
Hokkaido Mathematical Journal Vol. 38 (2009) p. 39–65

Decay of correlations for some partially hyperbolic

diffeomorphisms
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Abstract. In this paper we study a C1+α-partially hyperbolic diffeomorphism f of

which restriction on one dimensional center unstable direction behaves as Manneville-

Pomeau map. We show that f admits a unique ergodic SRB measure with polynomial

upper bounds on correlations for Hölder continuous functions.
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1. Introduction

Let M be a d-dimensional closed manifold (d ≥ 2) and f be a diffeomor-
phism of M . It is well known that any C2-transitive Anosov diffeomorphism
f admits a unique invariant measure µ which has absolutely continuous con-
ditional measures on unstable manifolds ([25]). This result holds for any
Axiom A diffeomorphism f and (f , µ) has exponential decay of correlations
for Hölder continuous functions ([6], [22]).

An invariant probability measure µ is said to be a Sinai–Ruelle–Bowen
measure (abbrev. SRB measure) if (i) µ has positive Lyapunov exponents
and (ii) µ has absolutely continuous conditional measures on unstable man-
ifolds (see Section 2 for the precise definition). The existence of SRB mea-
sures with exponential decay of correlations is discussed in [5] for Hénon
maps, and in [7] for some partially hyperbolic diffeormophisms.

f : M ª is called an almost Anosov diffeomorphism with uniformly
contracting direction if there exist a norm ‖ · ‖ on M , 0 < λ < 1 and a
Dxf -invariant decomposition of the tangent space TxM = Es(x) ⊕ Eu(x)
such that the set S := {x ∈ M | ‖Dxf−n|Eu(x)‖ = 1 (n ≥ 0)} is finite and
consists of fixed points for f and such that

‖Dxf |Es(x)‖ ≤ λ (x ∈ M), ‖Dxf−1|Eu(x)‖ < 1 (x ∈ M \ S).
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This paper shows that there exist C1+α-almost Anosov diffeomorphisms f

of M with uniformly contracting direction such that f admits a unique SRB
measure with polynomial upper bounds on correlations (Theorem), which
is related to [20] and [28]. More precisely, we impose on f the following
Conditions 1–4.

Condition 1 f is a C1+α-almost Anosov diffeomorphism (0 < α < 1) of
M with co-dimension–one uniformly contracting direction.

Given 0 < ε ≤ 1, let Du
ε and Ds

ε be the closed balls of radius ε centered
at the origin in R and Rd−1 respectively. Let Embr(Dσ

ε ,M) (r ≥ 1) denote
the set of Cr-embeddings of Dσ

ε into M with the Cr-topology for σ = s, u.
By Condition 1, it follows from Theorem 5.5 in [11] (see also [23] Theorem
IV.1) that there exist two continuous maps φs : M → Emb1(I1,M) and
φu : M → Emb1(I1,M) with φσ({x} × 0) = x (x ∈ M , σ = s, u) such
that for any ε ∈ (0, 1] the local stable and local center unstable manifolds
V s

ε (x) := φs({x} × Iε) and V u
ε (x) := φu({x} × Iε) satisfy TxV σ

ε (x) = Eσ(x)
for σ = s, u (for more details, see Sections 2 and 4).

Condition 2 φu is a continuous map from M to Emb2(Du
1 ,M).

Since p ∈ S is a fixed point for f , we have that f−1(V u
ε (p)) ⊂ V u

ε (p).
Then f restricted to V u

ε (p), f |V u
ε (p), is a map from f−1(V u

ε (p)) to V u
ε (p).

By using φu we can identify Du
ε = [−ε, ε] with V u

ε (x) for any x ∈ M . Then
p corresponds to the origin 0 in Du

ε , and thus 0 is a fixed point for f |V u
ε (p).

Condition 3 For any p ∈ S the graph of f |V u
ε (p) can be represented as

f |V u
ε (p)(x) =

{
x + x1+α + O(x2) (x ≥ 0),

x− |x|1+α −O(x2) (x < 0).

f is called topologically mixing if for any open sets U, V ⊂ M there exists
N > 0 such that f−n(U) ∩ V 6= ∅ (n ≥ N).

Condition 4 f is topologically mixing.

Let Hη be the set of Hölder continuous functions of M with Hölder
exponent η. We say that (f, µ) has polynomial upper bounds on correlations
for functions in Hη with exponent τ > 0 if for any ϕ, ψ ∈ Hη there exists
C ′ = C ′(ϕ,ψ) > 0 such that
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Corn(ϕ,ψ;µ) =
∣∣∣∣
∫

(ϕ ◦ fn)ψdµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ C ′n−τ (n ≥ 1).

Theorem Let f : M ª be a diffeomorphism satisfying Conditions 1–4.
Then f admits a unique ergodic SRB measure ν and (f, ν) has polynomial
upper bounds on correlations for functions in Hη with exponent min{(α′)−1−
1, α−1η} for any α′ ∈ (α, 1).

In order to establish Theorem, we prove Key Lemma below. In fact,
assume that f : M ª satisfies Condition 1. Then f is expansive and satisfies
shadowing property (Lemma 2.3). Here f is said to be expansive if there
exists δ > 0 such that if x, y ∈ M and d(f i(x), f i(y)) < δ (i ∈ Z) then x = y.
A sequence {xi}i∈Z ⊂ M is called a δ-pseudo orbit for f if d(f(xi), xi+1) < δ

for all i ∈ Z. A point x ∈ M is said to be an ς-shadowing point for a δ-pseudo
orbit {xi}i∈Z if d(f i(x), xi) < ς (i ∈ Z). We say that f satisfies shadowing
property if for any ς > 0 there exists δ > 0 such that for any δ-pseudo orbit
there exists at least one ς-shadowing point.

Thus it follows from Theorem 4.2.8 in [3] that f has a Markov partition
Q = {Qi}r

i=1 (see [6] for the definition) with arbitrarily small diameter. By
Condition 1, f is uniformly hyperbolic on

Λ := M \ P where P := int
( ⋃

i:Qi∩S 6=∅
Qi

)
.

Here int(A) is the interior of a set A. Let R(x) be the smallest positive
integer n ≥ 1 such that fn(x) ∈ Λ for x ∈ Λ. For any Qi ∈ Q and x ∈
int(Qi), let γσ(x) := V σ

ε (x) ∩ Qi (σ = s, u). Since f(γs(x)) ⊂ γs(f(x)) for
any x ∈ M , R is constant on each γs(x). We define the first return map fR :
Λ ª by (fR)(x) = fR(x)(x) for x ∈ Λ. Let m denote the Lebesgue measure
on M . Since the points x such that R(x) = ∞ lie only on f−1(γs(p))\γs(p)
(p ∈ S) by Condition 1, R(x) < ∞ for m-a.e. x ∈ Λ. Thus fR is well
defined for m-a.e. x.

Define

Λi := {y ∈ Λ | R(y) = i} (i ≥ 1),

then fR(x) = f i(x) for any x ∈ Λi. Let Q′i := Qi \ ∪i−1
j=0Qj (1 ≤ i ≤ r).

Then Q′ := {Q′i}r
i=1 is a partition of M . D0 := {Λj

i |i ≥ 1, 1 ≤ j ≤ r}
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(where Λj
i := Λi ∩Q′j) is a partition of Λ. For x, y ∈ Λ, the separation time

s(x, y) is defined as the smallest n ≥ 0 such that (fR)n(x) and (fR)n(y)
belong to distinct Λj

i ’s. For any submanifold γ ⊂ M let mγ denote the
Lebesgue measure on γ. Let fu denote the restriction of f to the local
unstable manifolds.

