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Certain invariant subspace structure of L?(T?) II
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Abstract. Let 9 be an invariant subspace of L2(T?). Considering the largest z-
invariant (resp. w-invariant) subspace §. (resp. Fw) in the wandering subspace 9T O
zwIN of M with respect to the shift operator zw. If Fp # {0} and F. # {0}, then we
consider the certain form of invariant subspaces 9t of L2(T2). Furthermore, we study
certain classes of invariant subspaces of L?(T?2).
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1. Introduction and preliminaries

Let T? be the torus that is the cartesian product of 2 unit circles in
C. Let L*(T?) and H?(T?) be the usual Lebesgue and Hardy space on
the torus T2, respectively. A closed subspace M of L2(T?) is said to be
invariant if 29t C 9 and w9 C M. As is well known, the structure of
invariant subspaces is much more complicated. In general, the invariant
subspaces of L?(T?) are not necessarily of the form ¢H?(T?) with some
unimodular function ¢. The structure of Beurling-type invariant subspaces
has been studied, and some necessary and sufficient conditions for invariant
subspaces to be Beurling-type have been given (cf. [1, 2, 5], etc). Further,
many authors had attempted to study the form of invariant subspaces of
L*(T?) (cf. [4, 6, 7], etc).

In [4], we studied the structure of an invariant subspace 9 as a zw-
invariant subspace. We gave an alternative approach of Beuring-type in-
variant subspaces and a certain class of invariant subspace which contains
the class of invariant subspaces of the form ¢H3(T?), where H3(T?) = {f €
H?(T?): £(0, 0) = 0} and ¢ is a unimodular function in L>(T?).

For (m, n) € Z? and f € L?(T?), the Fourier coefficient of f is defined
by
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~

f(m, n) = f(z, w)z"w"dp,
’]I‘2
where 1 is the Haar measure on T2. Let supp f = {(m, n) € Z2: f(m, n) #
0}. For a subset A of L?(T?), we denote the closed subspace [A] generated
by A in L?(T?). We define several subspaces of L?(T?) which will be used
later.
(i) H?(z) or H*(w) is the set of f (in L?(T?)) with Fourier series:

oo (o]
E amo2™ or E agnw”,
m=0 n=0

respectively.
(ii) H? or H? is the set of f with Fourier series:

(o] (o) o (e,
E g Amn 2 W™ or E g Amn 2" W",
m=—o0 n=0 n=-—oo0 m=0

respectively.
(iii) L2 or L2 is the set of f with Fourier series:

E amo2™ or E agnw”,
m=—0oQ n=—oo
respectively.

Let 9 be a zw-invariant subspace of L?(T?). Put § = 9 © zwM,
S, =Moo 2M and S, = M © wIN, respectively. Let F, (resp. Fu) be the
largest z-invariant (resp. w-invariant) subspace of §. In § 2, we characterize
invariant subspaces of L? (']I'Q), where §, # 0 and §,, # 0. Then there exist
two unimodular functions ¢, and ¢,, in L>°(T?) such that §, = ¢,H?(2)
and Fu = ¢ H?(w). Putting ¢ = ¢,¢., we consider the invariant subspace

M, = [H?(T?) + pH*(T?)].

Then we remark that 91 is of the form ¢, ("M, @ N), where N = ¢, IMSM,
(see Theorem 2.8). In § 3, let ¢ be a unimodular function of L>(T?) such
that supp @ C Z4 x (=Z4). Then we characterize the invariant subspace
M. Further, we consider the sufficient condition that §, = H*(w) and
F. = @H?(z) with respect to MM = M. In § 4, as a generalization of [4],
we consider the invariant subspace

M = [H(T%) + W H (T%)
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(see the definition of ¢&m’n) in § 4). Then we consider the necessary and

)

suffcient condition that an invariant subspace 91 is of the form smg’”’” for

some o € D where D = {z € C: |z| < 1} (see Theorem 4.2).

2. Invariant subspaces as zw-invariant subspaces

Let 9 be an invariant subspace of L?(T?). Since 2”9 D 2" 19N (resp.
wIM D wHM) for n € Zy, M52, 28I (vesp. 72, wFM) is also an in-
variant subspace. If (N2, 2*9 = {0} (resp. Npe, w*M = {0}), we say
that 9 is z-pure (resp. w-pure). If 291 = M (resp. wIN = M), we say
that 9 is z-reducing (resp. w-reducing). The structure of z-reducing (resp.
w-reducing) invariant subspaces has been characterized in [7].

