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An example of a solid von Neumann algebra

Narutaka Ozawa

(Received June 24, 2008)

Abstract. We prove that the group-measure-space von Neumann algebra L (T?) x
SL(2,7) is solid. The proof uses topological amenability of the action of SL(2,Z) on
the Higson corona of Z2.
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1. Introduction

Let SL(2,Z) = {[‘; Z] ca,bye,d € Z, ad — be = 1} act by linear trans-
formations on the 2-torus T? with the Haar measure, and L>°(T?) x SL(2, Z)
be the crossed product von Neumann algebra. Recall that a finite von Neu-
mann algebra is called solid if every diffuse subalgebra has an amenable
relative commutant. The main result of this paper is the following, which
strengthens a result in [Ozl], [0z2]. See [CI] for some application of this
result to ergodic theory.

Theorem The von Neumann algebra L>°(T?) x SL(2,7) is solid.

For the proof of Theorem, we take L>°(T?) x SL(2,Z) as the group
von Neumann algebra of the semidirect product Z? x SL(2,Z) of Z? by the
linear action of SL(2,Z), and study the behavior of the action at infinity.
This involves the notion of amenability for a group action on a topological
space, which we recall briefly. We refer the reader to [AR1, AR2, BO] for
detailed accounts of amenable actions. For a discrete group I', we denote by

PI) ={pebi(T): p =0, [lull =1}

the space of probability measures on I', equipped with the norm topology
(which coincides with the pointwise-convergence topology). The group I'
acts on P(I') by left translations: (gu)(h) = u(g~th) for g,h € T and
pe P().
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Definition Let I' be a countable discrete group and X be a compact
topological space on which I' acts as homeomorphisms. We say the I'-action
(or the I'-space X)) is amenable if there is a sequence of continuous maps
tn: X — P(I") such that

Vgel, lim sup |p,(gz) — gpn(z)|| = 0.

We consider the linear action of SL(2,Z) on Z?2. Since the stabilizer sub-
groups of non-zero elements are all cyclic (amenable), it is easy to show the
action of SL(2,Z) on the Stone-Cech remainder 87?2\ Z? of Z? is amenable.
We will prove a stronger proposition. The Higson corona 0Z? is defined to
be the maximal quotient of 3Z2 \ Z?, on which Z? acts trivially:

C(972) = {f € loo(2?) :Va € 2%, Tim |f(x+a) — f(z)| = o}/c0(22).

The SL(2, Z)-action on Z? naturally gives rise to an SL(2, Z)-action on 9Z2.

Proposition  The SL(2,Z)-action on 0Z?* is amenable.

2. Proof of Proposition

We consider the group SL(2,R) = {[‘;g} ca,be,d € R, ad — bc =
1} acting on the real projective line R = R U {oco} by linear fractional
transformations:

a b ‘tHat%-b
c d|’ ct+d

The stabilizer of the point co € R is the subgroup P of upper triangular
matrices. Since P is a closed amenable subgroup of SL(2,R), the linear
fractional action of SL(2,Z) on R = SL(2,R)/P is amenable. For the proof
of this fact, see Example 3.9 in [AR1] or Section 5.4 in [BO]. Now, we
observe that the map ¢: Z2\ {0} — R, defined by () =m/n,is SL(2,Z)-
equivariant and satisfies

lim d(¢(z+a),p(z)) =0
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for every a € Z2?, where d is a fixed metric on R which agrees with the
topology. By considering ¢*: C (I@) — oo (Z?), one sees that ¢ gives rise to
an SL(2,Z)-equivariant continuous map ¢: 972 — R. It is clear from the
definition that amenability of R implies that of Z2. O

3. Proof of Theorem

The proof of Theorem is almost a verbatim translation of Section 4 of
[0z2], and we give it rather sketchily. For another approach, we refer the
reader to Chapter 15 of [BO].

We follow the notations used in Section 4 of [0z2] and plug C}(Z?) into
A and SL(2,7Z) into I". We note that I" is virtually-free and hence I' € S, i.e.,
the left-and-right translation action of I' x I on the Stone-Cech remainder
BL\T of T is amenable. It is proved in [Oz2] that T x A€ Sif ' € S, A is
amenable, and there is a map ¢: A — P(I") such that

Jim (l9¢(y) = <)l + lI<(zya’) = <) = 0

for all g € T" and z,2" € A. Indeed, for Corollary 4.5 in [Oz2], the only
specific property we require of A = Ar is the existence of & = (/2 in the
proof of Proposition 4.4 in [0z2]. From now on, let I' = SL(2,Z) and A = Z?
and view them as abstract multiplicative groups. It is left to construct
¢: A — P(T) satisfying the above condition. Although this can be done by
modifying Proposition 4.1 in [Oz2], we give an alternative proof here. By
(the proof of) Proposition, there is a sequence of maps ¢, : A — P(I') such
that

limsup(HQn(gy) — G (Y + ||§n(xya:’) - gn(iU)”) <1/n

Yy—00

foralln € N, g € I and z,2" € A. (Indeed, let (,(x) = pn(p(z)) for a
suitable p,: R — P(SL(2,Z)) that verifies amenability of R.) For g € T,
z,x’ € A, we define finite subsets D,,(g;z,z’) C A by

Dy(g;z,2") = {y € A2 [|Galgy) — 9G] + I6n(zy”) — Caly)]| > 1/n}.

Take an increasing sequence {1} = Fy C Ey C --- C I" of finite symmetric
subsets such that |J E,, = T" and likewise for {1} = F, C F; C --- C A. We
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define finite subsets {1} = Qy C Q1 -+ of A inductively by

Q, = U (Dnlg;2,2") U {gy, zya'})

gEE,, x, v’ €EFn, yEQn_1
for n > 1. We define [(y) = min{n : y € ,,} and define (: A — P(I') by

l(y)—1

(y) = zén ?;) Cn(y)-

(The value of ¢ at the unit 1 does not matter.) Let g € I' and =, 2’ € A be
given arbitrary and take k such that g € Ey and x,2’ € Fy. We observe
that |I(gy) — l(y)| < 1 and |l(zyz’) — l(y)| < 1 for every y with I(y) > k;
and that, IGa(99) — 9Ga ()] + [Ga(ave’) — Ca(®)]| < 1/ for every n with
kE <n <I(y). It follows that

lim  (|lg¢(y) = Clay)ll + [I¢(zya") = C(w)Il) = 0,

l(y)—o0

which verifies the required condition. This proves Z? x SL(2,Z) € S, and
hence the von Neumann algebra L>(T?) x SL(2,7Z) = L(Z* x SL(2,Z)) is
solid by Theorem 6 in [Oz1]. O
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