument to [7], we obtain {µi

∂Ω(q)}′|q=0 = 0.
Thus (i) gives Ψi

q(σ, 0, 0) = N i
∗(σ). Further, by the definition of ξi, we have
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ξi
µ(σ, 0, 0) = 1− σ/li.

It follows from the definition of Ψi and the Frenet-Serret formulae that

Ψi
µ(σ, q, µi) = ξµ(σ, q, µi)(1−qκi

∗)T
i
∗(ξ(σ, q, µi)) = ξµ(σ, q, µi)T i

∗(ξ(σ, q, µi)).

Putting (q, µi) = (0, 0), the third property of (ii) is derived. Finally, by
using (ii), we have (iii)–(iv). ¤

By virtue of Lemma 3.1, we are led to the linearization of (2.11) around
the stationary solution Γ∗ =

⋃3
i=1 Γi

∗.

Proposition 3.2 The linearization of (2.11) is given by





βiρi
t = γiρi

σσ for σ ∈ (0, li),

3∑

i=1

γiρi = 0 at σ = 0,

ρ1
σ = ρ2

σ = ρ3
σ at σ = 0,

ρσ + hi
∗ρ

i = 0 at σ = li,

(3.1)

for i = 1, 2, 3, where hi
∗ is the curvature of ∂Ω at the point Φi

∗(l
i) ∈ Γi

∗∩∂Ω.

We remark that (3.1) corresponds to the linearized problem which was de-
rived in a formal way by Ikota and Yanagida [13].

Proof of Proposition 3.2. Applying the same argument as in [7, Section 3],
using Lemma 3.1 and κi

∗ = 0 (i = 1, 2, 3) we obtain from equations (2.9) and
the boundary conditions at σ = li, the first and fourth equations in (3.1).
Thus we only derive the third equation of (3.1). To simplify the notation,
we set

J̃ i(ρi, µi) = J
(
ρi, ρi

σ, µi
)
,

g̃1j(ρ1, ρj , µ1, µj) = g1j
(
ρ1, ρj , ρ1

σ, ρj
σ, µ1, µj

)
(j = 2, 3).

Then it is easy to obtain
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J̃ i(0, 0) = 1, ∂J̃ i(0, 0)[ρi, µi] = − 1
li

µi,

where ∂J̃ i(0, 0) is the Fréchet derivative of J̃ i at (0, 0). Recalling the defi-
nition of g̃1j (j = 2, 3) and using Lemma 3.1, we have

∂g̃1j(0, 0, 0, 0)[ρ1, ρj , µ1, µj ]

= − 1
l1

(
T 1
∗ , T j

∗
)
R2µ

1 − 1
lj

(
T 1
∗ , T j

∗
)
R2µ

j +
(
T 1
∗ , N j

∗
)
R2ρ

j
σ

+
(
N1
∗ , T

j
∗
)
R2ρ

1
σ −

(
− 1

l1
µ1 − 1

lj
µj

)
cos θk

for (j, k) = (2, 3) or (3, 2), where ∂g̃1j(0, 0, 0, 0) is the Fréchet derivative of
g̃1j at (0, 0, 0, 0). Since the angle conditions at σ = 0 give

(
T 1
∗ , T 2

∗
)
R2 = cos θ3,

(
T 1
∗ , N2

∗
)
R2 = − sin θ3,

(
N1
∗ , T

2
∗
)
R2 = sin θ3,

(
T 1
∗ , T 3

∗
)
R2 = cos θ2,

(
T 1
∗ , N3

∗
)
R2 = sin θ2,

(
N1
∗ , T

3
∗
)
R2 = − sin θ2,

it follows that

∂g̃12(0, 0, 0, 0)[ρ1, ρ2, µ1, µ2] =
(− ρ2

σ + ρ1
σ

)
sin θ3,

∂g̃13(0, 0, 0, 0)[ρ1, ρ3, µ1, µ3] =
(
ρ3

σ − ρ1
σ

)
sin θ2

at σ = 0. Hence the linearization of g̃1j(ρ1, ρj , µ1, µj) = 0 (j = 2, 3) is

(− ρ2
σ + ρ1

σ

)
sin θ3 = 0,

(
ρ3

σ − ρ1
σ

)
sin θ2 = 0 at σ = 0,

so that, by virtue of θj ∈ (0, π) (j = 2, 3), we have

ρ1
σ = ρ2

σ = ρ3
σ at σ = 0.

This completes the proof. ¤

In [13] Ikota and Yanagida investigated linearized stability for the curva-
ture flow with a triple junction (3.1). They derived a criterion according to
which one can determine whether the stationary solution is linearly stable or
unstable. In what follows, we recall their linearized stability criterion. The
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main result of [13, Theorem 1.1] is concerned with the analysis of the self-
adjoint eigenvalue problem associated to the linearized system of equations
(3.1). We now recall their linearized stability result.

Theorem 3.3 The maximal eigenvalue of the eigenvalue problem corre-
sponding to the linearized problem (3.1), i.e. we set λρi instead of βiρi

t for a
constant λ, is negative and the stationary solution is linearly asymptotically
stable if and only if one of the following conditions is fulfilled :

(a) either all h1
∗, h2

∗, and h3
∗ are positive,

(b) or, at most one of them is non-positive, and they satisfy

γ1
(
1 + l1h1

∗
)
h2
∗h

3
∗ + γ2

(
1 + l2h2

∗
)
h1
∗h

3
∗ + γ3

(
1 + l3h3

∗
)
h1
∗h

2
∗ > 0.

We will also need a variational characterization of the linearized stability
property. To this end, let us introduce the bilinear form

I∗[ϕ,ϕ] =
3∑

i=1

γi

{ ∫ li

0

(ϕi
s)

2 ds + hi
∗(ϕ

i)2|s=li

}
(3.2)

for all ϕ ∈ E(Γ∗), where

E(Γ∗) =
{

(ϕ1, ϕ2, ϕ3) ∈ H1(0, l1)×H1(0, l2)×H1(0, l3)
∣∣∣∣

3∑

i=1

γiϕi(0) = 0
}

.

This bilinear form was also considered in [13]. The following lemma is a
simple consequence of the variational characterizations of the largest eigen-
value.

Lemma 3.4 Let λ be the maximal eigenvalue of the eigenvalue problem
corresponding to the linearized system (3.1). Then

I∗[ϕ,ϕ] ≥ (−λ)
3∑

i=1

γi‖ϕi‖2L2(Γi∗)
for ϕ ∈ E(Γ∗).

Remark 3.5 In order to simplify the presentation, we will henceforth
consider only the case βi = γi, for i = 1, 2, 3. It is worth to note that
the linearized stability criterion is invariant with respect to the positive
constants βi > 0 for i = 1, 2, 3. As it should be obvious from all the energy
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type estimates to follow, the full nonlinear stability of the stationary solution
will not be affected by a different choice of positive mobility constants βi > 0
for i = 1, 2, 3.