Since M is an invariant subspace, M is also a zw-invariant subspace
and (zw)"M D (zw)" M for n € Z. If N7, (zw)*M = {0}, then we say
that 9 is zw-pure. If zwIN = M, we say that M is zw-reducing. First, we
have the following proposition.

Proposition 2.1 Let M be an invariant subspace of L*(T?). Then
(i) If 9N is either z-pure or w-pure, then M is zw-pure.
(ii) M is zw-reducing if and only if M is z-reducing and w-reducing.

If M is zw-reducing, then by [6] and [7] the form of M is well-known.
Throughout this note, we assume without loss of generality that 9 is zw-
pure. Put § =9MMezwdM, &, =M 29 and &, = M S wIN, respectively.
Then we easily have

Proposition 2.2 Keep the notations and assumptions as above. Then

(i) M = 3520 @2"6. & ML, 2" M = T, 8w Sy & ML w'M =
> k=0 B (zw)*F.

(iil) §=6,® 26, =6, dw6,.

Let §. (resp. §w) be the largest z-invariant (resp. w-invariant) subspace
in §. It is clear that §, = ﬂ?:o?k& Fw = ﬂzozoﬁk& %. C 6, and §, C
S..

Proposition 2.3 Keep the notations and the assumptions as above. Then
5. (resp. Fw) is the largest z-invariant (resp. w-invariant) subspace in Sy,
(resp. 6&,).
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Proof. Since 6, C §, we have (,—, G, C Nreo W*F = F. Conversely,
for all f € §, there exists f,, € § such that f = w" f,,. Then for all g € 90,
we have

(W' f, 2g) = (W' f, zwg) = (fai1, 2wg) = 0.

Thus w"f € 6, and so f € wW"S,. This implies that ﬂi‘;oﬁkGZ = Fw-
This completes the proof. O

Proposition 2.4 (cf. [4, Proposition 2]) Let M be a zw-pure invariant

subspace of L*(T?). Then:

(i) 23. S 3. if and only if there exists a unimodular function ¢, € L>(T?)
such that §., = ¢, H?(2).

(ii) §. = 2%, # {0} if and only if M = xpqH?2, where q is a unimodular
function of L>(T?), and xg is the characteristic function of a Borel
subset E of T? with xg (# 0) € L2. In this case, § = F, and T =

{0}.
Similarly, we have the following result about §,.

Proposition 2.5 (cf. [4, Proposition 3]) Let M be a zw-pure invariant

subspace of L*(T?). Then:

(i) ww € Fw if and only if there exists a unimodular function ¢, €
L>®(T?) such that o = ¢ H?(w).

(ii) Fuw = wFw # {0} if and only if M = xpqH?2, where q is a unimodular
function of L>(T?), and xg is the characteristic function of a Borel
subset E of T2 with xg (# 0) € L2. In this case, § = T and F, =

{0}

Throughout this paper, we suppose that §, # {0} and §,, # {0}. Then
we have 2§, C §, and w¥y T Fw. Otherwise, for example, assume that
T, = 23. # {0}. Then, by Proposition 2.4(ii), we have M = ypqH?
and §, = {0}. This is a contradiction. Thus there exist two unimodular
functions ¢, and ¢,, in L‘i(TQ) such that §, = ¢.H?(2) and o, = ¢ H?(w).
Put 9 = @w@, then 90 is also an invariant subspace of L?(T?). Let
F = Mo zwM. Let (3). (resp. (§)w) be the largest z-invariant (resp.

w-invariant) subspace of §. Then we have

Proposition 2.6 Keep the notations and assumptions as above. Then we
have

(i) §= 0,3
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(i) ( )z = b= H*(2) and (§), = H*(w).

(iii) H?(T?)c M cC H2.

