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Decay of correlations for some partially hyperbolic

diffeomorphisms
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Abstract. In this paper we study a C'T%-partially hyperbolic diffeomorphism f of
which restriction on one dimensional center unstable direction behaves as Manneville-
Pomeau map. We show that f admits a unique ergodic SRB measure with polynomial
upper bounds on correlations for Holder continuous functions.
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1. Introduction

Let M be a d-dimensional closed manifold (d > 2) and f be a diffeomor-
phism of M. It is well known that any C?-transitive Anosov diffeomorphism
f admits a unique invariant measure p which has absolutely continuous con-
ditional measures on unstable manifolds ([25]). This result holds for any
Axiom A diffeomorphism f and (f, ©) has exponential decay of correlations
for Hélder continuous functions ([6], [22]).

An invariant probability measure p is said to be a Sinai-Ruelle-Bowen
measure (abbrev. SRB measure) if (i) x4 has positive Lyapunov exponents
and (ii) p has absolutely continuous conditional measures on unstable man-
ifolds (see Section 2 for the precise definition). The existence of SRB mea-
sures with exponential decay of correlations is discussed in [5] for Hénon
maps, and in [7] for some partially hyperbolic diffeormophisms.

f M O is called an almost Anosov diffeomorphism with uniformly
contracting direction if there exist a norm || - || on M, 0 < A < 1 and a
D, f-invariant decomposition of the tangent space T, M = E*(x) ® E"(x)
such that the set S :={z € M | | D f "|gu(z)l| =1 (n > 0)} is finite and
consists of fixed points for f and such that

ID2flp@)l <A (@€ M), |IDaf puwll <1 (z€M\S).
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This paper shows that there exist C'T*-almost Anosov diffeomorphisms f
of M with uniformly contracting direction such that f admits a unique SRB
measure with polynomial upper bounds on correlations (Theorem), which
is related to [20] and [28]. More precisely, we impose on f the following
Conditions 1-4.

Condition 1  f is a C'*%almost Anosov diffeomorphism (0 < a < 1) of
M with co-dimension—one uniformly contracting direction.

Given 0 < e <1, let D? and D{ be the closed balls of radius ¢ centered
at the origin in R and R%~! respectively. Let Emb"(D?, M) (r > 1) denote
the set of C"-embeddings of DZ into M with the C"-topology for o = s, u.
By Condition 1, it follows from Theorem 5.5 in [11] (see also [23] Theorem
IV.1) that there exist two continuous maps ¢° : M — Emb'(I;, M) and
% : M — Emb'(I;, M) with ¢°({z} x 0) = = (z € M, 0 = s,u) such
that for any € € (0,1] the local stable and local center unstable manifolds
Ve(x) := ¢*({a} x L) and VX' (x) := ¢"({x} x ) satisfy T,V () = E7(x)
for 0 = s,u (for more details, see Sections 2 and 4).

Condition 2 ¢ is a continuous map from M to Emb?(D¥*, M).

Since p € S is a fixed point for f, we have that f=1(VX(p)) C V(p).
Then f restricted to V*(p), flve(p), is a map from f~'(VX(p)) to VX(p).
By using ¢" we can identify DY = [—¢,¢] with V*(x) for any € M. Then
p corresponds to the origin 0 in D¥, and thus 0 is a fixed point for f|vsu (p)-

Condition 3 For any p € S the graph of f‘vsu(p) can be represented as

T+ 21T+ 0(2?) (2 >0),
z—|z|'T — O(2?) (2 <0).

flvag (@) = {

f is called topologically mixing if for any open sets U, V' C M there exists
N > 0 such that f™(U)NV #0 (n > N).

Condition 4 f is topologically mixing.

Let 'H, be the set of Holder continuous functions of M with Holder
exponent 7. We say that (f, ) has polynomial upper bounds on correlations

for functions in H,, with exponent T > 0 if for any ¢, ¥ € 'H, there exists
C' = C'(¢,1) > 0 such that
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Cory, (@, ;1) = ’/(sOOf")wdu— /wdﬂ/%bdu‘ <C'n™" (n>1).

Theorem Let f : M O be a diffeomorphism satisfying Conditions 1-4.
Then f admits a unique ergodic SRB measure v and (f,v) has polynomial
upper bounds on correlations for functions in H,, with exponent min{(a’) ™ —

1,a=1n} for any o € (a,1).

In order to establish Theorem, we prove Key Lemma below. In fact,
assume that f : M O satisfies Condition 1. Then f is expansive and satisfies
shadowing property (Lemma 2.3). Here f is said to be ezpansive if there
exists § > 0 such that if ,y € M and d(f*(x), fi(y)) < 0 (i € Z) then z = y.
A sequence {z;}icz C M is called a §-pseudo orbit for fif d(f(z;),xit1) <O
forall ¢ € Z. A point x € M is said to be an ¢-shadowing point for a d-pseudo
orbit {z;}iez if d(fi(z),x;) << (i € Z). We say that f satisfies shadowing
property if for any ¢ > 0 there exists § > 0 such that for any §-pseudo orbit
there exists at least one ¢-shadowing point.