4. Uniqueness of the stationary solution

In this section we prove the uniqueness of the stationary solution in a
small H2-neighborhood. The inverse mapping theorem also gives a bound
on the H2-norm of ρ = (ρ1, ρ2, ρ3) in terms of the L2-norm of the curvature
κ = (κ1, κ2, κ3).

To this end, let us introduce the function space

M =
{

(ρ1, ρ2, ρ3) ∈ H2(0, l1)×H2(0, l2)×H2(0, l3)
∣∣∣∣

3∑

i=1

γiρi(0) = 0
}

.

Then ρ via parametrization (2.2) defines a neighboring triple junction
configuration such that the end points lie on ∂Ω.

Theorem 4.1 Let I∗ be positive. Then there exists a H2-neighborhood of
ρ ≡ 0 in M, such that ρ ≡ 0 is the only solution of the problem

κi = 0, ^
(
∂Ω,Γi

t

)
= π/2, (4.1)

^(Γi(t),Γj(t)) = cos θk for i, j, k ∈ {1, 2, 3} mutually different. (4.2)

Proof. The idea of the proof is to use the local inverse mapping theorem
for the curvature operator with appropriate boundary conditions. The pos-
itivity of I∗ will ensure invertibility of the linearization.

Using the notation (2.4) of Section 2 we obtain

κi(ρ) = ai
(
ρi, ρi

σ,µ(ρ(0))
)
ρi

σσ + f i
(
ρi, ρi

σ,µ(ρ(0))
)

with ai(ρi, ρi
σ,µ(ρ(0))) = 1/{J i(ρi, ρi

σ,µ(ρ(0)))}2, a smooth function f i,
and a linear mapping µ from R3 to R3. The boundary conditions in (4.1)
and (4.2) can be written as

gi
(
ρi(li), ρi

σ(li),µ(ρ(0))
)

= 0 for i = 1, 2, 3,

gi
(
ρ(0),ρσ(0),µ(ρ(0))

)
= 0 for i = 4, 5
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where g1, . . . , g5 are smooth functions. We define N = L2(0, l1)×L2(0, l2)×
L2(0, l3) and observe that solving (4.1) and (4.2) is equivalent to finding a
zero of the mapping

F : Bε(0) → N × R5, F (ρ) = (κ1(ρ), κ2(ρ), κ3(ρ), g1, . . . , g5)

where Bε(0) is a ball of a radius ε > 0 around zero in the space M. Since
H2 is embedded in C1 the mapping is well defined. Arguing similarly as in
Section 3 we obtain

DF (0) :

M→N × R5

ρ 7→ (
ρ1

σσ, ρ2
σσ, ρ3

σσ, ρ1
σ + h1ρ1, ρ2

σ + h2ρ2, ρ3
σ + h3ρ3, ρ1

σ − ρ2
σ, ρ1

σ − ρ3
σ

)
.

Similarly as in [13], since I∗ is positive we can conclude that DF (0) is
injective and hence the Fredholm alternative gives that DF (0) is invertible.
Now the local inverse mapping theorem (see e.g. [24]) gives that there is a
neighborhood around 0 such that only ρ ≡ 0 solves (4.1) and (4.2). ¤

It is worthwhile noting that the mapping F analyzed in the proof of the
above theorem is in fact a local diffeomorphism. Therefore its inverse map-
ping is locally Lipschitz continuous. Hence we have the following corollary.

Corollary 4.2 There exist constants C, δ1 > 0 such that

‖ρ‖H2 ≤ C‖κ‖L2

provided that ‖κ‖2L2 < δ1 and ρ ∈M fulfills F (ρ) = (κ1, κ2, κ3, 0, 0, 0, 0, 0).

In other words, by means of the above theorem and its corollary, we
obtained a bound on the H2-norm of the solution ρ in terms of the L2-
norm of the curvature κ = (κ1, κ2, κ3) in the vicinity of the stationary
solution ρ ≡ 0 provided that ρ fulfills the boundary conditions. This useful
observation will be used several times throughout the rest of the paper.
Although we could take the standard L2-norm in the corollary above we
choose the suitable weighted L2-norm defined in (6.2) in the corollary as
this will simplify the further presentation.
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5. Governing equations for the curvature and other geometric
quantities

In order to show the global existence and the nonlinear stability of
solutions for which the bilinear form of [13] is positive, we apply an energy
method similar to the one used in [5] and [15]. For such a method it is
important to derive evolution equations for the curvature.

Let s be the arc-length parameter along the evolving curve Γt and let
X be a smooth map such that X(·, t) is an arc-length parameterization of
Γt with

Γi
t = {Xi(s, t) | s ∈ [0, ri(t)]}

where ri is smooth such that L[Γi
t] = ri(t) which is the length of Γi

t. Let N i

(= N i(s, t)) be the unit normal vector of Γi
t. It can be written as

N i(s, t) =
(

cos ωi(s, t)
sinωi(s, t)

)
.

Then we have
{

N i
s = −κiT i, T i

s = κiN i,

N i
t = −ωi

tT
i, T i

t = ωi
tN

i
(5.1)

where T i is the unit tangent vector of Γi
t and κi is the curvature of Γi

t. In
addition, we define

V i =
(
Xi

t , N
i
)
R2 , vi =

(
Xi

t , T
i
)
R2

and hence

Xi
t = V iN i + viT i. (5.2)

Differentiating (5.2) with respect to s and using (5.1), we have

Xi
ts = V i

s N i + V iN i
s + vi

sT
i + viT i

s (5.3)

=
(
V i

s + κivi
)
N i +

(− κiV i + vi
s

)
T i. (5.4)
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Lemma 5.1 Let Xi be a smooth arc-length parameterization as above.
Then

ωi
t = V i

s + κivi, vi
s = κiV i.

Proof. Since Xi
ts = Xi

st and Xi
s = T i, it follows from (5.1) and (5.2) that

ωi
tN

i =
(
V i

s + κivi
)
N i +

(− κiV i + vi
s

)
T i.

Thus we obtain the desired results. ¤

As a consequence of Lemma 5.1 we have the following lemma.

Lemma 5.2 Let Xi be a smooth arc-length parameterization of Γi
t as

above. Then the curvature κi (i = 1, 2, 3) satisfies the evolution equation:

κi
t = V i

ss + (κi)2V i + κi
sv

i

Proof. By ωi
s = κi and Lemma 5.1, we obtain

κi
t = ωi

st = ωi
ts =

(
V i

s + κivi
)
s

= V i
ss + κivi

s + κi
sv

i = V i
ss + (κi)2V i + κi

sv
i.

This completes the proof. ¤

By the assumption that Γi
t meets ∂Ω at the one end point with the angle

π/2, we have

ψ(Xi(ri(t), t)) = 0, (∇ψ(Xi), N i)R2 = 0 at s = ri(t).