Key Lemma Let f : M ª be a diffeomorphism satisfying Conditions 1,
2 and 4. Assume further that f satisfies the following properties:
(K-1)There exist C1 > 0 and 0 < β1 < 1 such that

log
|det(Dx(fu)i)|
|det(Dy(fu)i)| ≤ C1β

s(fi(x),fi(y))
1

for any i ≥ 1, 1 ≤ j ≤ r, x ∈ Λj
i and y ∈ Λj

i ∩ γu(x).
(K-2)There exists τ > 1 such that

mγu(x)({y ∈ M | R(y) > n}) = O(n−τ )

for any x ∈ Λ.
Then f admits a unique ergodic SRB measure ν and (f, ν) has polynomial
upper bounds on correlations for functions in Hη with exponent min{τ ′ −
1, τη} for any τ ′ ∈ (1, τ).

It will be shown in Appendix B that Conditions 2 and 3 imply (K-1)
and (K-2) for τ = α−1 (Lemmas 5.2 and 5.3).

This paper is organized as follows: In Section 2, we collect definitions
and preliminary results (Lemmas 2.1–2.6) to show Key Lemma. Proofs are
postponed to Appendix A. In Section 3, we prove Key Lemma. The strategy
is the following: Using the argument as in [27] (cf. [10]) we construct a
tower map F conjugating to f and a quotient tower map F by collasping
the local stable manifolds. We estimate that the correlation function for f is
approximated by that for F with polynomially error (Lemmas 3.6 and 3.7).
Then we apply the result of [17] to F (Lemma 3.8), and obtain polynomial
upper bounds on correlations for f .
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2. Preliminaries

In this section we give definitions and preliminary results to show Key
Lemma. An invariant probability measure µ is said to be an SRB measure if
(i) µ has non-zero Lyapunov exponents and (ii) µ has absolutely continuous
conditional measures on unstable manifolds (abbrev. accm) whose notion
is defined as follows: Assume that µ has non-zero Lyapunov exponents.
Describe the unstable manifold at x as

Wu(x) :=
{

y ∈ M

∣∣∣∣ lim sup
n→∞

1
n

log d(f−n(x), f−n(y)) < 0
}

([19]). Here d is the Riemannian metric on M . Let B be the Borel σ algebra
of M . Let ξ be a measurable partition of M and Bξ be the set of all Borel
subsets which consist of the unions of the elements of ξ. Then there exists
a family of conditional probability measures {µξ

x} (µ-a.e.x) such that for
µ-a.e.x and B ∈ B, µξ

x(B) is a Bξ-measurable function of x and

µ(E ∩B) =
∫

E

µξ
x(B)dµ(x) (E ∈ Bξ)

(see [21]). Then µ has accm if for any measurable partition ξu such that
ξu(x) ⊂ Wu(x) and contains an open neighborhood of x in Wu(x) for µ–a.e.
x, the canonical system {µu

x} (µ-a.e.x) of conditional measures of µ w.r.t.
ξu is absolutely continuous w.r.t. mW u(x) (µu

x ¿ mW u(x)) ([15], [9]).
We use the following lemmas. Assume that f satisfies Condition 1. For

any x ∈ M and ε ∈ (0, 1], let W σ
ε (x) := V σ

ε (x) ∩ Bε(x) (σ = s, u) where
Bε(x) is the ball centered at x with radius ε. Then there exist L > 0 and
λ < λs < 1 such that

d(fn(x), fn(y)) ≤ L · λn
s d(x, y) (n ≥ 0) (2.1)

for any y ∈ W s
ε (x) (x ∈ M) (see [23] p. 79).

Lemma 2.1 For any x ∈ M and y ∈ Wu
ε (x), TyWu

ε (x) = Eu(y).

The following lemma ensures the local uniqueness of the local unstable
manifolds.

Lemma 2.2 For any x ∈ M , there exists a unique Wu
ε (x) such that
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TxWu
ε (x) = Eu(x).

Lemma 2.3 (1) f is expansive and satisfies shadowing property, (2) f has
a Markov partition with arbitrarily small diameter.

Lemma 2.4 There exist C2 > 0 and 0 < β2 < 1 such that for any x ∈ Λ,
y ∈ γu(x) with s(x, y) < ∞ and 0 ≤ k ≤ n ≤ s(x, y)− 1,

n∑

i=k

log
|det(Dfi(x)f

u)|
|det(Dfi(y)fu)| ≤ C2β

s(x,y)−n
2

Lemma 2.5 There exist C3 > 0 and 0 < β3 < 1 such that for any x ∈ M ,
y ∈ γs(x) and n ≥ 1

∞∑

i=n

log
|det(Dfi(x)f

u)|
|det(Dfi(y)fu)| ≤ C3β

n
3 .

Let (X1,m1) and (X2,m2) be finite measure spaces. We say that a
measurable bijection T : (X1,m1) → (X2,m2) is absolutely continuous (or
nonsingular) if it maps m1-measure 0 to sets of m2-measure 0. If T is
absolutely continuous, then there exists the Jacobian J(T ) = Jm1,m2(T ) of

T w.r.t. m1 and m2 which is the Radon-Nykodym derivative d(T−1
∗ m2)
dm1

.
Let

Γσ := {γσ(x) |x ∈ Qi,Qi ∩ P = ∅} (σ = s, u).

For any γ, γ′ ∈ Γu the holonomy map Θγ,γ′ : γ ∩ Λ → γ′ ∩ Λ is defined by
Θγ,γ′(x) = γs(x) ∩ γ′. Then Θγ,γ′ is bijective.

Lemma 2.6 If f satisfies (K-1), then for any γ, γ′ ∈ Γu the holonomy
map Θγ,γ′ is absolutely continuous and

J(Θγ,γ′)(x) =
∞∏

i=0

|det(Dfi(x)f
u)|

|det(Dfi(Θγ,γ′ (x))fu)| .
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3. Proof of Key Lemma

Throughout this section let f be a C1+α-diffeomorphism of M . Assume
that f satsfies Conditions 1, 2, 4, (K-1) and (K-2). To show the existence
of SRB measures, we need the arguments used in the proof of Theorem 1 in
[27].

Lemma 3.1 fR admits an invariant probability measure µ such that µu
x ¿

mγu(x) with µu
x(ω) ≤ c0 · mγu(x)(ω) for µ-a.e.x ∈ Λ and any Borel set

ω ⊂ γu(x). Here c0 > 0 is a global constant.

Proof. For any γ0 ∈ Γu, let mγ0 denote the Lebesgue measure on γ0.
Define a probability measure on Λ by

µn :=
1
n

n−1∑

j=0

(fR)j
∗mγ0

mγ0(γ0)
(n ≥ 1).

Then there exist a subsequence {µnj
}j≥1 ⊂ {µn}n≥1 such that {µnj

} con-
verges to a fR invariant probability measure µ.

For any j ≥ 1 let ρj be the densities of (fR)j
∗(mγ0) on the components

of (fR)j(γ0) ∩ Q′k for 1 ≤ k ≤ r. Using the argument in [26] and [27] (see
also [1], [16], [24]), (K-1) ensures that there exists K > 0 such that

1
K
≤ ρj(x)

ρj(y)
≤ K

for any j ≥ 1 and x, y which belong to the same component of (fR)j(γ0)∩Q′k.
Therefore we have the lemma for µ by [27] (cf. [8], [10]). ¤

Let µ0 be as in Lemma 3.1 and define an f -invariant measure by

µ′ :=
∞∑

i=1

f i−1
∗ (µ0|{R≥i}).

Since
∫

γ
Rdmγ < ∞ (γ ∈ Γu) by (K-2), µ′ is a finite measure by Lemmas

2.6 and 3.1, and so normalize µ′ (we denote it by ν). Clearly ν satisfies
accm by Lemma 3.1, and furthermore ν is an SRB measure by the following
Lemma 3.2.

For any f–invariant ergodic probability measure µ let B(µ) be the set
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of points x such that

lim
n→∞

1
n

n−1∑

i=0

ϕ(f i(x)) =
∫

ϕdµ

for any continuous function ϕ. Then by Birkhoff’s ergodic theorem we have
µ(B(µ)) = 1.

Lemma 3.2 ν is a unique ergodic SRB measure.

