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Bilinear Strichartz estimates and applications

to the cubic nonlinear Schrödinger equation

in two space dimensions∗
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Abstract. The initial value problem for the defocusing cubic nonlinear Schrödinger

equation on R2 is locally well-posed in Hs for s ≥ 0. The L2-space norm is invariant

under rescaling to the equation, then the critical regularity is s = 0. In this note, we prove

the global well-posedness in Hs for all s > 1/2. The proof uses the almost conservation

approach by adding additional (non-resonant) correction terms to the original almost

conserved energy.
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1. Introduction

This note concerns with the initial value problem (IVP) for the cubic
nonlinear Schrödinger equation in R1+2{

i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x), (t, x) ∈ R1+2

u(0, x) = u0(x) ∈ Hs(R2),
(1.1)

where Hs(R2) denotes the inhomogeneous Sobolev space. In general, the
conservation laws of L2-mass and Ḣ1-energy can be used to obtain the
global well-posedness results in L2 and H1 spaces. We will be interested
in the global-in-time well-posedness of (1.1) for low-regularity s below the
energy regularity.

The equation (1.1) has the L2-mass conservation law∫
R2

|u(t, x)|2dx =
∫

R2

|u0(x)|2dx, (1.2)
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and the (total) energy conservation law

E[u(t)] :=
∫

R2

1
2
|∇u(t, x)|2 +

1
4
|u(t, x)|4dx = E[u0]. (1.3)

It is known that the IVP (1.1) is locally well-posed when s ≥ 0, and the
time-interval of existence of solution can be obtained in the term of Hs

norm of the data when s > 0 (cf. [4, 14])1. Moreover, the solution-map
u0 7→ u(t) is continuous2 for s ≥ 0, and not uniformly continuous for s < 0.

The L2-space is the critical space for (1.1) with respect to the scale
invariant space under the scaling symmetry

u(t, x) 7→ 1
λ

u
( t

λ2
,

x

λ

)
, λ > 0 (1.4)

or the Galilean invariant space under the Galilean symmetry

u(t, x) 7→ eix·v+it(|v|2/2)u(t, x − vt), v ∈ R2.

From the conservation laws (1.2)–(1.3) (and Sobolev inequality), we
obtain the time-global a priori estimate for solutions in Hs for s = 0 or
s = 1 of the form

sup
|t|≤T

‖u(t)‖Hs ≤ C(s, ‖u0‖Hs , T ) (1.5)

for all T > 0. This form of the a priori bound in conjunction with the proof
of the local existence theory (in particular the time interval to guarantee
the existence of solution depends on the Hs-norm of data) can be used to
prove the global well-posedness in Hs for s ≥ 1. The a priori estimate (1.5)
holds for s = 0, but the lack of the L2-local well-posedness theorem can not
immediately prove the global well-posedness result in L2 (If data are small,
the global well-posedness holds in L2 including scattering result).

The first breakthrough to establish the Hs-global well-posedness for
fractional exponent s of Hs has been developed by the Fourier truncation
method of J. Bourgain [2] who obtained for s > 3/5. This result was im-
proved by the Almost conserved quantities [7], which obtained the estimate
(1.5) for s > 4/7. These two methods use a low-frequency/high-frequency

1When s = 0, the time-interval of existence of solution depends upon the profile of data.
2When s > 0, the Hs well-posedness is shown by the contraction mapping theorem.

Then the solution-map is analytic.
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decomposition approach, but estimate the nonlinear interactions (low-high
energy cascade) in different ways.

Fourier truncation method. With a cut-off frequency |ξ| = N , we assess
the low-frequency component in |ξ| ≤ N and the high-frequency compo-
nent in |ξ| > N , respectively. Roughly, if the solution is decomposed into
three components: low frequencies nonlinearly (via original equation (1.1)),
high frequencies nonlinearly (via original equation (1.1)) and the low-high
frequencies interaction nonlinearly (coupled equation of low-high frequen-
cies). The low frequencies solution conserves the H1-energy (1.3), but this is
large. One observes that the high frequencies solution an be approximated
to evolve linearly. One prove that the low-high (high-high also) frequency
interactions are small error in H1, under certain smoothing property, com-
pared to the low-low frequency interactions, provided choosing N . On the
other hand, the almost conserved quantities proceed slightly different with
the method.