Differentiating the identity ψ(Xi(ri(t), t)) = 0 with respect to t and tak-
ing into account the transversality condition (∇ψ(Xi), N i)R2 = 0 and the
governing equation Xi

t = V iN i + viT i we can derive the following lemma.

Lemma 5.3 At the point where Γi
t (i = 1, 2, 3) meets the outer boundary

∂Ω we have

vi + (ri)′ = 0 for s = ri(t).

Next we derive corresponding boundary conditions at the triple junction
point p(t). It is assumed that curves Γ1, Γ2, and Γ3 meet at the triple
junction. Let i, j, k ∈ {1, 2, 3} be mutually different. Let Γk and γk be the
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interface and the surface energy density between phases i, j. Following the
arguments in Bronsard and Reitich [4] the angles θi (i = 1, 2, 3) of the curves
at the triple junction point p(t) fulfill Young’s law

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3
(5.5)

(see [23]). Young’s law can be expressed as a force balance in the following
form

3∑

i=1

γiT i =
3∑

i=1

γiN i = 0. (5.6)

Let p(t) ∈ R2 denote a triple junction. At the triple junction the fol-
lowing boundary conditions hold:

X1(0, t) = X2(0, t) = X3(0, t) (= p(t)), (5.7)
(
Xi

s, X
j
s

)
R2 = cos θk at p(t) (5.8)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). Then we obtain the following
lemma.

Lemma 5.4 At the triple junction p(t) we have the following equality :

3∑

i=1

γivi = 0.

Proof. Differentiating (5.7) with respect to t, we obtain

dp

dt
= X1

t = X2
t = X3

t . (5.9)

For i = 1, 2, 3, it holds

(
dp

dt
, T i

)

R2

=
(
Xi

t , T
i
)
R2 = vi.

This fact and Young’s law imply that
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3∑

i=1

γivi =
3∑

i=1

γi

(
dp

dt
, T i

)

R2

=
(

dp

dt
,

3∑

i=1

γiT i

)

R2

= 0.

Hence the proof is complete. ¤

In the next lemma we derive evolution equations and boundary condi-
tions for the curvature.

Lemma 5.5 A smooth solution of the curvature flow equations

V i = κi, i = 1, 2, 3, (5.10)

with the boundary conditions




^(Γi(t),Γj(t)) = cos θk for i, j, k ∈ {1, 2, 3} mutually different,

^(∂Ω,Γi
t) = π/2 at Γi

t ∩ ∂Ω,

∂Γi
t ⊂ ∂Ω

(5.11)

fulfills when expressed in the above arc-length parameterization the evolution
equations

κi
t = κi

ss + (κi)3 + κi
sv

i, i = 1, 2, 3.

Furthermore, at the triple junction p(t) we have

3∑

i=1

γiκi = 0, (5.12)

κ1
s + κ1v1 = κ2

s + κ2v2 = κ3
s + κ3v3 (5.13)

and at Γi
t ∩ ∂Ω the identity

κi
s + hiκi = 0 (5.14)

holds. Here hi is the curvature of ∂Ω at the point Xi(ri(t), t) ∈ Γi
t ∩ ∂Ω.

Proof. From (5.9) we deduce
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(
dp

dt
,N i

)

R2

=
(
Xi

t , N
i
)
R2 = V i.

This fact and Young’s law imply that

3∑

i=1

γiV i =
3∑

i=1

γi

(
dp

dt
,N i

)

R2

=
(

dp

dt
,

3∑

i=1

γiN i

)

R2

= 0.

Since V i = κi, we are led to (5.12).
Differentiating (5.8) with respect to t, we obtain

(
Xi

st, X
j
s

)
R2 +

(
Xi

s, X
j
st

)
R2 = 0.

It follows from (5.3) and (5.11) that

(
V i

s + κivi
)
sin θk +

(
V j

s + κjvj
)
(− sin θk) = 0.

By 0 < θk < π we have sin θk > 0, so that

V i
s + κivi = V j

s + κjvj .

Hence, Lemma 5.2 and the fact that V i = κi imply (5.13).
Finally, (5.14) follows as in [7, Section 3]. ¤

6. A priori estimates and global existence of a smooth solution

The purpose of this section is to derive a priori estimates guaranteeing
global existence of a smooth solution and its convergence to a steady state.
First, we derive a priori estimates for the L2-norm of the curvature. Next
we proceed with higher order energy estimates yielding a priori estimates
for the H2-norm of the curvature. As a consequence of these estimates we
will be able to prove exponential decay of the H2-norm of the curvature.
We remark that due to the parabolic regularization property the solution of
Theorem 2.3 will become smoother for positive time such that all derivatives
in the following computations exist.

6.1. First order a priori estimates
Let us define the energy functional
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E[Γ] =
3∑

i=1

γiL[Γi]

where Γ =
⋃3

i=1 Γi and L[Γi] is the length of Γi. Further, throughout Section
6, we use the following notations:

‖ϕi‖Lp =
( ∫

Γi
t

|ϕi|p ds

) 1
p

(1 ≤ p < ∞), ‖ϕi‖L∞ = ess sup
Γi

t

|ϕi|, (6.1)

‖ϕ‖Lp =
( 3∑

i=1

γi‖ϕi‖p
Lp

) 1
p

, ‖ϕ‖L∞ = max
i
‖ϕi‖L∞ (6.2)

for a vector function ϕ = (ϕ1, ϕ2, ϕ3).

Lemma 6.1 A smooth solution of (5.10)–(5.11) fulfills the following energy
type identities

( i ) d
dtE[Γt] + ‖κ‖2L2 = 0,

( ii ) d
dt‖κ‖2L2 = −2

∑3
i=1 γi

{ ∫
Γi

t
(V i

s )2 ds + hi(V i)2
∣∣
s=ri

}
+ ‖κ‖4L4 +

∑3
i=1 γi(κi)2vi

∣∣
s=0

where hi is evaluated at Xi(ri(t), t).

Proof. By means of the identity L[Γi
t] = ri(t), Lemmata 5.1, 5.3 and 5.4,

we have

d

dt
E[Γt] =

3∑

i=1

γi(ri)′ = −
3∑

i=1

γi{vi(ri, t)− vi(0, t)}

= −
3∑

i=1

γi

∫

Γi
t

vi
s ds = −

3∑

i=1

γi

∫

Γi
t

κiV i ds = −
3∑

i=1

γi

∫

Γi
t

(κi)2 ds.