Proof. Put Sat(Qi) := ∪{γs ∈ Γs | γs ∩ fn(Qi) 6= ∅, n ∈ Z} for any 1 ≤
i ≤ r. Then f(Sat(Qi)) ⊂ Sat(Qi). Discard those Qi with ν(Qi) = 0. Let
νi be the normalization of ν|Sat(Qi). To establish the lemma, let us show
that (i) νi is ergodic and (ii) νi has non-zero Lyapunov exponents.

We show (i). Since ν is as in Lemma 3.1, Condition 1 and Lemma 2.1
allow us to apply arguments from [4] (pages 118,119) to (f , νi) to estab-
lish that the forward Birkhoff average of any νi–integrable function ψ is a
constant on Sat(Qi) (mod νi). This implies that νi(A) = 0 or 1 for any
f–invariant set A.

To prove (ii) it suffices to establish that νi has only positive Lyapunov
exponents along Eu. The ergodicity of νi implies that for νi–a.e. x there
exists n0 ≥ 1 such that ]{0 ≤ i ≤ n− 1 | f i(x) ∈ M \P} ≥ nνi(M\P)

2 for any
n ≥ n0. This combined with Condition 1 implies (ii).

Let νi be as above. Assume that f admits another ergodic SRB measure
µ. By Condition 4, it follows from arguments in [12] that there exist Qi ∈
Q and x, y ∈ Qi such that mγu(x)(γu(x) ∩ B(νi)) = mγu(x)(γu(x)) and
mγu(y)(γu(y) ∩ B(µ)) > 0. By Lemma 2.6, we can find z ∈ γu(x) ∩ B(νi)
such that γs(z) ∩ γu(y) ⊂ B(µ). Therefore we have νi = µ. ¤

3.1. The tower map F .
To obtain polynomial upper bounds on correlation for (f , ν), we check

it for the tower system conjugating to f which is described by L.-S. Young
([26], [27]).

A tower ∆ is a union of the `-th floors ∆` for ` ∈ Z+ where Z+ :=
{0} ∪ N. The base ∆0 is a finite measure space (Λ,m). ∆ is defined by a
countable partition D0 := {Λj

i}i≥1, 1≤j≤r of Λ (mod m) and a function R

with Ri := R|Λj
i

for Λj
i ∈ D0. Here Λ, D0 and R be as in Introduction. Let

∆` be a copy of a part of Λ by
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∆` := {(x, `) |x ∈ Λ, ` < R(x)}.

Let ∆j
`,i be a copy of Λj

i by

∆j
`,i := {(x, `) |x ∈ Λj

i , ` < R(x)}.

Then a system F on the tower ∆ = ∪`≥0∆` is defined by

F (x, `) :=

{
(x, ` + 1) if ` + 1 < R(x)

(fR(x), 0) if ` + 1 = R(x).

Here fR : Λ → Λ is the first return map. Identifying Λ with ∆0, we can
define the map FR : ∆0 → ∆0 by FR(x) := (fR(x), 0) for any x ∈ ∆0.
Define the partition of ∆ by

D := {∆j
`,i}`≥0,i≥1,1≤j≤r. (3.1)

For any ∆j
0,i ∈ D and γu ∈ Γu, the FR-image of each component of γu∩∆j

0,i

is a union of some elements in Γu. Thus D is a Markov partition for F in
the usual sense.

3.2. Quotienting map F

Define a relation x ∼ y if y ∈ γs(x). By this relation we define the
quotient space ∆ := ∆/ ∼ by identifying points on each γs ∈ Γs. ∆` and
∆

j

`,i are defined similary. Since F sends γ ∈ Γs to γ′ ∈ Γs, a quotinent map
F : ∆ → ∆ is well defined.

We define a reference measure m on ∆0 := ∆0/ ∼ by the following way
which is introduced in [27]. If it is done, we can define the measure m|∆`

by
using the natural identification of ∆` with a subset of ∆0 such that J(F ) ≡ 1
except on F

−1
(∆0), where J(F ) = J(fR ◦ F

−(R−1)
). Here fR is defined by

the similar way as above.
Take an arbitrary γ̂ ∈ Γu. Let x̂ := γs(x) ∩ γ̂ for any x ∈ Λ and define

Φn(x) :=
n−1∑

i=0

(ψu(f i(x))− ψu(f i(x̂)))
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where ψu(z) := log |det(Dxfu)| for any z ∈ M . By Lemma 2.5 there exists
a function Φ such that Φn converges uniformly to Φ as n → ∞. On each
γ ∈ Γu define mγ = eΦmu

γ . If fR(Λj
i ∩ γ) ⊂ γ′ holds, then for x ∈ Λj

i ∩ γ we
write J(fR)(x) = Jmγ ,mγ′ (f

Ri |Λj
i∩γ)(x).

By (1) of the following Lemma 3.3 the measure m on ∆0 whose repre-
sentative on each γ ∈ Γu is mγ is well defined. By (2) of the lemma J(fR)
is also well defined w.r.t. m.

Lemma 3.3 (1) For any γ, γ′ ∈ Γu let Θ = Θγ,γ′ : γ → γ′ be the sliding
map along the local stable manifolds. Then Θ∗mγ = mγ′ ,

(2) J(fR)(x) = J(fR)(y) for any y ∈ γs(x),
(3) There exist C4 > 1 and 0 < β4 < 1 such that

∣∣∣∣
J(fR)(x)
J(fR)(y)

− 1
∣∣∣∣ ≤ C4β

s(fR(x),fR(y))
4

for any i ≥ 1, 1 ≤ j ≤ r, γ ∈ Γu and x, y ∈ γ ∩ Λj
i .

Proof. By the same argument from [27] (see also [10] Lemma 3.4), we have
(1) and (2). To show (3), we estimate |Φ(x)− Φ(y)| for any x, y ∈ Λj

i ∩ γu

as follows: Choose 1
3s(x, y) ≤ k ≤ 1

2s(x, y). We have that |Φ(x) − Φ(y)| ≤
(I) + (II) where

(I) =
∣∣∣∣

k−1∑

j=0

(
ψu(f j(x))− ψu(f j(y))

)−
k−1∑

j=0

(
ψu(f j(x̂))− ψu(f j(ŷ))

)∣∣∣∣,

(II) =
∣∣∣∣
∞∑

j=k

(
ψu(f j(x))− ψu(f j(x̂))

)−
∞∑

j=k

(
ψu(f j(y))− ψu(f j(ŷ))

)∣∣∣∣.

Using Lemma 2.4, (I) ≤ C2β
s(x,y)

2
2 . By Lemma 2.5, (II) ≤ C3β

s(x,y)
3

3 . Thus

(I) + (II) ≤ 2(C3 + C2)β
s(fR(x),fR(y))
4 . (3.2)

Here 0 < β4 = max{β1, β
1/2
2 , β

1/3
3 } < 1. By the similar argument as above

we have

∣∣Φ(fR(x))− Φ(fR(y))
∣∣ ≤ 2(C3 + C2)β

s(fR(x),fR(y))
4 . (3.3)
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Therefore, by (3.2), (3.3) and (K-1), there exists C ′1 > 0 such that

log
J(fR)(x)
J(fR)(y)

= log
|det(Dxf i|Eu(x)|
|det(Dyf i|Eu(y)|

+ Φ(fR(x))

− Φ(fR(y))− (Φ(x)− Φ(y))

≤ (C ′1 + 4(C3 + C2))β
s(fR(x),fR(y))
4

which concludes the lemma. ¤

(K-2) and Lemmas 2.5 and 2.6 imply that m({R ◦π−1 > n}) = O(n−τ )
for some τ > 1. Here π : ∆ → ∆ is the projection such that π ◦ F = F ◦ π.
Then we have that

∫
∆0

R ◦ π−1dm < ∞. We summarize the properties of
F : ∆ → ∆ as follows:

(a) FR : ∆
j

0,i → FR(∆
j

0,i) is bijective and FR(∆
j

0,i) is a union of
some ∆

q

0,p’s (mod m), and furthermore there exists η > 0 such that

infi≥1,1≤j≤r{m(FR(∆
j

0,i))} ≥ η,

(b) D := {∆j

`,i}`≥0,i≥1,1≤j≤r is a partition such that ∨∞j=0F
−j

(D) is the
partition into points,

(c) m(A) = m(F (A)) for any A ⊂ ∆
j

`,i with F (A) ⊂ ∆
j

`+1,i, and
(d) for any i ≥ 1 and 1 ≤ j ≤ r, FR|

∆
j
0,i

and its inverse are nonsingular
w.r.t. m.