Proof. (i) and (ii) are clear. - - N
(iii) Since (§)w=H?(w), we have H%(T?) C M. Since M = > >, B(zw)"F
and (§)w = H2(w) C §, we have

m L Z ®(zw)"H?(w).

n=—0oo

If there exists an element f in M such that f(m, n) # 0 form < n <0,
then @w"f € M. Since (W"f)(m, 0) = f(m, n) # 0, W"[ is not orthogonal
to

-1

S @) H (w).

n=—oo

This is a contradiction. Therefore 9 C H2. This completes the proof.
O

We now put ¢ = ¢,,¢, and M, = [H*(T?) + ¢H*(T?)]. Then M, is a
zw-pure invariant subspace of L?(T?) such that 9, C M. Put ¥ = M, o
zwIM,, &Y = M, ©2M, and &f = M, ©OwM,, respectively. Let Y (resp.
54) be the largest z-invariant (resp. w-invariant) subspace of F¥.

Proposition 2.7 Keep the notations and assumptions as above. Then
(i) &% =pH?*(2) and §fh = H?*(w).
(ii) ¢ is a unimodular function of L>°(T?) such that supp ¢ C Zy x (—7Z.4).

Proof. By [4, Proposition 4], we have (i).

(ii) Since ¢ € McC H 2 we have supp ¢ C Z; x Z. Since §f C &4,
have ¢ | wH?(T?). Therefore, supp ¢ C Z, x (—Z ). This completes the
proof. O

Then we have the following

Theorem 2.8 Let MM be a zw-pure invariant subspace of L*(T?) such that
Fw = duH?*(w) and §. = ¢, H?(z), where ¢w_and ¢, are unimodular func-
tions of L*(T?). Put ¢ = ¢,¢. and N = M S M,. Then M is of the
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form
M = ¢u(M, & N),
where ¢ is a unimodular function of L>(T?) such that suppp C Z4 X
(=Zy).
Example 2.9 For m, n € Z,, we consider an invariant subspace
H? o (T?) = [2"H?(T?) + w" H?*(T?)].

Let 9 be an invariant subspace such that §, = 2™H?(z) and F, =
w"H?*(w). Then it is clear that M D HZ  (T?). Put N = w"(M &
H?, ,(T?)). Then

M= H;, (T @ w"N.

Ifm=1orn=1,then N =0. If m =n = 2, then we easily show that N

is one of the following forms:

(i) N={o}

(ii) N = [zw]; and

(iii) N = [zw, azw? + Bw], where o and 3 are non-zero complex numbers
such that |a|? + |32 = 1.

3. Invariant subspace 91,

Let ¢ be a unimodular function of L>°(T?) such that supp ¢ C Z, x
(=Z4). Put M, = [H*(T?) + ¢H?*(T?)]. Then My, is a zw-pure invariant
subspace of L?(T?) such that

H*(T?) C 9, C H2,.

Put 3¢ = M, © zuM,, 67 = M, © z2M, and &F = M, © wM,, re-
spectively. Further, let §% (resp. §i) be the largest z-invariant (resp. w-
invariant) subspace of §¥. If p € H?(z), then M, = H%(T?). Thus we may
suppose that ¢ ¢ H?(z).

In this section, we consider the conditions that 7 = @H?(z) and §;, =
H?(w).

Proposition 3.1 Let ¢ be a unimodular function of L>(T?) such that
suppp C Zy x (=7Zy) and ¢ ¢ H*(z). Then pH?*(z) C §Z C @L? and
H?*(w) C g6 C L2,
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Proof. Take any f € H?(w). Then, for every g € H?(T?),

(f, zwg) =0

and

(f, zwpg) = 0.

This implies that H?(w) C §*. Since H?(w) is w-invariant, H?(w) C .
On the other hand, let f € H?(z). Then for every g € H?(T?),

(pf, zwg) =0 and (pf, 2wpg) = (f, zwg) = 0.

This implies that H?(z) C %, and so ¢H?(z) C .
Take any f € §i. Since §h = (oe o W"F?, we have w" f € F¥ for any

n > 0. This implies that w"f L zwM,. In particular, w™f L zwH?(T?).
For any n, k, [ > 0, we have

(f, 2=y = (" f, 2wzFwl) = 0.

Since f € M, C H?2 by Proposition 2.6, f € L. Thus we have §f, C L2,
Similarly, take any f € §Z. Since 2" f € Z¥ for any n > 0, we have
2"f L z2wpH?(T?). For any m, k, [ > 0, we have

<¢f7 zk+1fmwl+1> — <sz7 ngozkwl> =0.