In order to prove (ii), we compute

2
∫

Γi
t

κiκi
t ds = 2

∫

Γi
t

κi
{
κi

ss + (κi)3 + κi
sv

i
}

ds. (6.3)

The identity
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d

dt

∫

Γi
t

(κi)2 ds = 2
∫

Γi
t

κiκi
t ds + (κi)2

∣∣
s=ri(r

i)′,

and Lemma 5.3 imply

2
∫

Γi
t

κiκi
t ds =

d

dt

∫

Γi
t

(κi)2 ds + (κi)2vi
∣∣
s=ri . (6.4)

For the right hand side of equation (6.3) we can use the boundary condition
(5.14). Integration by parts yields

2
∫

Γi
t

κi
{
κi

ss + (κi)3 + κi
sv

i
}

ds

= 2
{[

κiκs

]s=ri

s=0
−

∫

Γi
t

(κi
s)

2

}
ds + 2

∫

Γi
t

(κi)4 ds + 2
∫

Γi
t

κiκi
sv

i ds

= −2
{ ∫

Γi
t

(
κi

s

)2
ds + hi(κi)2

∣∣
s=ri

}
− 2κiκi

s

∣∣
s=0

+ 2
∫

Γi
t

(κi)4 ds + 2
∫

Γi
t

κiκi
sv

i ds. (6.5)

Using the identities vi
s = κiV i = (κi)2 and integrating by parts we obtain

∫

Γi
t

κiκi
sv

i ds = [(κi)2vi]s=ri

s=0 −
∫

Γi
t

κi
(
κi

sv
i + κivi

s

)
ds

= [(κi)2vi]s=ri

s=0 −
∫

Γi
t

κiκi
sv

i ds−
∫

Γi
t

(κi)4 ds.

Thus we have
∫

Γi
t

κiκi
sv

i ds =
1
2

{
[(κi)2vi]s=ri

s=0 −
∫

Γi
t

(κi)4 ds

}
. (6.6)

It follows from (6.4), (6.5), and (6.6) that
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d

dt

∫

Γi
t

(κi)2 ds = − 2
{ ∫

Γi
t

(κi
s)

2 ds + hi(κi)2
∣∣
s=ri

}
+

∫

Γi
t

(κi)4 ds

− 2κiκi
s

∣∣
s=0

− (κi)2vi
∣∣
s=0

.

By (5.12) and (5.13) we have

3∑

i=1

γi
{
2κiκi

s

∣∣
s=0

+ (κi)2vi
∣∣
s=0

}

= 2
3∑

i=1

γiκi
(
κi

s + κivi
) ∣∣

s=0
−

3∑

i=1

γi(κi)2vi
∣∣
s=0

= −
3∑

i=1

γi(κi)2vi
∣∣
s=0

.

Thus we are led to the identity

d

dt

3∑

i=1

γi

∫

Γi
t

(κi)2 ds

= − 2
3∑

i=1

γi

{ ∫

Γi
t

(κi
s)

2 ds + hi(κi)2
∣∣
s=ri

}
+

3∑

i=1

γi

∫

Γi
t

(κi)4 ds

+
3∑

i=1

γi(κi)2vi
∣∣
s=0

.

Since V i = κi the proof of the lemma follows. ¤

Let us define a bilinear form I as

I[ϕ,ϕ] =
3∑

i=1

γi

{ ∫ ri

0

(ϕi
s)

2 ds + hi(ϕi)2
∣∣
s=ri

}

for ϕ ∈ E(Γ) where

E(Γ) =
{

(ϕ1, ϕ2, ϕ3) ∈ H1(0, r1)×H1(0, r2)×H1(0, r3)
∣∣∣∣

3∑

i=1

γiϕi(0) = 0
}

.
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Since V ∈ E(Γ) we can rewrite the statement ii) of Lemma 6.1 as

d

dt
‖κ‖2L2 + 2I[V ,V ] = ‖κ‖4L4 +

3∑

i=1

γi(κi)2vi
∣∣
s=0

. (6.7)

The following lemmata are crucial in the derivation of a priori estimates.

6.2. Higher order estimates for the curvature
We define the averaged curvature along the curve Γi

t as κi
av =

1
L[Γi

t]

∫
Γi

t
κids.

Lemma 6.2 The following estimates for a C3-curve Γi
t hold true.

( i ) ‖κi − κi
av‖L∞ ≤ (L[Γi

t])
1
2 ‖κi

s‖L2 , |κi
av| ≤ 1

(L[Γi
t])

1
2
‖κi‖L2 ,

( ii )
∫
Γi

t
(κi)4 ds ≤ 2

{
L[Γi

t]‖κi
s‖2L2 + 1

L[Γi
t]
‖κi‖2L2

}‖κi‖2L2 ,

(iii) There are m1 = m1(L[Γi
t]) and m2 = m2(1/L[Γi

t]) such that

∣∣(κi|s=0)3
∣∣ ≤ m1‖κi‖L2‖κi

s‖2L2 + m2‖κi‖3L2 .

Proof. The estimates in (i) are established in a standard way and we do
not present details here. By the estimates in (i), we have

‖κi‖L∞ ≤ ∥∥κi − κi
av

∥∥
L∞ + |κi

av| ≤ (L[Γi
t])

1
2 ‖κi

s‖L2 +
1

(L[Γi
t])

1
2
‖κi‖L2 .

It implies that
∣∣∣∣
∫

Γi
t

(κi)4 ds

∣∣∣∣ ≤ ‖κi‖2L∞‖κi‖2L2

≤
{(

L[Γi
t]
) 1

2 ‖κi
s‖L2 +

1
(L[Γi

t])
1
2
‖κi‖L2

}2

‖κi‖2L2 .

The statement (ii) now follows from the elementary inequality (a + b)2 ≤
2(a2 + b2).

Let ri
0 be such that κi(ri

0, t)− κi
av(t) = 0. We then obtain
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(κi − κi
av)3

∣∣
s=0

= −3
∫ ri

0

0

κi
s(κ

i − κi
av)2 ds.

This implies that

∣∣(κi − κi
av)3 |s=0

∣∣ ≤ 3
∫

Γi
t

|κi
s||κi − κi

av|2 ds

≤ 3‖κi − κi
av‖L∞‖κi

s‖L2‖κi − κi
av‖L2

≤ 3
(
L[Γi

t]
) 1

2 ‖κi
s‖2L2

{‖κi‖L2 + (L[Γi
t])

1
2 |κi

av|
}

≤ 6
(
L[Γi

t]
) 1

2 ‖κi‖L2‖κi
s‖2L2 .

Note that (κi)3 = (κi − κi
av)3 + 3κiκi

av(κi − κi
av) + (κi

av)3. Then it follows
that

∥∥κiκi
av(κi − κi

av)
∥∥

L∞

≤ ∥∥κi
av(κi − κi

av)2
∥∥

L∞ +
∥∥(κi

av)2(κi − κi
av)

∥∥
L∞

≤ L[Γi
t]|κi

av|‖κi
s‖2L2 +

(
L[Γi

t]
) 1

2 |κi
av|2‖κi

s‖L2

≤ (
L[Γi

t]
) 1

2 ‖κi‖L2‖κi
s‖2L2 +

(
L[Γi

t]
) 1

2 |κi
av| ·

1
2
(|κi

av|2 + ‖κi
s‖2L2

)

≤ (
L[Γi

t]
) 1

2 ‖κi‖L2‖κi
s‖2L2 +

1
2
‖κi‖L2

(
1

L[Γi
t]
‖κi‖2L2 + ‖κi

s‖2L2

)

=
{(

L[Γi
t]
) 1

2 +
1
2

}
‖κi‖L2‖κi

s‖2L2 +
1

2L[Γi
t]
‖κi‖3L2 .