Almost conserved quantities. This method uses the modified energy
EN [u(t)] = E[INu(t)], where I = IN is a Fourier multiplier operator map-
ping from Hs to H1 (defined in Section 2.1). More precisely, I = identy

for low frequency, while I = N1−s|∇|s−1 for high frequency. If N large,
the modified energy EN [(u(t)] is qualifiedly equal to the original energy
E[u(t)]. The low frequency interaction is estimated in H1 energy space.
The low-high (high-high also) frequency interaction is estimated with ap-
proximately conserved energy EN in INHs. Thus the multiplier operator
IN has an advantage of improving the estimate developed in [7] for the
low-high frequency nonlinear interactions.

In this note we improve the result of [7] and present the following the-
orem.

Theorem 1 Let s > 1/2. Then the initial value problem (1.1) is globally
well-posed in Hs. More specifically, for any u0 ∈ Hs, there exists a unique
global solution u(t) to (1.1) in Ct(R : Hs

x). rthermore, the a priori bound
(1.5) holds.

The proof relies on the modification of the almost conserved quantities used
in [7] by adding resonant correction terms.
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Remark 1 Theorem 1 holds for the focusing cubic nonlinear Schrödinger
equation (replacing the sign of nonlinearity), assuming the smallness of
the L2-norm of the initial data ‖u0‖L2 < ‖Q‖L2 , where Q is the positive
solution of ∆Q−Q = −Q3 (grand state solution for the focusing nonlinear
Schrödinger equation).

Remark 2 Fang and Grillakis obtained the global well-posedness at s =
1/2 by using the interaction Morawetz estimate [11], and Colliander, Gril-
lakis and Tzirakis [5] improved this for s > 2/5 by combining the Morawetz
estimate with the almost conserved quantities. In more recently, Kllip, Tao
and Visan [12] obtained global well-posedness and scattering for all s ≥ 0,
though radial data. But Theorem 1 (in particular Theorem 2) seems inter-
esting, because the angularly constrained Strichartz estimate (Corollary 1)
in conjunction with [5, 11] may improve the global well-posedness for s >

4/13 without radial condition on the initial data.

Open problem It is conjectured that (1.1) is globally well-posed and
scatters to free solution for all data in L2. This conjecture still remains
open.

2. Sketch of the proof of Theorem 1

The strategy of the almost conserved quantities is as follows: First fix
an arbitrary time interval [0, T ]. Let EN [u(t)] be a new energy for solutions
in Hs depending on a parameter N À 1 and take the rescaling. We prove
again the local well-posedness result in the space associated to EN [(u(t)] on
time intervals of length δ ∼ 1. Finally, we perform the iteration on the time
interval [0, T ] to derive the a priori estimate of solutions with rescaling.
How is it that our argument is successful? The variant of the energy EN

is very slowly in t. In particular, the energy EN is almost conserved to
evolve of (1.1). For Theorem 1, we use a slight variant Ẽ[u(t)] = ẼN [u(t)]
of EN [u(t)].

2.1. Almost conserved quantity
An almost conserved quantity is defined as follows: Let N À 1 and

Îu(ξ) = ÎNu(ξ) = m(ξ)û(ξ),

where m(ξ) is an even C∞-monotone function which equals to 1 for |ξ| < N

and equals to (|ξ|/N)s−1 for |ξ| > 2N . We define
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EN [u(t)] = E[Iu(t)]. (2.1)

This quantity is almost conserved to evolve the solution of (1.1) in the
following sense:

d

dt
EN [u(t)] =−2Re

∫
R2

I∂tu(I(|u|2u) − |Iu|2Iu)dx

= O(N−α), (2.2)

for some α > 0 (α = 3/2 − ε is obtained in [7]). With EN , we obtain the a
priori estimate (1.5) for s > 4/7.

2.2. Resonant correction terms
Improving the error term N−α in (2.2), we try to remove the biquadratic

term in (2.2). At the present, we use the following modified energy func-
tional Ẽ[u(t)]:

Ẽ[u(t)] = Λ2(σ2; u) + Λ4(σ̃4; u)

where

Λk(σ; u) =
∫

ξ1+···+ξk=0
σ(ξ1, . . . , ξk)û(ξ1) · · · û(ξk),

σ2 = −1
2
ξ1m1ξ2m2,

σ̃4 =
|ξ1|2m2

1 − |ξ2|2m2
2 + |ξ3|2m2

3 − |ξ4|2m2
4

4(|ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2)
1Ωnr ,

Ωnr = {(ξ1, . . . , ξ4) : max |ξk| ≤ N or | cos ∠(ξ12, ξ14)| ≥ θ > 0},

(ξij = ξi + ξj etc) 1Ωnr is the characteristic function on Ωnr, and mk =
m(ξk). θ = θ(N) > 0 is defined later depending on N (Section 2.4).

