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Logarithmic vector fields along smooth divisors

in projective spaces
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Abstract. We show that a smooth divisor in a projective space can be reconstructed

from the isomorphism class of the sheaf of logarithmic vector fields along it if and only

if its defining equation is of Sebastiani–Thom type.
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1. Introduction

Let D be a smooth divisor in Pn defined by a homogeneous polynomial f

of degree k over the field of complex numbers. We say that f is of Sebastiani–
Thom type if f can be represented as the sum

f(x0, . . . , xn) = f1(x0, . . . , xl) + f2(xl+1, . . . , xn)

for a choice of a homogeneous coordinate (xi)n
i=0 of Pn and some 0 ≤ l ≤

n− 1.
We study the Torelli problem for logarithmic vector fields in the sense

of Dolgachev and Kapranov [1]. For a divisor D in the projective space
Pn, the sheaf TPn(− log D) of logarithmic vector fields along D is defined as
the subsheaf of the tangent sheaf TPn whose section consists of vector fields
tangent to D. It is the sheafification of

D0(− log f) = {δ ∈ DerA | δf = 0},

where A is a homogeneous coordinate ring of Pn and f ∈ A is the defining
polynomial of D. A divisor D is said to be Torelli if the isomorphism
class of TPn(− log D) as an OPn-module determines D uniquely. The main
theorem of Dolgachev and Kapranov [1] is a condition for an arrangement
of sufficiently many hyperplanes to be Torelli.
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The main result in this paper is the following:

Theorem 1 A smooth divisor in a projective space is Torelli if and only
if its defining equation is not of Sebastiani–Thom type.

The strategy for the proof is the following:

1. The Jacobi ideal of a smooth divisor D of degree k is determined
by the set of divisors E of degree k − 1 such that the dimension of
H0(TPn(− log D)(−1)|E) jumps up.

2. A smooth divisor is determined by its Jacobi ideal if it is not of Sebastiani–
Thom type.

3. A divisor D is not Torelli if its defining equation is of Sebastiani–Thom
type.

As a corollary of Theorem 1, we give another proof of the main theorem
of [2] that a smooth plane cubic curve is Torelli if and only if its j-invariant
does not vanish.

2. Jacobi ideals from logarithmic vector fields

Let D be a smooth divisor of degree k in Pn defined by a homogeneous
polynomial f , and TPn(− log D) ⊂ TPn be the sheaf of logarithmic vector
fields along D. We have an exact sequence

0 → TPn(− log D) → TPn → ND/Pn → 0,

where ND/Pn is the normal bundle of D in Pn, and an isomorphism

df : ND/Pn
∼−→OD(k)

∈ ∈

X 7→ Xf

of OPn -modules. By the Euler sequence

0 → OPn(−1) → O⊕(n+1)
Pn → TPn(−1) → 0,

the space H0(TPn(−1)) of global sections of TPn(−1) is spanned by
{∂/∂xi}n

i=0. The image of the map
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H0(TPn(−1)) → H0(OD(k − 1))

induced by the composition

TPn(−1) → ND/Pn(−1) → OD(k − 1)

is the restriction to D of the degree k − 1 part

J(f)k−1 = span{∂f/∂xi}n
i=0

of the Jacobi ideal J(f) of f .

Lemma 2 For a divisor E of Pn of degree k − 1, the dimension of
H0(TPn(− log D)(−1)|E) jumps up if and only if the defining equation of
E is contained in the Jacobi ideal of D.

Proof. Since D is smooth,

T orOPn1 (OD,OE) = 0

and we have an exact sequence

0 → TPn(− log D)(−1)|E → TPn(−1)|E → OD∩E(k − 1) → 0,

from which follows the long exact sequence

0 → H0(TPn(− log D)(−1)|E) → H0(TPn(−1)|E) → H0(OD∩E(k − 1))

→ H1(TPn(− log D)(−1)|E) → · · · .

Note that the image of the map

H0(TPn(−1)|E) → H0(OD∩E(k − 1))

is the restriction to D ∩E of the degree k− 1 part of the Jacobi ideal of D.
Since the dimension of H0(TPn(−1)|E) does not depend on E, the dimension
of H0(TPn(− log D)(−1)|E) jumps up if and only if the defining equation of
E is contained in the Jacobi ideal of D. ¤
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3. Divisors from their Jacobi ideals

We prove the following in this section:

Lemma 3 If two smooth distinct divisors in Pn have identical Jacobi
ideals, their defining equations are of Sebastiani–Thom type.

Proof. We divide the proof into steps. Let f and g be homogeneous poly-
nomials of degree k defining distinct smooth hypersurfaces such that their
Jacobi ideals J(f) and J(g) are identical.