Thus we have
∣∣(κi|s=0)3

∣∣ ≤ ∣∣(κi − κi
av)3 |s=0

∣∣ + 3
∥∥κiκi

av(κi − κi
av)

∥∥
L∞ + |κi

av|3

≤
{

9
(
L[Γi

t]
) 1

2 +
3
2

}
‖κi‖L2‖κi

s‖2L2 +
{

3
2L[Γi

t]
+

1
(L[Γi

t])3/2

}
‖κi‖3L2 .

Hence the proof is complete. ¤

Lemma 6.3 For smooth solutions of (5.10), (5.11) we have
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(v1, v2, v3)T = Q(V 1, V 2, V 3)T ,

for any t ∈ (0, T ], where the matrix Q was defined in Lemma 2.1.

Proof. At the triple junction p(t), we have, for all i, j ∈ {1, 2, 3},

dp

dt
= viT i + V iN i = vjT j + V jN j .

Taking the inner product with T i we obtain

vi = vj(T i, T j) + V j(T i, N j).

By (5.8), (T i, T j) = cos θk and (T i, N j) = − sin θk. Thus we derive

vi − ckvj = −skV j .

If we solve this with respect to (v1, v2, v3)T , we are led to the desired result.
¤

By Lemma 6.3 and V i = κi, we have

∣∣∣∣
3∑

i=1

γi(κi)2vi
∣∣
s=0

∣∣∣∣ ≤ C

{ 3∑

i=1

γi(κi)2
∣∣
s=0

}( 3∑

i=1

|κi| ∣∣
s=0

)

≤ Ĉ
3∑

i=1

γi|κi|3 ∣∣
s=0

. (6.8)

6.3. Structural stability of the bilinear form
The aim of this subsection is to show that positivity of the bilinear form

I∗ is invariant with respect to small perturbations of the curve parametriza-
tion ρi. More precisely, we will show that the bilinear form I is positive
definite provided that I∗ is positive definite and ρ = (ρ1, ρ2, ρ3) is small in
the C1-norm. Taking into account Corollary 4.2 and the continuity of em-
bedding H2 ↪→ C1 the positive definiteness of the bilinear form is preserved
if the L2-norm of the curvature κ = (κ1, κ2, κ3) is small.

According to Lemma 3.4, I∗ is positive provided the maximal eigenvalue
for the linearized problem is negative. The following lemma is a direct
consequence of [13, Lemma 3.1 and Prop. 3.3].
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Lemma 6.4
( i ) Let λ be the maximal eigenvalue of the linearized problem. For ε > 0

there exists a δ > 0 such that, for any perturbation |hi − hi
∗| < δ and

|L[Γi]− L[Γi
∗]| < δ, i = 1, 2, 3, we have

I[ϕ,ϕ] > (−λ− ε)‖ϕ‖2L2 for ϕ ∈ E(Γ).

( ii ) There exists a c > 0 such that

c ‖ϕs‖2L2 ≤ I[ϕ,ϕ] + ‖ϕ‖2L2 for ϕ ∈ E(Γ).

Using Lemma 6.4, we obtain the existence of constants δ∗ > 0 and
c∗ > 0 such that

I[ϕ,ϕ] > − λ

2
‖ϕ‖2L2 + c∗‖ϕs‖2L2 for ϕ ∈ E(Γt) (6.9)

provided that, for i = 1, 2, 3,

|hi − hi
∗| < δ∗,

∣∣L[Γi]− L[Γi
∗]

∣∣ < δ∗. (6.10)

Lemma 6.5 We have the following estimates.

( i ) There exist constants δ2, C > 0 such that |hi − hi
∗| ≤ C‖ρi‖C0(Ii)

provided that ‖ρi‖C0(Ii) < δ2.
( ii ) There exist constants δ3, C > 0 such that

∣∣L[Γi]− L[Γi
∗]

∣∣ ≤ C‖ρ‖C1 and |p| ≤ C‖ρ‖C0

provided that ‖ρ‖C1 < δ3, where p is the triple junction of Γ =
⋃3

i=1 Γi.

Here we have denoted ‖ρ‖Ck+α =
∑3

i=1 ‖ρi‖Ck+α(Ii) for k ∈ N ∪ {0}, α ∈
[0, 1).

Proof. To prove (i), we recall that κ∂Ω(Xi) is represented by

κ∂Ω(Xi) = − 1
|∇ψ(Xi)|

(
[D2ψ(Xi)]T∂Ω(Xi), T∂Ω(Xi)

)
R2 . (6.11)

Since the right hand side does not depend on derivatives of ρi, the mean
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value theorem implies the second inequality of (i).
In order to prove (ii), we have to analyze properties of the function µi

∂Ω

introduced in Section 2. From the definition it follows that µi
∂Ω(0) = li and

p∗ + µi
∂Ω(q)T i

∗ + qN i
∗ ∈ ∂Ω. Therefore ψ(p∗ + µi

∂Ω(q)T i
∗ + qN i

∗) = 0 and so
we can compute the derivative of µi

∂Ω(q) as

d

dq
µi

∂Ω(q) = −
(∇ψ(p∗ + µi

∂Ω(q)T i
∗ + qN i

∗), N
i
∗
)
R2(∇ψ(p∗ + µi

∂Ω(q)T i∗ + qN i∗), T i∗
)
R2

.

Since (∇ψ, N i
∗)R2 = 0 on ∂Ω we obtain d

dq µi
∂Ω(0) = 0. Now, by taking

the second derivative of µi
∂Ω and taking into account the expression for the

curvature hi
∗ at the intersection of ∂Ω and Γi

∗ we obtain d2

dq2 µi
∂Ω(0) = hi

∗.
Thus

µi
∂Ω(q) = li +

1
2
hi
∗q

2 + o(q2) as q → 0.

We recall that the parameterization Φi of the curve Γi is given by

Φi(σ) = p∗ +
[
µi +

σ

li
{
µi

∂Ω(ρi(σ))− µi
}]

T i
∗ + ρi(σ)N i

∗.

Using the above property of the function µi
∂Ω and the fact µT = Qρ(0)T we

obtain

∣∣L[Γi]− L[Γi
∗]

∣∣ =
∣∣∣∣
∫ li

0

(|Φi
σ(σ)| − 1

)
dσ

∣∣∣∣ ≤ C‖ρ‖C1 .