Remark 3 With the above functions, we can write the first generation of
the modified energy EN [u(t)] as follows:

EN [u(t)] = Λ2(σ2; u) + Λ4(σ4;u),

where

σ4 =
1
4
m1m2m3m4.

Remark 4 The resonant sets

ξ1 + ξ2 + ξ3 + ξ4 = 0,
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0 = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2 = 2ξ12 · ξ14,

(ξ12 and ξ14 are almost orthogonal) are almost canceled from the biquadratic
form of Λ4(σ4; u) in the following sense

d

dt
Ẽ[u(t)] = Λ4(σ̃4; u) + Λ6(σ̃6; u) (2.3)

where

σ̃4 = (|ξ1|2m2
1 − |ξ2|2m2

2 + |ξ3|2m2
3 − |ξ4|2m2

4)1Ωr

Ωr = {(ξ1, . . . , ξ4) : max |ξk| > N and | cos ∠(ξ12, ξ14)| < θ}

(we skip the details for the symbol σ̃6 in this note, because the biquadratic
term is leading). Exploiting the presence of resonance condition Ωr is our
improvement of the previous work in [7].

The interest of the resonance condition lies in the following estimate.

Theorem 2 Angularly refined bilinear Strichartz estimate Let 0 < N1 <

N2 and θ ∈ (0, 1/100). For φ1, φ2 ∈ L2 with Fourier frequencies N1, N2,
respectively, we have

‖F‖L2
t,x

. min
{

θ,
N1

N2

}1/2
‖φ1‖L2‖φ2‖L2 ,

where

F (t, x) =
∫

ξ1+ξ2=0
eix(ξ1+ξ2)1| cos ∠(ξ1,ξ2)|≤θêit∆φ1(ξ1)êit∆φ2(ξ2).

The above estimate without angularly constrained was already obtained in
[2]. The proof of Theorem 2 follows an argument in [2] under the additional
restriction on the angle between interacting frequencies.

We recall the Fourier restriction norm space Xs,b[0, T ] with the follow-
ing norm [1]:

‖f‖Xs,b[0, T ] = inf{‖g‖Xs,b
| f = g on (t, x) ∈ [0, T ] × R2}

where

‖g‖2
Xs,b

=
∫

R3

(1 + |τ + |ξ|2|)2b(1 + |ξ|)2s|ĝ(τ, ξ)|2dξdτ.

The following corollary immediately follows from Theorem 2.
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Corollary 1 Let 0 < N1 < N2 and θ ∈ (0, 1/100). For u1, u2 ∈ X0,1/2+ε

such that

supp û1(t, ξ) = {|ξ| ∼ N1}, supp û2(t, ξ) = {|ξ| ∼ N2},

and | cos ∠(ξ1, ξ2)| ≤ θ for ξ1 ∈ supp û1(t, ξ) and ξ2 ∈ supp û2(t, ξ), we
have

‖u1u2‖L2(R1+2) . min
{

θ,
N1

N2

}1/2
‖u1‖X0,1/2+ε

‖u2‖X0,1/2+ε
. (2.4)

2.3. Local well-posedness in IHs-space
In this section we prove the local well-posedness of the initial value

problem obtained by acting on (1.1) with the operator I{
iIut(t, x) + ∆Iu(t, x) = I(|u(t, x)|2u(t, x)),

Iu(0, x) = Iu0(x).
(2.5)

We still have the following local well-posedness theorem (cf. [4, 14, 7]).

Lemma 1 (Modified Local well-posedness) Let s > 0. The Cauchy prob-
lem (2.5) is locally well-posed on [0, T0], T0 = T0(‖Iu0‖H1) with solution
u(t) such that

Iu ∈ C([0, T ] : H1), ‖Iu‖X1,1/2+ε[0,T0] . (‖Iu0‖H1).

Next we give that Ẽ[u(t)] controls data size as follows:

Lemma 2 Let u(t) ∈ Hs (s > 1/2) be a solution to (1.1). Then

‖Iu(t)‖2
Ḣ1 ≤ Ẽ[u(t)] +

c

θN2−ε
‖Iu(t)‖2

Ḣ1‖Iu(t)‖2
H1 ,

where θ is given by (2.3).