Step 1 The pencil over f and g contains a polynomial F such that ∂0F =
· · · = ∂lF = 0 and {∂iF}n

i=l+1 is linearly independent for some integer l and
a suitable choice of a homogeneous coordinate (xi)n

i=0 of Pn.

Indeed, any pencil of projective hypersurfaces contains a singular ele-
ment F , and the assumption J(f) = J(g) implies that ∂0F, . . . , ∂nF are
linearly dependent. Let l be n minus the dimension of the linear span of
{∂iF}n

i=0. Then we can choose a homogeneous coordinate so that ∂iF = 0
for i = 0, . . . , l and {∂iF}n

i=l+1 is linearly independent. Note that one has
l < n since the divisors defined by f and g are distinct.

Step 2 There exists a matrix (aij)n
i,j=0 such that det(ai,j)n

i,j=l+1 6= 0 and

∂F

∂xi
=

n∑

j=0

aij
∂f

∂xj

for i = 0, . . . , n.

The existence of the matrix (aij)n
i,j=0 follows from the inclusion J(F ) ⊂

J(f). We will show that if det(ai,j)n
i,j=l+1 vanishes, then the hypersur-

face defined by f is singular. Indeed, the vanishing of det(ai,j)n
i,j=l+1 and

linear independence of {∂iF}n
i=l+1 and of {∂if}n

i=0 imply that some lin-
ear combination of {∂if}l

i=0 is a linear combination of {∂iF}n
i=l+1. Then

one can choose a homogeneous coordinate so that ∂0f is a linear combi-
nation of {∂jF}n

j=l+1. Assume that deg f ≥ 2, since any linear form is
of Sebastiani–Thom type. Note that F does not depend on {xi}l

i=0 since
∂iF = 0 for i = 0, . . . , l. It follows that [1 : 0 : · · · : 0] ∈ Pn is a singular
point of the hypersurface defined by f , since f(x0, . . . , xn) is the sum of x0

times some linear combination of {∂jF}n
j=l+1 and terms which are zero at
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x1 = · · · = xn = 0.

Step 3 There is a homogeneous coordinate (Xi)n
i=0 such that ∂iF = 0 for

i = 0, . . . , l and ∂if ∈ J(F ) for i = l + 1, . . . , n.

Since the (n− l)× (n− l) matrix (aij)n
i,j=l+1 is invertible, one can find

an (n− l)× (n + 1) matrix (bij) such that

l∑

j=0

bij
∂f

∂xj
+

∂f

∂xi
∈ J(F )

for i = l + 1, . . . , n. Now make the projective coordinate transformation
from (xi)n

i=0 to (Xi)n
i=0 defined by

xj =

{
Xj +

∑n
i=l+1 bijXi 0 ≤ j ≤ l,

Xj l + 1 ≤ j ≤ n.

Then one has

∂f

∂Xi
=

n∑

j=0

∂xj

∂Xi

∂f

∂xj

=





∂f

∂xi
i = 0, . . . , l,

n∑

j=0

bij
∂f

∂xj
+

∂f

∂xi
i = l + 1, . . . , n.

This implies

∂F

∂Xi
=

∂F

∂xi
= 0

for 0 ≤ i ≤ l and

∂f

∂Xi
∈ J(F )

for l + 1 ≤ i ≤ n.



414 K. Ueda and M. Yoshinaga

Step 4 f is of Sebastiani–Thom type.

The fact

∂F

∂X0
= · · · = ∂F

∂Xl
= 0

and

∂f

∂Xi
∈ J(F )

for l + 1 ≤ i ≤ n shows

∂2f

∂Xi∂Xj
= 0

for 0 ≤ i ≤ l and l + 1 ≤ j ≤ n. This implies that f is of Sebastiani–Thom
type. ¤

Since the isomorphism class of the sheaf of logarithmic vector fields along
the divisor defined by µF (x0, . . . , xl)+νG(xl+1, . . . , xn) does not depend on
the choice of (µ, ν) ∈ (C×)2, a divisor is not Torelli if its defining equation
is of Sebastiani–Thom type.

4. Smooth plane cubic curves

Theorem 1 immediately yields the following:

Theorem 4 ([2, Theorem 7]) A smooth plane cubic curve is Torelli if and
only if its j-invariant does not vanish.

Proof. Since a smooth plane cubic curve has a vanishing j-invariant if and
only if it is defined by the Fermat polynomial

x3 + y3 + z3

for a suitable choice of a homogeneous coordinate, it suffices to show that
any cubic polynomial of the form

f(x) + g(y, z)
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can be brought to the Fermat polynomial by a projective linear coordinate
change, which is obvious. ¤
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