Similarly, as p = µiT i
∗ + ρi(0)N i

∗ we obtain |p| ≤ C‖ρ‖C0 . With this all
statements of the lemma have been shown. ¤
6.4. Exponential stabilization of the solution
Lemma 6.6 Let λ be the maximal eigenvalue of the linearized problem.
Assume that λ is negative. Then there exists a δ3 > 0 such that

‖κ(t)‖2L2 ≤ eλt/2‖κ(0)‖2L2 for t ∈ [0, T ],
∫ T

0

‖κs(τ)‖2L2 dτ ≤ 1
c∗
‖κ(0)‖2L2
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provided that ‖κ(t)‖2L2 < δ4 holds on [0, T ] where c∗ > 0 is a constant as in
(6.9).

Proof. According to Corollary 4.2, there exists a C > 0 such that ‖ρ‖H2 ≤
C‖κ‖L2 for ‖κ‖2L2 < δ1. By (6.7) we have

d

dt
‖κ‖2L2 + 2I[V ,V ] = ‖κ‖4L4 +

3∑

i=1

γi(κi)2vi
∣∣
s=0

.

Let us first choose δ2 ∈ (0, δ∗) ∩ (0, δ1). Then, it follows from Lemmata 6.2
and 6.5 and the inequalities (6.8), (6.9), and (6.10) that there are C > 0
such that

d

dt
‖κ‖2L2 + (−λ)‖V ‖2L2 + 2c∗‖Vs‖2L2 ≤ C

(‖κ‖L2 + ‖κ‖2L2

)(‖κ‖2L2 + ‖κs‖2L2

)
.

Since V i = κi, we are led to

d

dt
‖κ‖2L2 +

{
(−λ)− C

(‖κ‖L2 + ‖κ‖2L2

)}‖κ‖2L2

+
{
2c∗ − C

(‖κ‖L2 + ‖κ‖2L2

)}‖κs‖2L2 ≤ 0. (6.12)

Then, we choose a constant δ4 > 0 satisfying

0 < δ4 < min
{

1,
−λ

4C
,

(−λ

4C

)2

,
c∗
2C

,

(
c∗
2C

)2}
.

If we assume ‖κ(t)‖2L2 < δ4 for t ∈ [0, T ] we then have

d

dt
‖κ(t)‖2L2 +

(−λ)
2

‖κ(t)‖2L2 + c∗‖κs(t)‖2L2 ≤ 0. (6.13)

Using the Gronwall inequality we obtain the desired result. ¤
6.5. Higher order energy inequalities

So far we have shown the exponential decay of the L2-norm of the
curvature κi. In order to prove stabilization of the curvature in the stronger
C1+α-norm we need to derive higher order energy type inequalities. These
estimates will enable us to conclude convergence of the curvature to zero in
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the C1+α-norm. In order to derive higher order estimates we differentiate
the curvature equation (see Lemma 5.2) with respect to t and derive an
energy estimate for κi

t. To this end, let us denote

wi = κi
t.

Then differentiating the curvature equation κi
t = κi

ss + (κi)3 + viκi
s with

respect to t and taking into account the commutation relation ∂t∂s = ∂s∂t

we obtain

wi
t = wi

ss + 3(κi)2wi + viwi
s + vi

tκ
i
s

for i = 1, 2, 3. Multiplying the above equation with wi and integrating over
Γi

t yields

1
2

d

dt

∫

Γi
t

(wi)2 ds

=
∫

Γi
t

wiwi
ss ds + 3

∫

Γi
t

(κi)2(wi)2 ds +
∫

Γi
t

(
viwiwi

s + vi
tw

iκi
s

)
ds

=
[
wiwi

s

]s=ri

s=0
−

∫

Γi
t

(wi
s)

2 ds + 3
∫

Γi
t

(κi)2(wi)2 ds

+
∫

Γi
t

(
viwiwi

s + vi
tw

iκi
s

)
ds. (6.14)

In what follows, we analyze the boundary term [wiwi
s]

s=ri

s=0 appearing in the
right hand side of (6.14). First we analyze the boundary term at the triple
junction position s = 0. Differentiating (5.12) with respect to t, we obtain

3∑

i=1

γiwi = 0 (6.15)

at the triple junction point p(t). It follows from (5.13) that there exists a
function G(t) such that

κi
s(0, t) + κi(0, t)vi(0, t) = G(t) for t ≥ 0 and i = 1, 2, 3.
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Differentiating this equation with respect to t, we conclude

wi
s + wivi + κivi

t = G′(t).

Therefore we obtain, by using (6.15),

3∑

i=1

γiwiwi
s = G′(t)

3∑

i=1

γiwi −
3∑

i=1

γi
{
(wi)2vi + κiwivi

t

}

= −
3∑

i=1

γi
{
(wi)2vi + κiwivi

t

}
. (6.16)

By Lemma 6.3, we can express the term vi as a time independent linear
combination of curvatures κi (i = 1, 2, 3) evaluated at the triple junction
p(t) and so vi

t can be expressed as a time independent linear combination of
κi

t = wi (i = 1, 2, 3). Therefore there exists a constant C > 0 such that

∣∣∣∣
3∑

i=1

γiwiwi
s

∣∣
s=0

∣∣∣∣ ≤ C‖w‖2L∞‖κ‖L∞ . (6.17)

Next we proceed with the estimation of the boundary term at the point
Xi ∈ Γi ∩ ∂Ω, i.e. we consider s = ri(t). Notice that ri is no longer
constant and its dependence on time t has to be taken into account. We
will differentiate the boundary condition (5.14)

κi
s(r

i(t), t) + hi(Xi(ri(t), t))κi(ri(t), t) = 0

with respect to t. Since d
dtX

i(ri(t), t) = Xi
t + Xi

s(r
i)′ = κiN i + {vi +

(ri)′}T i = κiN i (see Lemma 5.3) and κi
ss = κi

t− (κi)3−viκi
s = wi− (κi)3−

viκi
s we obtain

wi
s + hiwi = −(

κi
ss + hiκi

s

)
(ri)′ −

(
∇hi,

d

dt
Xi

)

R2

κi

=
{
wi − (κi)3 + (hi − vi)κi

s

}
vi − (κi)2(∇hi, N i)R2

=
{
wi − (κi)3 − (hi − vi)hiκi

}
vi − (κi)2(∇hi, N i)R2 . (6.18)
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Here we have used the equations κi
s + hiκi = 0 and vi + (ri)′ = 0 and

expressed hi by the right hand side of (6.11). We now denote by Ξi the
right hand side of (6.18). Then we get

3∑

i=1

γiwiwi
s

∣∣
s=ri = −

3∑

i=1

γihi(wi)2
∣∣
s=ri +

3∑

i=1

γiwiΞi
∣∣
s=ri . (6.19)