We redefine the separation time s̄(·, ·) on ∆̄ as follows: Firstly for any x̄, ȳ ∈
∆̄0, s̄(x̄, ȳ) is defined by s(x, y) where (x, 0) ∈ π̄−1(x̄) and (y, 0) ∈ π̄−1(ȳ).
Secondly for any x̄, ȳ ∈ ∆̄`, s̄(x̄, ȳ) is defined by s̄(x̄0, ȳ0) where x̄0, ȳ0 ∈ ∆̄0

are the unique preimages of x̄, ȳ by F̄ `, i.e. F̄ `(x̄0) = x̄ and F̄ `(ȳ0) = ȳ.
Otherwise s̄(x̄, ȳ) = 0.

(e) J(FR) satisfies that
∣∣∣J(F R)(x̄)

J(F R)(ȳ)
− 1

∣∣∣ ≤ C4β
s(F R(x̄),F R(ȳ))
4 for any i ≥ 1

and x̄, ȳ ∈ ∆
j

0,i, and

(f) for any `, `′ ≥ 0, i, i′ ≥ 1 there exists N > 0 such that F
−n

(∆`,i) ∩
∆`′,i′ 6= ∅ for any n ≥ N (by Condition 4).

Let Cβ4(∆) := {ϕ : ∆ → R | ∃Cϕ > 0 s.t. |ϕ(x̄) − ϕ(ȳ)| ≤ Cϕβ
s(x̄,ȳ)
4

(∀x̄, ȳ ∈ ∆
j

`,i)}.
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Lemma 3.4 F admits a mixing invariant probability measure ν such that
dν = %dm. Here % satisfies c0

−1 ≤ % ≤ c0 for c0 > 0 with

|%(x̄)− %(ȳ)| ≤ c0β
s(x̄,ȳ)
4 (x̄, ȳ ∈ ∆

j

`,i).

Proof. Applying the arguments as in [1], [13], [16], [17], [26], [27], [29], [10]
gives the lemma. ¤

We define the transfer operator associated with F and the measure m

by

L̄(ϕ̄)(x̄) :=
∑

x̄′:F̄ (x̄′)=x̄

ϕ̄(x̄′)
J(F̄ )(x̄′)

(3.4)

for ϕ̄ ∈ L2(m̄) and x̄ ∈ ∆̄. Then L̄(%) = % where % is as in Lemma 3.4. Let
L∞(m) be the set of functions which are essentially bounded w.r.t. m. We
denote the essential sup norm w.r.t. m by ‖ · ‖∞. For any ψ ∈ Cβ4(∆) we
define ‖ψ‖ := max{‖ψ‖∞, Cψ}.
Proposition 3.5 ([17] Proposition 3.13, Corollary 3.15) Let w :=
{w(`)}`∈Z+ be a positive increasing sequence such that (i)

∑∞
`=1 w(`) m̄(∆̄`)

< ∞ and (ii) the sequence { w(`)
w(`+1)}∞`=1 is also increasing. Then there exist

k1 = k1(w) ∈ N and C5 = C5(w, k1) > 0 such that for any φ̄ ∈ Cβ(∆̄)
with

∫
φ̄dm̄ = 1, any n ∈ N with n = k1j + r for some j ∈ N and

r ∈ {0, . . . , k1 − 1}, and any ` ∈ Z+,

sup
x̄∈∆̄`

∣∣L̄n(φ̄)(x̄)− %̄(x̄)
∣∣ ≤ C5 ‖φ̄‖ w(`)

w(k1j)

where %̄ is as in Lemma 3.4.

Throughout this section, we fix a positive increasing function v : R+ →
R such that (i) for any γ ∈ Γu,

∑∞
`=1 v(`)mγ({R > `}) < ∞, and (ii)

the sequence { v(`)
v(`+1)}∞`=1 is also increasing. By Lemma 3.3(1) we have that∑∞

`=0 v(`) m̄(∆̄`) < ∞. Then we let k1 = k1(v) ∈ N and C5 = C5(v, k1) > 0
as in Proposition 3.5. Then by Proposition 3.5 we have that for any n ≥ 1
and ψ ∈ Cβ4(∆) with

∫
ψdm = 1,
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sup
x̄∈∆`

∣∣L̄n(ψ)(x̄)− %(x̄)
∣∣ ≤ C ′5(ψ)

v(`)
v(n

2 )
(` ≥ 0) (3.5)

where

C ′5(ψ) := max
0≤j≤k1−1

{
v
(

k1
2

)

v(0)
(‖L̄j(ψ)‖∞ + ‖%‖∞

)
, C5‖ψ‖

}
. (3.6)

3.3. Polynomial upper bounds on correlations for F

Let π1 : ∆ → M be the natural projection by π1(x, `) = f `(x) for
(x, `) ∈ ∆. Then we have f ◦ π1 = π1 ◦ F . For any function ϕ : M → R,
let ϕ̃ be the lift of ϕ to ∆ defined by ϕ̃ = ϕ ◦ π1. Define an F -invariant
probability measure ν̃ by ν̃ = ν ◦ π1, and the correlation function for (F, ν̃)
by Corn(ϕ̃, ψ̃; ν̃) =

∣∣ ∫
(ϕ̃ ◦ Fn)ψ̃dν̃ − ∫

ϕ̃dν̃
∫

ψ̃dν̃
∣∣. Then we have that

Corn(ϕ,ψ; ν) = Corn(ϕ̃, ψ̃; ν̃). We define Dj := ∨j
i=0F

−i(D) for any j ≥ 0
where D is as in (3.1). For any x ∈ ∆ let Dj(x) denote the element of Dj

which containts x.

Lemma 3.6 There exists C6 > 0 such that for any k ≥ 1 and x ∈ ∆,
diam(π1 ◦ F k(D2k(x))) ≤ C6k

−τ .

Proof. Put ŷ = γs(y1)∩γu(y2) for y1, y2 ∈ D2k(x). Assume that D2k(x) ⊂
∆` for some l ≥ 0. Then there exist y0

1 , y0
2 and ŷ0 ∈ ∆0, such that F `(y0

1) =
y1, F `(y0

2) = y2 and F `(ŷ0) = ŷ. Since f ◦ π1 = π1 ◦ F , we have

d
(
π1 ◦ F k(ŷ), π1 ◦ F k(y2)

)
= d

(
fk+`(ŷ0), fk+`(y0

2)
)
.

Using Condition 2, (K-2) and Lemma 5.1 we have that (see [10] Lemma
4.12) there exists K1 > 0 such that

d(fk+`(ŷ0), fk+`(y0
2)) ≤ K1k

−τ . (3.7)

Note that π1 ◦ F−`(ŷ) ∈ γs(π1 ◦ F−`(y1)). Then we have that d(π1 ◦
F−`(ŷ), π1 ◦ F−`(y1)) ≤ 1, and thus by (2.1)

d
(
π1 ◦ F k(y1), π1 ◦ F k(ŷ)

) ≤ d
(
fk+` ◦ π1 ◦ F−`(y1), fk+` ◦ π1 ◦ F−`(ŷ)

)

≤ Lλk
s . (3.8)
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Combining (3.7) and (3.8), we estimate that d(π1 ◦ F k(y1), π1 ◦ F k(y2)) ≤
K1k

−τ + Lλk
s . This concludes the proof. ¤

For any continuous function ϕ define a function ϕk : ∆ → R by ϕk|A =
inf{ϕ̃(x) |x ∈ F k(A)} for A ∈ D2k. Put ϕ̃k = d(F k

∗ (ϕkν̃))/dν̃.