The proof of Lemma 2 is essentially similar to [7]. Therefore we omit details.

2.4. Ẽ[u(t)] obeys the almost conservation law

Lemma 3 (Almost conservation) Let u(t) ∈ Hs (s > 1/2) be a solution
to (1.1). For t ≥ 0, we have

Ẽ[u(t)]≤ Ẽ[u(0)]+
( 1

N2−ε
+

θ1/2

N3/2−ε
+

1
θN3−ε

)
C(‖Iu‖X1,1/2+ε[0,t]).

Note that the choice θ = 1/N produces the pre-factor cN−2+ε.
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A brief outline of the proof of Lemma 3. By (2.3), we have

Ẽ[u(t)] − Ẽ[u(0)] =
∫ t

0
Λ4(σ̃4; u) + Λ6(σ̃6; u)ds

= I1 + I2.

We aim to show

I1 + I2 ≤
( 1

N2−ε
+

θ1/2

N3/2−ε
+

1
θN3−ε

)
C(‖Iu‖X1,1/2+ε[0,t]). (2.6)

We use the Littlewood-Paley decomposition and break u into u =
∑

N uN

where supp û(ξ) = {|ξ| ∼ N}.
We consider (2.6) for the term I1 and provide proofs for some special

cases: N1 ∼ N2 ≥ N , N3 À N4 under the resonant condition | cos ∠(ξ12, ξ14)|
≤ θ. We need the following calculations

|σ̃4| ≤ c(m(N1)2N1N3θ + m(N3)2N2
3 ),

| cos ∠(ξ1, ξ3)| = | cos ∠(ξ14, ξ34)| + O
(N4

N3

)
≤ θ + O

(N4

N3

)
.

Then taking uN2uN4 in L2, and uN1uN3 in L2, respectively, and using Corol-
lary 1, we can estimate

≤ c
(
m(N1)2N1N3θ + m(N3)2N2

3

)(N4

N2

)1/2(
θ +

N4

N3

)1/2

×
4∏

j=1

‖uNj‖X0,1/2+ε
,

this is bounded by

≤ c
m(N1)2N1N3θ + m(N3)2N2

3

m(N1)2N2
1 N3m(N3)N4

(N4

N2

)1/2(
θ +

N4

N3

)1/2

×
4∏

j=1

‖IuNj‖X1,1/2+ε
.

Splitting into two cases; N3 ≥ N4/θ and N3 < N4/θ and summing over
N1 ∼ N2 ≥ N , N3 À N4, we have the bound (2.6). ¤
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2.5. Induction energy implies the a priori estimate (1.5)
Finally, we give a sketch of the induction argument that Lemmas 1, 2

and 3 imply Theorem 1.
Let u(t) be a smooth solution of (1.1). By (1.4), consider the rescaled

solution uλ

uλ(t, x) =
1
λ

u
( t

λ2
,

x

λ

)
, λ > 0.

Fix an arbitrary time interval [0, T ]. We prove Theorem 1, if we construct
a rescaled solution uλ on [0, λ2T ]. As in [6, 7, 8] the idea is to reach time
t = λ2T inductively using the energy estimates in Lemmas 2 and 3 and the
local theory in Lemma 1. An easy computation shows that

‖Iu0‖Ḣ1 ≤ cλ−sN1−s‖u0‖Hs ¿ 1

provided we choose λ À ‖u0‖1/s
Hs N (1−s)/s. From Lemmas 2 and 3, u(t) has

the a priori estimate

‖Iu(t)‖Ḣ1 ≤ Ẽ[u(t)]

≤ Ẽ[u(0)] + cN−2+εC(‖Iu‖X1,1/2+ε[0,t]). (2.7)

We will show that by Lemma 1, ‖Iu‖X1,1/2+ε[0,T0] ≤ C and T0 = 1 whenever
‖Iu0‖Ḣ1 ¿ 1. Thus there is an increment in the energy of size at most
N−2+ε, if ‖Iu‖X1,1/2+ε

≤ C in (2.7). Hence we want to ensure

N2−ε ≥ cλ2T = N2(1−s)/sTC(‖u0‖Hs),

which is achieved for s > 1/2 by letting N = N(T ) sufficiently large. Notice
that

1
2
‖u(t)‖2

Hs ≤ Ẽ[u(t)] + c‖u(t)‖2
L2 .

This proves Theorem 1, using the L2-conservation law (1.2). ¤
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