As the outer boundary ∂Ω is assumed to be C3 smooth we obtain that
the terms hi, ∇hi are uniformly bounded. Hence the remainder term∑3

i=1 γiwiΞi can be estimated as

∣∣∣∣
3∑

i=1

γiwiΞi
∣∣
s=ri

∣∣∣∣ ≤ C‖w‖L∞
(‖κ‖2L∞ + ‖w‖L∞‖v‖L∞ + ‖κ‖3L∞‖v‖L∞

+ ‖v‖2L∞‖κ‖L∞ + ‖v‖L∞‖κ‖L∞
)
. (6.20)

In order to complete our estimates we have to derive L∞- estimates on
the tangential velocity vi and its time derivative vi

t. Since vi
s = (κi)2 we

have

vi(s, t) = vi(0, t) +
∫ s

0

|κi(ζ, t)|2 dζ. (6.21)

By Lemma 6.3, we can express vi(0, t) as a time independent linear com-
bination of κi (i = 1, 2, 3) evaluated at the triple junction p(t). Therefore
there exists a constant C > 0 such that

‖v‖L∞ ≤ C
(‖κ‖L∞ + ‖κ‖2L2

) ≤ C‖κ‖L∞ (6.22)

for ‖κ‖L2 ≤ 1. Analogously, as vi
t(s, t) = vi

t(0, t) + 2
∫ s

0
κi(ζ, t)κi

t(ζ, t) dζ

and vi
t(0, t) is a time independent linear combination of κi

t = wi (i = 1, 2, 3)
evaluated at the triple junction position p(t), we conclude

‖vt‖L∞ ≤ C(‖w‖L∞ + ‖κ‖L2‖w‖L2) ≤ C‖w‖L∞ (6.23)

for ‖κ‖L2 ≤ 1.
Summarizing we have shown the following equality
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1
2

d

dt

3∑

i=1

γi

∫

Γi
t

(wi)2 ds + I[w,w]

=
3∑

i=1

γi

{
wiΞi

∣∣
s=ri − wiwi

s

∣∣
s=0

+ 3
∫

Γi
t

(κi)2(wi)2 ds

+
∫

Γi
t

(
viwiwi

s + vi
tw

iκi
s

)
ds

}

and, consequently, the estimate

1
2

d

dt
‖w‖2L2 + I[w,w]

≤ C
{(‖κ‖2L∞+‖κ‖3L∞+‖κ‖4L∞

)‖w‖L∞+‖κ‖L∞‖w‖2L∞+‖κ‖2L∞‖w‖2L2

+ ‖κ‖L∞‖w‖L2‖ws‖L2 + ‖w‖L∞‖w‖L2‖κs‖L2

}
. (6.24)

The application of the above inequality will be twofold. At first, we utilize
it in order to prove a bound on ‖κss(t)‖L2 uniformly for t ∈ [0, T ) where
T > 0 is the maximal time of existence of a C2+α solution ρ. This implies
together with Theorem 2.3 the possibility of global continuation of the C2+α

solution ρ up to the maximal time of existence T = +∞ and hence the
global existence of a C2+α solution will follow. As a second application of
the above inequality we will prove exponential stabilization of a solution in
the H2-norm of the curvature yielding the exponential stabilization ρ(t) in
its phase-space C2+α-norm.

To accomplish this goal, we have to establish bounds for ‖κ‖L∞ in terms
of the norms ‖w‖L2 and ‖κ‖L2 . This can be done by taking into account
the equation wi ≡ κi

t = κi
ss + (κi)3 + viκi

s. From this equation we have, for
i = 1, 2, 3,

∥∥κi
ss

∥∥
L2 ≤ C

(‖wi‖L2 + ‖(κi)3‖L2 + ‖viκi
s‖L2

)

≤ C
(‖wi‖L2 + ‖κi‖3L6 + ‖κi‖L∞‖κi

s‖L2

)
. (6.25)

Let us denote by ‖ · ‖Hk the following Sobolev norm of the Sobolev space
Hk = W k,2
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‖ϕ‖Hk = ‖ϕ‖L2 +
∥∥∂k

s ϕ
∥∥

L2 .

Due to the continuity of embeddings H2 ↪→ H1 and H2 ↪→ L∞ and us-
ing Gagliardo-Nirenberg interpolation inequalities (cf. [1, Lemma 5.18 and
Theorem 4.17]), we infer the existence of a constant C0 > 0 such that




‖κ‖L∞ ≤ C0‖κ‖

1
4
H2‖κ‖

3
4
L2 , ‖κs‖L2 ≤ C0‖κ‖

1
2
H2‖κ‖

1
2
L2 ,

‖w‖L∞ ≤ C0‖w‖
1
2
H1‖w‖

1
2
L2 .

(6.26)

By the Young inequality ab ≤ ap/p + bq/q with p = 4/3, q = 4, we have, for
any ε > 0,

‖κ‖L∞‖κs‖L2 ≤ C2
0‖κ‖

3
4
H2‖κ‖

5
4
L2 ≤ ε‖κ‖H2 + Cε‖κ‖5L2

and, analogously, ‖κ‖3L6 ≤ C‖κ‖3L∞ ≤ C0C‖κ‖
3
4
H2‖κ‖

9
4
L2 ≤ ε‖κ‖H2 +

Cε‖κ‖9L2 . By taking 0 < ε ¿ 1 small enough we obtain from (6.25)

‖κss‖L2 ≤ C(‖κ‖L2 + ‖w‖L2) for ‖κ‖L2 ≤ 1.

Consequently,

‖κs‖L2 ≤ C0‖κ‖
1
2
H2‖κ‖

1
2
L2 ≤ C0

2
(‖κ‖H2 + ‖κ‖L2) ≤ C(‖κ‖L2 + ‖w‖L2)

for ‖κ‖L2 ≤ 1. Similarly

‖κ‖L∞ ≤ C(‖κ‖L2 + ‖w‖L2)

for ‖κ‖L2 ≤ 1 where C > 0 is a generic positive constant. Due to the
continuity of embedding H1 ↪→ L∞ we have ‖w‖L∞ ≤ C‖w‖H1 .

We proceed by estimating the right hand side of (6.24). From (6.26) we
have

‖κ‖4L∞ ≤ C0‖κ‖H2 ≤ C(‖κ‖L2 + ‖w‖L2) ≤ C(1 + ‖w‖L2)

for ‖κ‖L2 ≤ 1. Consequently, by using the Young inequality, we obtain

‖κ‖2L∞ + ‖κ‖3L∞ + ‖κ‖4L∞ ≤ C(1 + ‖w‖L2)
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for ‖κ‖L2 ≤ 1. From the embedding ‖w‖L∞ ≤ C‖w‖H1 and Young’s in-
equality it follows that

(‖κ‖2L∞ + ‖κ‖3L∞ + ‖κ‖4L∞
)‖w‖L∞ ≤ ε‖w‖2H1 + Cε

(
1 + ‖w‖2L2

)

for ‖κ‖L2 ≤ 1. Using the Gagliardo-Nirenberg inequality (6.26) and Young’s
inequality, we can estimate the second summand in (6.24) as

‖κ‖L∞‖w‖2L∞ ≤ C‖κ‖L∞‖w‖H1‖w‖L2 ≤ ε‖w‖2H1 + Cε‖κ‖2L∞‖w‖2L2 .