Lemma 3.7 For any ϕ,ψ ∈ Hη there exists C7 = C7(ϕ,ψ) > 0 such that
for any 1 ≤ k ≤ n,

∣∣Corn(ϕ̃, ψ̃; ν̃)− Corn−k(ϕk, ψ̃k; ν̃)
∣∣ ≤ C7k

−τη.

Proof. Using the same argument as in [27] it follows from Lemma 3.6 (see
also [10] Lemma 3.9) that there exists K2 = K2(ϕ,ψ) > 0 such that

∣∣Corn−k(ϕ̃ ◦ F k, ψ̃; ν̃)− Corn−k(ϕk, ψ̃; ν̃)
∣∣ ≤ K2k

−τη,
∣∣Corn−k(ϕk, ψ̃; ν̃)− Corn−k(ϕk, ψ̃k; ν̃)

∣∣ ≤ K2k
−τη (1 ≤ k ≤ n).

This concludes the proof. ¤

Let k ∈ N be such that k ∈ [n
6 , n

4 ]. Since ψ
k

and ϕk are constant on
γs ∈ Γs and π ◦ F = F ◦ π, we have by Lemma 3.4 that

∫ (
ϕk ◦ Fn−k

) · ψ̃kdν̃ =
∫ (

ϕk ◦ π−1 ◦ F
n) · ψk ◦ π−1dν

=
∫

ϕk ◦ π−1 · L̄n
(
ψ

k ◦ π−1 · %)
dm,

where %̄ is as in Lemma 3.4. By the similar argument as above, we have
that

∫
ϕkdν̃ =

∫
ϕk ◦ π−1 · %dm and

∫
ψ

k
dν̃ =

∫
ψ

k ◦ π−1dν. Thus we have
that

Corn−k

(
ϕk, ψ̃k; ν̃

)

=
∣∣∣∣
∫

ϕk ◦ π−1 · L̄n
(
ψ

k ◦ π−1 · %)
dm−

∫
ϕk ◦ π−1 · %dm

∫
ψ

k ◦ π−1dν

∣∣∣∣.

Let aψ := 2 max |ψ| + 1. Then it follows from the argument in [26] (page
175) (cf. [10] Lemma 3.10) that
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Corn−k

(
ϕk, ψ̃k; ν̃

)

≤ 2aψ max |ϕ|
∞∑

`=0

m̄(∆̄`) sup
x̄∈∆̄`

∣∣∣∣L̄n−2k ◦ L̄2k

(
(ψ̄k + aψ) %̄∫
(ψ̄k + aψ)dν̄

)
(x̄)− %̄(x̄)

∣∣∣∣
(3.9)

where L̄ is as in (3.4). Since Corn(ϕ,ψ; ν) = Corn(ϕ̃, ψ̃; ν̃), Lemma 3.7
implies that

Corn(ϕ,ψ; ν) ≤ Corn−k

(
ϕk, ψ̃k; ν̃

)
+ C7k

−τη. (3.10)

To apply Proposition 3.5 to L̄2k
(

(ψ
k◦π−1+aψ)%R

(ψ
k◦π−1+aψ)dν

)
in (3.9), we

need to show that L̄2k
(

(ψ
k◦π−1+aψ)%R

(ψ
k◦π−1+aψ)dν

)
∈ Cβ4(∆) and the constant

C ′5
(
L̄2k

(
(ψ

k◦π−1+aψ)%R
(ψ

k◦π−1+aψ)dν

))
as in (3.6) is bounded above by some constant

independent of k.

Lemma 3.8 There exists C8 = C8(ψ, %) > 0 such that

(1)
∥∥∥∥L̄j+2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

)∥∥∥∥
∞
≤ C8 (0 ≤ j ≤ k1),

(2)
∣∣∣∣L̄2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

)
(x)− L̄2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

)
(y)

∣∣∣∣

≤ C8β
s(x,y)
4 (x, y ∈ ∆`,i).

Here k1 is the number as in Proposition 3.5.

Proof. We note that L̄`(ψ)(x̄) =
∑

x̄′:F `
(x̄′)=x̄

ψ

J(F
`
)
(x̄′) for ψ : ∆ → R and

` ≥ 1. By Lemma 3.3 it follows from the same argument in Theorem 1 in [26]
(see also [10] Lemma 3.5(2)) that there exists K3 > 0 (independent of `) such
that

∑
x̄′:F `

(x̄′)=x̄
1

J(F
`
)(x̄′)

≤ K3. Since ψ is Hölder continuous, there exists

Cψ > 0 such that |ψk◦π−1(x̄)| ≤ Cψ for any x ∈ ∆. Since ψ
k◦π−1+aψ ≥ 1,

by Lemma 3.3 we have that
∣∣∣L̄j+2k

(
(ψ

k◦π−1+aψ)%R
(ψ

k◦π−1+aψ)dν

)
(x̄)

∣∣∣ ≤ K3(Cψ + aψ)c0

for any x ∈ ∆. (1) is shown.
We prove (2). For any x̄, ȳ ∈ ∆̄`,i, let {x̄′j}j∈N, {ȳ′j}j∈N be the paired



54 J. Hatomoto

preimages of x̄, ȳ by F̄ 2k, i.e. for any j ∈ N, F̄ 2k(x̄′j) = x̄ and F̄ 2k(ȳ′j) = ȳ,
and for each j ∈ N and every h ∈ {0, . . . , 2k}, F̄h(x̄′j) and F̄h(ȳ′j) belong to
the same element of D̄. Using that ψ̄k + aψ ≥ 1, we have that

∣∣∣∣L̄2k

(
(ψ̄k + aψ) %̄∫
(ψ̄k + aψ)dν̄

)
(x̄)− L̄2k

(
(ψ̄k + aψ) %̄∫
(ψ̄k + aψ)dν̄

)
(ȳ)

∣∣∣∣ ≤ (III) + (IV)

where

(III) =
∞∑

j=1

1
J(F̄ 2k)(x̄′j)

∣∣(ψ̄k(x̄′j) + aψ) %̄(x̄′j)− (ψ̄k(ȳ′j) + aψ) %̄(ȳ′j)
∣∣,

(IV) =
∞∑

j=1

∣∣(ψ̄k(ȳ′j) + aψ) %̄(ȳ′j)
∣∣ 1
J(F̄ 2k)(ȳ′j)

∣∣∣∣
J(F̄ 2k)(ȳ′j)
J(F̄ 2k)(x̄′j)

− 1
∣∣∣∣.

We estimate (III). By the definition of ψ̄k, ψ̄k is constant on each element
of D̄2k where D̄j := ∨j

i=0F̄
−i(D̄). Since x̄′j and ȳ′j are belong to the same

element of D̄2k, we have that for any j ∈ N, (ψ̄k)(x̄′j) = (ψ̄k)(ȳ′j). So we
estimate that

∣∣(ψ̄k(x̄′j) + aψ) %̄(x̄′j)− (ψ̄k(ȳ′j) + aψ) %̄(ȳ′j)
∣∣

=
∣∣(ψ̄k(x̄′j) + aψ) (%̄(x̄′j)− %̄(ȳ′j))

∣∣

≤ 2 aψ

∣∣%̄(x̄′j)− %̄(ȳ′j)
∣∣

≤ 2 aψ c0 βs̄(x̄′j ,ȳ′j) (∵ Lemma 3.4)

≤ 2 aψ c0 βs̄(x̄′,ȳ′) (∵ s̄(x̄′j , ȳ
′
j) ≥ s̄(x̄, ȳ)).

Substituting this into (III) and using the inequality
∑

x̄′:F 2k
(x̄′)=x̄

· 1

J(F
2k

)(x̄′)
≤ K3 ([10] Lemma 3.5), we have that

(III) ≤ 2aψc0K3β
s̄(x̄,ȳ).