Since pf € PM, = [pH?*(T?) + H*(T?)] C H2, we have pf € L% Thus
f € pL? and so §¢ C pL?. This completes the proof. O

Theorem 3.2 Keep the notations and assumptions as above. Then

(i) §& = H?*(w) if and only if M, NwH?(w) = {0}.
(i) §Y = pH?(2) if and only if M, N pzH?(z) = {0}.

Proof. (i) (<) By Proposition 3.1, we have
320 H*(w) =F4 NwH2(w) C M, NwH2(w) = {0}.
Thus % = H?(w).
(=) Suppose that M, N wH?(w) # {0}. Then there exists a nonzero

element f in M, NwH?(w). For all n, k, 1 >0,

(w"f, zwzkwl> = (f, zk+1wl_"+1> =0
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and

(W' f, zwpzFuwl) = (f, P lw!=m ) = 0.

Thus we have wf € §¥ for every n > 0, that is, f € Fn. Therefore
H?(w) € §4. This is a contradiction. Similarly we have (ii). This completes
the proof. O

Corollary 3.3 Keep the notations and assumptions as above. Then

(i) IfM, L wH?(w), then §5 = H*(w).
(i) If M, L pzH?(2), then 2 = pH?(2).

Corollary 3.4 Keep the notations and assumptions as above. Then
(i) 1€ 6y if and only if (0, —n) =0 for all n > 1. In this case, Fip =

H?(w).

(ii) ¢ € &% if and only if $(m, 0) = 0 for all m > 1. In this case, Tt =
©H?(z).

(iii) If ¢(m, 0) = $(0, —n) = 0 for all m, n > 1, then F7 = ¢H?(z) and
5h = H*(w).

4. Certain classes of invariant subspaces

Keep the notations as in § 2. Suppose that §, # {0} and §, # {0}.
In general, we have §, + §u C [6, + 6] C §. In [4], we studied invariant
subspace structure with the property §. + §w = [6, + Sy).

Let D = {z € C: |z| < 1}. For any a € D and m, n € N, we define a
function wf;"’”) by
(m,n) _ 20" — «
Yo" (2 w) 1 —azmwn’
Then w&m’n) is a unimodular function in L>(T?) with w&m’n)(k, ) =0 for
every (k, 1) € Z4 x (—=Z4). Then we define an invariant subspace o)

of L*(T) by
My = [H?(T?) + ™™ H (T?)].
At first we have the following
Theorem 4.1 If M = MU then §u = H2(w), §- = v{™™ H2(2),

Sw =P VH(2)+ 1, 2, ..., 2"
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and
G, = H2(w) + [w mn) w(m ) o wn—lqp&m,n)]‘
Therefore we have

g:gz +3w + [Z, ceey Zm] + [ww&mvn)’ e wnflwgm,n)]

=% +38w+[z -, zm_l] + [wd;&m’”), ce w"w&m’")].
Proof. By Corollary 3.4, we have §, = H?(w) and §, = &m’n)HQ(z). We
show that &, = H?(w) + [wém’n), e w”_lib&m’")}. For 0 <j<mn-—1and

for any f, g € H?(T?), we have
(whp" ™), 2 U+wmm@>
= (W5, wlzf) + (w, zg) = 0.

Since H?(w) = Fw C &, we have H?(w) + | ,(lm’n), ce w"_ld)&m’n)] C 6..
We put 0t = (H?(w) + [wamn s w”_lw&m’")]) @ z9M. Then it is enough
to show that 9 = M. Since H?(T?) + z¢&m’n)H2('H‘2) C M, we only need to
show that w"@b,gm’n)Hz(w) C N. In fact,

W =w < 1 — oz

=w"(z"w" — «) <1 +

2" — « )

az™uw" )
1 —azmw"
=2 — aw"™ + azm@Z)&m’").

(m;n)

Thus we have wnwam

wn—&-kq’/)&m,n _ mek: wn+k _i_azmwkw((xm,n) eN.