Then, by means of ‖κ‖2L∞ ≤ ‖κ‖2L2 + ‖κs‖2L2 ≤ 1 + ‖κs‖2L2 for ‖κ‖L2 ≤ 1,
we have

‖κ‖2L∞‖w‖2L2 ≤
(
1 + ‖κs‖2L2

)‖w‖2L2 ,

and so

‖κ‖L∞‖w‖2L∞ ≤ ε‖w‖2H1 + Cε

(
1 + ‖κs‖2L2

)‖w‖2L2 .

The remaining terms in (6.24) can be easily estimated with help of Young’s
inequality as

‖κ‖L∞‖w‖L2‖ws‖L2 ≤ ε‖w‖2H1 + Cε

(
1 + ‖κs‖2L2

)‖w‖2L2 ,

‖w‖L∞‖w‖L2‖κs‖L2 ≤ ε‖w‖2H1 + Cε‖κs‖2L2‖w‖2L2

for ‖κ‖L2 ≤ 1. Let us introduce η(t) := 1 + ‖κs(t)‖2L2 . Then, by choosing
ε > 0 sufficiently small and taking into account the positivity of the bilinear
form I, we obtain

I[w,w] ≥ δ‖w‖2H1 .

Therefore the function ‖w(t)‖2L2 satisfies the differential inequality

1
2

d

dt
‖w(t)‖2L2 ≤ C1 + C2η(t)‖w(t)‖2L2 . (6.27)

According to Lemma 6.6, the function η is integrable on the interval (0, T )
and
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∫ T

0

η(t) dt ≤ T +
∫ +∞

0

‖κs(t)‖2L2 dt < ∞

provided that T < ∞. A Gronwall lemma type of argument applied to the
differential inequality (6.27) yields the existence of a CT , which is monotone
increasing and bounded as long as T is bounded, such that

sup
0≤t<T

‖w(t)‖2L2 ≤ CT < +∞.

By means of Lemma 6.6, we see that ‖κ‖L2 is small if ‖ρ(0)‖C2+α is small
enough. Furthermore, ‖ρ‖C1+α (0 < α < 1/2) is small provided when ‖κ‖L2

is small. In addition, using ‖κss‖L2 ≤ C(‖κ‖L2 + ‖w‖L2) and the fact that
the norm ‖ρ‖C2+α can be estimated by ‖κ‖H2 , we just have shown the
following conclusion.

Theorem 6.7 The local solution of Theorem 2.3 can be extended to the
time interval [0,∞) provided that ρi

0 is small enough in the C2+α-norm.

7. Exponential stability of stationary solutions

In this section we combine all the previous results to prove exponential
stabilization of a solution to the triple junction problem which have initial
data close to a stationary stable solution.

Theorem 7.1 Let the assumptions of Theorem 2.3 and Theorem 6.7 hold
and let Γ∗ be such that the bilinear form I∗ is positive. Then there exist
constants C, ω, δ > 0 such that

‖ρ(t)‖H2 ≤ Ce−ωt‖κ(0)‖L2

for any t ≥ 0 and ‖κ(0)‖L2 < δ.

Proof. The proof directly follows from Lemma 6.6 and Corollary 4.2. ¤

Since the H2-norm of ρ dominates its C1+α-norm and the C2+α-norm
majorizes L2-norm of κ we can state the following consequence of the pre-
vious theorem.

Corollary 7.2 Under the assumptions of Theorem 7.1 there exist con-
stants C, ω, δ > 0 such that
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‖ρ(t)‖C1+α ≤ Ce−ωt‖ρ(0)‖C2+α

for any t ≥ 0 and ‖ρ(0)‖C2+α < δ.

Finally, we are able to prove exponential decay in stronger norms. As
it was already indicated in the previous section, we will utilize the higher
energy estimate (6.24) once more in order to prove exponential stabilization
in the H2-norm of the curvature κ.

Recall that, for p ≥ 2, we have

‖κ‖p
∞‖w‖L∞ ≤ Cp(‖κ‖L2 + ‖w‖L2)p‖w‖L∞

≤ Cp(‖κ‖L2 + ‖w‖L2)p−1(‖κ‖L2‖w‖L∞ + ‖w‖L2‖w‖L∞)

≤ C(‖κ‖L2 + ‖w‖L2)
(‖κ‖2L2‖w‖2H1

)

≤ C‖κ‖2L2 + C(‖κ‖L2 + ‖w‖L2)‖w‖2H1 (7.1)

provided that ‖κ‖L2 ≤ 1 and ‖w‖L2 ≤ 1. Since ‖w‖L2‖ws‖L2 ≤ ‖w‖2H1

and ‖w‖L∞‖w‖L2 ≤ C‖w‖2H1 we conclude from (6.24), (6.25), (7.1)

1
2

d

dt
‖w‖2L2 + I[w,w] ≤ C‖κ‖2L2 + C(‖κ‖L2 + ‖w‖L2)‖w‖2H1

for some positive constant provided that ‖κ‖L2 ≤ 1 and ‖w‖L2 ≤ 1.
Similarly as in the proof of exponential decay of ‖κ‖L2 we use the fact

that the full Sobolev norm ‖w‖H1 can be estimated by the bilinear form
I(w, w) as follows:

δ‖w‖2H1 ≤ I[w,w]

for some positive constant δ > 0. Taking ‖κ‖L2 and ‖w‖L2 sufficiently small
such that C(‖κ‖L2 + ‖w‖L2) ≤ δ/2 we end up with the inequality

1
2

d

dt
‖w‖2L2 +

δ

2
‖w‖2H1 ≤ C‖κ‖2L2 .

Defining y = ‖w‖2L2 and using ‖w‖L2 ≤ ‖w‖H1 we have

dy

dt
+ δy ≤ 2CMe−ωt
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where M , ω > 0 are the modulus and rate of exponential decay of ‖κ‖2L2 , i.e.
‖κ(., t)‖2L2 ≤ Me−ωt. Solving the above differential inequality with respect
to y = y(t) we end up with the following estimate

y(t) ≤ y(0)e−δt +
2CM

|ω − δ| |e
−ωt − e−δt|.

It means that the norm ‖w‖2L2 exponentially decays with the rate min(δ, ω).
Since ‖κss‖L2 ≤ C(‖κ‖L2 +‖w‖L2) and the full Sobolev norm ‖κ‖H1 domi-
nates ‖κ‖L∞ as well as the ‖κs‖L2-norm we obtain the following convergence
result:

Theorem 7.3 There exist constants δ, M , ω > 0 such that the solution
of Theorem 6.7 fulfills

‖κ(t)‖2H2 ≤ Me−ωt

for all t ≥ 0 provided that ‖κ(0)‖2H2 ≤ δ.
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