By Lemma 3.3(3) we have that for any x̄, ȳ ∈ D̄ ∈ D̄2k,
∣∣∣J(F̄ 2k)(x̄)
J(F̄ 2k)(ȳ)

− 1
∣∣∣ ≤

C1 βs̄(F̄ 2k(x̄),F̄ 2k(ȳ)) (see [10] Lemma 3.5(1)). Using this inequality and
Lemma 3.4, we esimate that (IV) ≤ (Cψ + aψ)c0K3C4β

s(x̄,ȳ)
4 . Therefore
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(III) + (IV) ≤ 2K3c0(Cψ + a)C4β
s(x̄,ȳ)
4 .

(2) is proved. ¤

Let τ > 1 be as in (K-2). For any 1 < τ ′ < τ , let v(t) = 1 (0 ≤ t < 1)
and v(t) = tτ

′−1 (t ≥ 1). Then by Lemmas 2.5 and 2.6, we have that
∑∞

`=0 v(`)m(∆`) < ∞. By Lemma 3.8(2), L̄2k
(

(ψ
k◦π−1+aψ)%R

(ψ
k◦π−1+aψ)dν

)
∈ Cβ4(∆).

Then by (3.5) we have that

sup
x̄∈∆`

∣∣∣∣L̄n−2k ◦ L̄2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

)
(x̄)− %(x̄)

∣∣∣∣

≤ C ′5

(
L̄2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

))
· v(`)
v
(

n−2k
2

) (n ≥ 1). (3.11)

By (3.6) and Lemmas 3.4 and 3.8, we have that C ′5
(
L̄2k

(
(ψ

k◦π−1+aψ)%R
(ψ

k◦π−1+aψ)dν

))

≤ C9 where C9 := max
{

v(
k1
2 )

v(0) (C8+c0), C5C8

}
(see [10] Lemma 3.12). Thus

by (3.11) we have that

sup
x̄∈∆`

∣∣∣∣L̄n−2k◦L̄2k

(
(ψ

k ◦ π−1 + aψ)%
∫

(ψ
k ◦ π−1 + aψ)dν

)
(x)−%(x)

∣∣∣∣ ≤ C9
v(`)

v
(

n−2k
2

) (n ≥ 1).

(3.12)

By (3.9), (3.10) and (3.12) we have that

Corn(ϕ,ψ; ν) ≤ C10
1

v
(

n−2k
2

) + C7k
−τη (n ≥ 1)

where C10 = 2aψ max |ϕ|C9

∑∞
`=0 v(`)m(∆`). Since k ∈ [n

6 , n
4 ] and v(t)

increases with t, we have that v(n
4 ) ≤ v(n−2k

2 ), and obtain that

Corn(ϕ,ψ; ν) ≤ C10
1

v
(

n
4

) + C7k
−τη ≤ C10

(
4
n

)τ ′−1

+ 3τηC7n
−τη.

The proof of Key Lemma is complete.
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4. Appendix A: Proofs of Lemmas 2.1–2.6

In this section we prove Lemmas 2.1–2.6. Throughout this section we
assume that f : M ª is an almost Anosov diffeomorphism with uniformly
contracting direction (not necessarily co-dimension one uniformly contract-
ing direction). We begin by noting the basic properties of the local stable
and center unstable manifolds. We have the following ([23]):

( i ) TxW σ
ε (x) = Eσ(x) for σ = s, u,

( ii ) W s
ε (x) ⊂ {y ∈ M | d(fn(x), fn(y)) ≤ ε for any n ∈ Z+},

(iii) f(W s
ε (x)) ⊂ W s

ε (f(x)),
(iv) f(Wu

ε (x)) ⊃ Wu
ε′(f(x)) for some ε′ ∈ (0, ε],

( v ) there exists L1 > 0 independent of x and ε such that for any y ∈
W σ

ε (x) (σ = s, u),

dσ(y, x) < L1d(y, x) (4.1)

where dσ denotes the Riemannian distance measured along W σ
ε (x).

Since the correspondence x 7→ Wu
ε (x) is continuous w.r.t. the C1 metric,

there exists δ1 > 0 such that if x, y satisfies d(x, y) < δ1, then W s
ε (x) and

Wu
ε (y) have a single transeverse intersection point, so write

[x, y] = W s
ε (x) ∩Wu

ε (y) (x, y ∈ M with d(x, y) < δ1). (4.2)

Proof of Lemma 2.1. It suffices to show that for any x ∈ M and y ∈
Wu

δ1
(x), TyWu

ε (x) = Eu(y). Arguing by contradiction, assume that there
exist x ∈ M and y ∈ Wu

δ1
(x) such that TyWu

ε (x) 6= Eu(y). Then there
exist z ∈ Bδ1(x) \ Wu

δ1
(x) and a piecewise C1-curve C : [0, 1] → M with

C(0) = x and C(1) = z such that (a) the length of C([0, 1]) is less than
δ1 and (b) dC

dt (t) ∈ Eu(C(t)) for any 0 ≤ t ≤ 1. Indeed, since the set
A := {z ∈ Wu

δ1
(x) |TzW

u
ε (x) = Eu(z)} is closed in Wu

ε (x), the set Ac is
open. We let y′ ∈ Cl(Ac) be such that du(x, y′) = du(x,Cl(Ac)). We take
a C1–curve γ1 : [0, 1

2 ] → Wu
δ1

(x) with γ1(0) = x and γ1( 1
2 ) = y′ such that

dγ1
dt (t) ∈ Eu(γ1(t)) for any 0 ≤ t ≤ 1

2 , and the length of γ1 is less than
δ1/2. Then we can find a C1–curve γ2 : [ 12 , 1] → Bδ1(y

′) with γ2( 1
2 ) = y′

and z := γ2(1) 6∈ Wu
ε (x) such that dγ2

dt (t) ∈ Eu(γ2(t)) for any 1
2 ≤ t ≤ 1,

and the length of γ2 is less than δ1/2. It is clear that a piecewise C1-curve
C : [0, 1] → Wu

ε (x) defined by C[0, 1
2 ] := γ1 and C[ 12 ,1] := γ2 is desired. Since
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Figure 1. a figure of C([0, 1])

d(z, x) is less than the length of C([0, 1]), by (a) we have that d(z, x) < δ1.
Thus W s

ε (z) and Wu
ε (x) have a single transeverse intersection, w = [z, x]

(see Figure 1).
Since ‖Dqf

−n|TqC([0,1])‖ ≤ ‖Dqf
−n|Eu(q)‖ ≤ 1 for any q ∈ C([0, 1]) and

n ∈ Z+ by (b), we have that for any n ∈ Z+,

df−nC(f−n(z), f−n(x)) ≤ dC(z, x)(< δ1) (4.3)

where df−nC is the Riemannian metric on f−n(C([0, 1])). Then we have
that for any n ∈ Z+, d(f−n(z), f−n(x)) < δ1, and so we can define for any
n ∈ Z+,

[f−n(z), f−n(x)] = W s
ε (f−n(z)) ∩Wu

ε (f−n(x)).

Since w is the single transeverse intersection of W s
ε (z) and Wu

ε (x), we have
f−1(w) = [f−1(z), f−1(x)]. Repeating this manner, we have that for any
n ∈ Z+,

f−n(w) = [f−n(z), f−n(x)], f−n(w) 6= f−n(z). (4.4)

Thus, for any n ∈ Z+, f−n(w) ∈ W s
ε (f−n(z)), and then d(f−n(z), f−n(w))

< ε. By (2.1) we have that for any n ∈ Z+,

d(z, w) ≤ L1λ
n
s d(f−n(z), f−n(w)) ≤ Lλn

s ε.

Therefore, taking the limit as n →∞, we obtain that d(z, w) = 0. This is a
contradiction since z 6= w. ¤
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Proof of Lemma 2.2. Since the correspondence x 7→ W σ
ε (x) is continu-

ous w.r.t. the C1 topology (σ = s, u), there exists δ′ > 0 such that if
d(y, y′) < δ′, then d(y, [y, y′]) < δ1/2 and d(y, [y′, y]) < δ1/2. Assume, by a
contradiction, that there exist y, y′ ∈ Bδ′(x) with [x, y] 6= [x, y′] such that
Wu

ε (y)∩Wu
ε (y′)∩Bδ′(x) 6= ∅. Then there exist z ∈ Wu

ε (y)∩Wu
ε (y′)∩Bδ′(x)

and z′ ∈ (Wu
ε (y′) \Wu

ε (y)) ∩ Bδ′(x). By definition of δ′, d(z, z′) < δ1. By
(4.2), Wu

ε (z) and W s
ε (z′) have a single transeverse intersection, w := [z′, z].