€ N. For every k > 1, we have

This implies that 91 = 9.
We next show that &, = ™ H2( Y41, 2, ..., 2™ Y. For 0 < j <
m — 1 and for every f, g € H?(T?), we have

(o, w(f + ("))

= (I, wf) + (7, wp{™Mg)

— (7, wf) + W, 2 wg) =0,
Since w(mn H?(z) =F. C &, we have

Y H2(2) (1, 2, .., 27T C Sy
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We put My = (¢&m’n)H2(2) +1, 2, ..., 2"1]) @ wI. We want to prove
that 9 = 9. Since ¥{™™ H2(T?) + wH2(T2) C M, we only show that
2™H?%(z) C M. In fact, 2™ = w”q/}((lm’n) +aw” —azmw&m’”) € N;. Further,
for every k > 1,

2tk — w"zkw&m’") + aw"2F — aszrkw((Xm’") € MNy.

This implies that 9t; = 9. The remainder of this theorem is proved from
§=6,¢ 26, =6, ®ws,. This proof is complete. O

We next show the converse of Theorem 4.1.

Theorem 4.2 Let M be a zw-pure invariant subspace of L?(T?). Let
m,n > 1. Then M = zmgm’”) for some a € D if and only if T =
H?(w), . = pH%(2), Gy = pH?*(2) +[1, 2, ..., 2™ and &, = H*(w) +
[0, we, ..., w" L] for some unimodular function ¢ in L>°(T?) such that
supp ¢ C Zy x (=Zy).

Proof. 1If M = zm&m’”), by Theorem 4.1, we have the results. Thus we
prove the converse. To do it, we only prove that ¢ = czﬁ&m’n) for some c € T
and a € D. By the assumption, [1, ¢] C 6, N &,,. Thus

(o, 2w?)y =0 (i>1,j>00ri>0,5>1),

(p, 2wy = @ep, 1) =0 (1<i<m-—1,j<-1)
and

(¢, 2'0’) = (@ o, 2) =0 (120, —(n—1) <j<-1).
Put $(0,0) = ago and ¢ = @ — ago, respectively. Put M = H?(w) +
OH?(2) + [z, ..., 2™ + [we, -+, wLyp]. Since § =6, BuwS, =6, d
26, we have

§ =N+ [w'e] =N+ [z"].
Thus dim(F ©N) = 1 and [w"p, z2™] C §. It is clear that w"yy € § and
w"po L §w. Moreover, for j > 1 (j # n), we have

(w0, 2 @) = (W', 27 ) — agp(w", 2/ )

= (w", 27) — ago(w™, 2p) = 0.
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Since w"pg L w¥p for 1 < k < n — 1, this implies that
wey L Np.

Similarly, we have z2™¢ L §, and 2™p L 2Fp for 0 < k < oo and k # m.
It is clear that 2™ L [we, ..., w" '¢] and w™py L F,. Thus we have
z2Mp 1L Ng. Therefore we have
§ =N @ 2", weo).
Since 2™ 1 F, and 2™ L [wep, ..., w" l¢], we have 2™ 1 My. Since 2™ €
§, we have 2™ € [2"p, w"pp]. Thus
2™ =52"p 4 dw" o
=~z"p + dw" (p — ag)
= (72" + dw")p — dagow"
for some constants v and ¢ in C. Thus
(v2™ 4 dw™)p = 2™ + dagow”.
Since ¢ is unimodular,

2™ + dagow™ Z™w™ 4+ dago

v 4 Swn 6 4y

Put
A+ dago
h(A) = ———.
*) d+ A
Then ¢(z, w) = h(z™w"™). Since ¢(m, n) = 0 for every (m, n) € Zy X
(—=Z4), h is an analytic function. Since ¢ is not constant and h is unimod-
ular, we show that h is a Blaschke product, that is,

A—«
h(\) =
N =53
for some constants ¢ € T and @ € D. Thus p(z, w) = h(z"a") =
cw((lm’n)(z, w), that is, ¢ = cz/;&m’n), and so M = Sﬁ&m’n). This completes
the proof. ([l

If $(0, 0) = 0, then, from the proof of Theorem 4.2, we have a = 0.
Therefore we have
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Corollary 4.3 Let 9 be a zw-pure invariant subspace of L2(T?).
Let m,n > 1. Then M = wH? (T?) if and only if F» = H*(w),
5. = pH*(2), 6w = ©H*(2) + 1,2, ..., 2™ 7] and &, = H*(w)+
[0, we, ..., w L] for some unimodular function ¢ in L>(T?) such that
supp @ C Zy X (—=Z4) and (0, 0) = 0.
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