We have that

f−n(w) = [f−n(z′), f−n(z)], f−n(w) 6= f−n(z′) (n ≥ 0).

This implies that f−n(w) ∈ W s
ε (f−n(z′)) for any n ≥ 0. Since d(f−n(w),

f−n(z′)) < ε, we have by (2.1) that d(w, z′) ≤ Lλn
s ε (n ≥ 0) and thus

d(w, z′) = 0. This is a contradiction with the fact that w 6= z′. ¤

For any η > 0 and x ∈ M let W
u

η(x) := {y ∈ M | d(f−n(y), f−n(x)) ≤
η (n ≥ 0)} and W

s

η(x) := {y ∈ M | d(fn(y), fn(x)) ≤ η (n ≥ 0)}. For the
proof of Lemma 2.3 we need the following Lemma 4.1.

Lemma 4.1 For any x ∈ M , W
σ

δ1/2(x) ⊂ W σ
ε (x) ⊂ W

σ

L1ε(x) (σ = s, u).

Proof. We show that W
u

δ1/2(x) ⊂ Wu
ε (x). Take z ∈ W

u

δ1/2(x) and assume
z 6∈ Wu

ε (x). Then W s
ε (z) and Wu

ε (x) have a single transeverse intersec-
tion, w = [z, x]. By the same argument as in (4.4) we have f−k(w) =
[f−k(z), f−k(x)], f−k(w) 6= f−k(z) (k ≥ 0). Using (2.1) we have d(w, z) =
0. This contradicts that z 6= w.

To prove that Wu
ε (x) ⊂ W

u

L1ε(x), it is enough to show that for any
y ∈ Wu

ε (x) and n ≥ 0, du(f−n(x), f−n(y)) < L1ε. Since du(x, y) < L1ε

for y ∈ Wu
ε (x), it is obvious the case when n = 0. Assume that

du(f−n(x), f−n(y)) < L1ε. Then we have that

du(f−n−1(x), f−n−1(y))

≤ sup
{‖Dw(f−1)u‖ |w ∈ f−n(Wu

ε (x))
}
du(f−n(x), f−n(y)).

Since ‖Dw(f−1)u‖ = ‖Dwf−1|Eu(f−n(x))‖ ≤ 1 for any w ∈ Wu
ε (f−n(x))

by Lemma 2.1, we have that du(f−n−1(x), f−n−1(y)) < L1ε. Therefore our
disire is proved for n + 1. The case σ = u is proved. The similar arguments
as above works for the case σ = s. ¤
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f has canonical coordinates if for any η > 0 there exists δ(η) > 0 such
that d(x, y) ≤ δ(η) implies W

s

η(x) ∩W
u

η(y) 6= ∅.
Proof of Lemma 2.3. We prove that f is expansive. Indeed take x, y ∈ M

with d(f i(x), f i(y)) < δ1/2 (i ∈ Z). This implies that y ∈ W
s

δ1/2(x) ∩
W

u

δ1/2(x). By Lemma 4.1 we have that y ∈ W s
ε (x)∩Wu

ε (x). Thus by (4.2),
y = x.

Let us show that f has canonical coordinates. Then the shadowing
property of f follows from Theorem in [18]. If ρ ∈ (0, 1], then there exists
δ′′ ∈ (0, 1) such that (4.2) holds with replacing ε by ρ/L1 and δ by δ′′. Let
x, y be such that d(x, y) ≤ δ′′. By definition of δ′′, W s

ρ/L1
(x) and Wu

ρ/L1
(y)

have a single transeverse intersection point. On the one hand by Lemma 4.1
we have that W s

ρ/L1
(x) ⊂ W

s

ρ(x) and Wu
ρ/L1

(y) ⊂ W
u

ρ(y). Combining the

arguments above we have that W
s

ρ(x) ∩ W
u

ρ(y) 6= ∅. If ρ > 1, then there
exists δ′′′ ∈ (0, 1) such that (4.2) holds with replacing ε by 1/L1 and δ by
δ′′′. Then using the similar arguments as above allows us to have the disired
result. (1) is proved. By (1), (2) follows from Theorem 4.2.8 in [3]. ¤

Let dist be the distance in the Grassmannian bundle generated by the
Riemannian metric. An 1-dimensional distribution E is (δ, L, ξ)-Hölder con-
tinuous if for any x, y ∈ M with d(x, y) < δ, dist(E(x), E(y)) ≤ Ld(x, y)ξ.
It follows from [4] (Theorem 2.3.2) that there exist δ2 ∈ (0, δ1), L2 > 0 and
ξ1 ∈ (0, α] such that the distributions Es and Eu are (δ2, L2, ξ1)-Hölder
continuous.

Lemma 4.2 There exist C11 > 0 and δ3 ∈ (0, δ2) such that the following
hold for any x, y, z ∈ M :

(1) For any y, z ∈ W σ
δ3

(x) (σ = s, u), log |det(Dyfu)|
|det(Dzfu)| ≤ C11d(y, z)ξ1 ,

(2) Especially if f satisfies Conditions 1 and 2, then for any y, z ∈ Wu
δ3

(x),
log |det(Dyfu)|

|det(Dzfu)| ≤ C11d(y, z)α.

Proof. Using the arguments in [4] (page 104) together with [14] (Lemma
3.2 (page 49)), there exist K4 > 0 and ς1 ∈ (0, δ2) such that for any x ∈ M

and y, z ∈ Bς1(x),

∣∣det(Dyfu)− det(Dzf
u)

∣∣ ≤ K4(dist(Eu(y), Eu(z)) + d(y, z)α).
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Then (1) follows from the fact that Eu is (δ2, C10, ξ1)-Hölder continuous.
Condition 2 combined with Lemma 2.1 tells us that the correspondence
w 7→ Eu(w) is C1 on each Wu

δ1
(x). So there exist K5 > 0 and ς2 ∈ (0, ς1)

such that for any x ∈ M and y, z ∈ Wu
ς2(x), dist(Eu(y), Eu(z)) ≤ K5d(y, z).

This combined with the ineqality above gives the proof of (2). ¤

By Lemma 2.3 (2) we may assume that the diameter of the Markov
partition {Qi} is less than δ3. To show Lemma 2.4, we need the following
Lemma 4.3.

Lemma 4.3 There exist C12 > 0 and 0 < β5 < 1 such that for any x ∈ Λ,
y ∈ γu(x) with s(x, y) < ∞, and 0 ≤ k ≤ s(x, y) − 1, d(fk(y), fk(x)) ≤
C12β

s(x,y)−k
5 .

Proof. We put λu := max{‖Dxf−1|Eu(x)‖ |x ∈ Λ}(< 1). Let x ∈ Λ,
y ∈ γu(x) with s(x, y) < ∞, and 0 ≤ k ≤ s(x, y) − 1. There exist {ni}i≥1

and {mi}i≥1 with 0 = m0 = n0 ≤ n1 < m1 < n2 < m2 < · · ·n` < m` < · · ·
such that fni+j(x), fni+j(y) 6∈ P (0 ≤ j ≤ mi − ni − 1, i ≥ 1), and
fmi+j(x), fmi+j(y) ∈ P (0 ≤ j ≤ ni+1 −mi − 1, i ≥ 0). Then one of the
following two cases holds:

( i ) fk(x), fk(y) ∈ P, i.e. mi−1 ≤ k ≤ ni − 1 (i ≥ 1),
( ii ) fk(x), fk(y) 6∈ P, i.e. ni ≤ k ≤ mi − 1.

Let γ` denote the curve of the minimum length in Wu
ε ((fR)`(x)) which

connects between (fR)`(x) and (fR)`(y) for any 0 ≤ ` ≤ s(x, y) − 1. We
denote `(γ`) the length of γ`. We deal with case (i). Case (ii) is estimated
similarly as case (i). Since s(fni(x), fni(y)) = s(x, y)−{i+∑i−1

j=0(mj−nj)}
holds, by Condition 1 and Lemma 2.1 we have

d(fk(x), fk(y))

≤ sup
{‖Dzf

−s(fni (x),fni (y))+1|Eu(z)‖
∣∣ z ∈ γs(fni (x),fni (y))−1

}

· `(ηs(fni (x),fni (y))−1)

≤ λs(fni (x),fni (y))−1
u =

1
λu

λ
s(x,y)−{i+Pi−1

j=0(mj−nj)}
u .

Since k ≥ i +
∑i−1

j=0(mj − nj), the last term above is bounded above by

≤ 1
λu

λ
s(x,y)−k
u . ¤
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Proof of Lemma 2.4. Let x, y ∈ γ ∈ Γu be such that s(x, y) < ∞. Since
d(f i(x), f i(y)) < δ3 for any 0 ≤ i ≤ s(x, y) − 1, Lemmas 4.2(1) for case
σ = u and 4.3 conclude the proof. ¤

Proof of Lemma 2.5. Since the diameter of the Markov parition is less than
δ′, for any x, y ∈ γs ∈ Γs, d(x, y) < δ3. Then Lemma 4.2(1) for case σ = s

and (2.1) conclude the proof. ¤

Proof of Lemma 2.6. For any γ, γ′ ∈ Γu let Θ = Θγ,γ′ : γ ∩ Λ → γ′ ∩ Λ
be the holonomy map. To show the lemma, it suffices to prove that there
exists K6 > 0 such that for any x ∈ γ and any r > 0,

∣∣∣∣
mγ′(Θ(B(x, r)))

mγ(B(x, r))
− 1

∣∣∣∣ ≤ K6d(γ, γ′)ζ (4.5)

for mγ-a.e.x ∈ γ. Here d(γ, γ′) = sup{d(x,Θ(x)) |x ∈ γ}. If (4.5) is proved,
then the same arguments as in [4] (p. 110) allows us to have the desired
result. Since x 7→ Wu

ε (x) is C1–continuous by Condition 1, we can find
partitions {γi}i≥1 of γ ∩ B(y, r) (mod mγ) and {γ′i}i≥1 of γ′ ∩ Θ(B(y, r))
(mod mγ′) with the following properties:

(a) γi and γ′i are intervals such that γ′i = Θ(γi),
(b) for any i ≥ 1 there exists ni ≥ 1 such that (fR)ni(γi) and (fR)ni(γ′i)

are intervals such that (fR)ni(γ′i) is the Θi image of (fR)ni(γi). Here
γi, γi

′ ∈ Γu satisfy (fR)ni(γi) ⊂ γi ∈ Γu, (fR)ni(γ′i) ⊂ γi
′, and Θi :

γi → γi
′ is a holonomy map sliding along stable disks,

(c) for any x, y ∈ γi, βs((fR)ni (x),(fR)ni (y)) < d(γ, γ′), and the same holds
for x, y ∈ γ′i, and

(d) there exists K7 > 0 such that
∣∣∣ mγi

((fR)ni (γi))

mγi
′ ((fR)ni (γ′i))

− 1
∣∣∣ ≤ K7d(γ, γ′).

Then by (c) and (K-1) for any x, y ∈ γi,

ni−1∑

i=0

log
∣∣∣∣
det(D(fR)i(x)(fR)u

det(D(fR)i(y)(fR)u

∣∣∣∣ ≤
C1

1− β1
d(γ, γ′). (4.6)

Then by the same estimation as above, (4.6) holds with γ′i instead of γi. By
Lemma 4.2(1) for case σ = s and (2.1) we have that for any z ∈ γ,
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ni−1∑

i=0

log
∣∣∣∣

det(D(fR)i(z)(fR)u

det(D(fR)i(Θ(z)(fR)u

∣∣∣∣ ≤
C11L

ζ

1− λζ
s

d(γ, γ′)ζ . (4.7)

Combining (d), (4.6) and (4.7) we have (4.5). ¤

5. Appendix B: Verifying (K-1) and (K-2) under Conditions 1–3

In this section we show that Conditions 1–4 imply (K-1) and (K-2) of
Key Lemma. Throughout this section we assume that f satisfies Conditions
1–4. We say that I is an interval belonged to Wu

ε (x) if there exists an
interval J ⊂ Du

ε such that φu(x)(J) = I. For any interval I ⊂ Wu
ε (x), let

`(I) denote the length of I, and for any x, q ∈ M with d(x, q) < δ, we put
[I, q] = {[y, q] |y ∈ I}.
Lemma 5.1 There exists C13 > 0 such that

C−1
13 `(J) ≤ `([J, q]) ≤ C13`(J).

for any interval J ⊂ Wu
ε (y) and any y, q ∈ M with d(y, q) < δ.

Proof. By Conditions 1, 4 and Lemma 4.2 the same argument from [12]
(Proposition 2.5) allows us to have the desired result. ¤

By Conditions 2, 3 and Lemma 5.1 we easily have the following Lemma
5.2, which implies (K-2).

Lemma 5.2 There exists C14 > 0 such that for any γ ∈ Γu,

mγ({R > n}) ≤ C14n
− 1

α (n ≥ 1).

The next Lemma 5.3 implies (K-1).

Lemma 5.3 There exist C15 > 0 such that
∣∣∣∣
|det(Dx(f i)u|
|det(Dy(f i)u| − 1

∣∣∣∣ ≤ C15d
u(f i(x), f i(y))α

for any i ≥ 1, 1 ≤ j ≤ r, x ∈ Λj
i and y ∈ Λj

i ∩ γu(x).

Proof. To show the lemma, it suffices to prove that there exists K8 =
K8(α) > 0 such that
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1
K8

≤ |det(Dx(f `)u|
|det(Dx′(f `)u| ≤ K8 (1 ≤ ` ≤ i) (5.1)

for any i ≥ 1, 1 ≤ q ≤ r, x ∈ Λq
i and x′ ∈ Λq

i ∩ γu(x).
Let x ∈ Λq

i and x′ ∈ Λq
i ∩ γu(x). Let Ix,i be the connected component

of γu(x)∩Λq
i which contains x ∈ Λq

i . Fix p ∈ S. Let Θp be a holonomy map
to f(γu(p)) by sliding along stable disks. We denote Ii = Θp ◦ f i(Ix), and
I = f(γu(p)) \ γu(p). Then we have that Ii ⊂ I for any i ≥ 1. By Lemma
5.1 we have that `(f j(Ix,i)) ≤ C13`(f j−i(Ii)) for 0 ≤ j ≤ i. Then we have
that

du(f j(x), f j(x′)) ≤ C13`(f j−i(Ii)) (0 ≤ j ≤ i). (5.2)

Using Conditions 2 and 3 we have that `(f−k(Ii)) ≤ K9k
− 1

α−1 for some
K9 > 0 ([26], see also [10] Lemma 4.6), from which

∑
k≥1 `(f−k(Ii))α < ∞.

Noting that d(f j(x), f j(y)) < δ3 for any 0 ≤ j ≤ i − 1, and combining the
arguments as above with Lemma 4.2(2), we estimate that

∑̀

j=0

log
|det(Dfj(x)f

u)|
|det(Dfj(x′)fu)| ≤ C11

i−1∑

j=0

d(f j(x), f j(x′))α

≤ C11C
α
13K

α
9

∑

k≥1

k−1−α, (5.3)

which proves (5.1) for K10 = exp{C11C
α
13K

α
9

∑
k≥1 k−1−α}.

By (5.1), (5.2) and Lemma 5.1 we have that

du(f j(x), f j(y))
`(f j−i(Iq

i ))
≤ K8C

2
13

du(f i(x), f i(y))
`(Iq

i )
(0 ≤ j ≤ i− 1).

Substituting this into (5.3), we conclude the proof. ¤
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