Thus it follows from Theorem 4.2.8 in [3] that f has a Markov partition
Q = {Q;}l_, (see [6] for the definition) with arbitrarily small diameter. By
Condition 1, f is uniformly hyperbolic on

A:=M\P where P:= int( U Qi).
zQJTS;é(Z)

Here int(A) is the interior of a set A. Let R(z) be the smallest positive
integer n > 1 such that f™(z) € A for x € A. For any Q;, € Q and x €
int(Q;), let v (x) := Vo (x) N Q; (¢ = s,u). Since f(v*(z)) C v*(f(z)) for
any x € M, R is constant on each v*(x). We define the first return map f% :
A O by (f®)(z) = fB@)(z) for x € A. Let m denote the Lebesgue measure
on M. Since the points z such that R(z) = oo lie only on f~(v*(p)) \v*(p)
(p € S) by Condition 1, R(x) < oo for m-a.e. z € A. Thus f® is well
defined for m-a.e. z.
Define

Ai={yeA[R(y) =i} (i=1),

then fB(z) = fi(z) for any z € A;. Let Q) := Q; \ U;;%)Qj (1<i<r).
Then Q' := {Q}}7_; is a partition of M. Dy := {Af li>1,1<j<r}
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(where Az =A; N Q;) is a partition of A. For z,y € A, the separation time
s(z,y) is defined as the smallest n > 0 such that (f%)"(z) and (fF)"(y)
belong to distinct Az ’s. For any submanifold v C M let m, denote the
Lebesgue measure on v. Let f“ denote the restriction of f to the local
unstable manifolds.

Key Lemma Let f: M O be a diffeomorphism satisfying Conditions 1,
2 and 4. Assume further that f satisfies the following properties:
(K-1) There exist C; > 0 and 0 < $1 < 1 such that

|det(Da(£*)")] SO @), ()
log ————=+ < C1f ’
|det(Dy (f)")] '

foranyi>1,1<j<r, xEAg (mdyeAgﬂyu(x).
(K-2) There ezists T > 1 such that

Mmyu(@)({y € M | R(y) > n}) = O(n™7)

for any x € A.
Then f admits a unique ergodic SRB measure v and (f,v) has polynomial
upper bounds on correlations for functions in H, with exponent min{r’ —
1,7} for any 7" € (1,7).

It will be shown in Appendix B that Conditions 2 and 3 imply (K-1)
and (K-2) for 7 = a™! (Lemmas 5.2 and 5.3).

This paper is organized as follows: In Section 2, we collect definitions
and preliminary results (Lemmas 2.1-2.6) to show Key Lemma. Proofs are
postponed to Appendix A. In Section 3, we prove Key Lemma. The strategy
is the following: Using the argument as in [27] (cf. [10]) we construct a
tower map F conjugating to f and a quotient tower map F by collasping
the local stable manifolds. We estimate that the correlation function for f is
approximated by that for F' with polynomially error (Lemmas 3.6 and 3.7).
Then we apply the result of [17] to F' (Lemma 3.8), and obtain polynomial
upper bounds on correlations for f.
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2. Preliminaries

In this section we give definitions and preliminary results to show Key
Lemma. An invariant probability measure p is said to be an SRB measure if
(i) u has non-zero Lyapunov exponents and (ii) p has absolutely continuous
conditional measures on unstable manifolds (abbrev. acecm) whose notion
is defined as follows: Assume that g has non-zero Lyapunov exponents.
Describe the unstable manifold at x as

W (x) = {y eM

fmsup * log (/" (2). (1) <0
([19]). Here d is the Riemannian metric on M. Let B be the Borel o algebra
of M. Let { be a measurable partition of M and B¢ be the set of all Borel
subsets which consist of the unions of the elements of £. Then there exists
a family of conditional probability measures {u$} (p-a.e.z) such that for
p-a.e.x and B € B, uS(B) is a Be-measurable function of z and

p(BNB) = [ i (B)dnta) (B e B

(see [21]). Then p has accm if for any measurable partition £“ such that
£“(x) C W*(x) and contains an open neighborhood of z in W*(x) for p-a.e.
x, the canonical system {u%} (p-a.e.x) of conditional measures of p w.r.t.
£" is absolutely continuous w.r.t. myyu(z) (U < My (gy) ([15], [9]).

We use the following lemmas. Assume that f satisfies Condition 1. For
any ¢ € M and € € (0,1], let W2(z) := VZ(x) N B:(x) (0 = s,u) where
B.(z) is the ball centered at x with radius e. Then there exist L > 0 and
A < Ag < 1 such that

a(f" (@), f"(y)) < L-Ajd(z,y) (n=0) (2.1)
for any y € W2(x) (z € M) (see [23] p.79).

Lemma 2.1 For any x € M and y € W (z), T,W*(xz) = E*(y).

The following lemma ensures the local uniqueness of the local unstable
manifolds.

Lemma 2.2 For any x € M, there exists a unique WX (z) such that
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T.W¥(x) = E*(z).

Lemma 2.3 (1) f is ezpansive and satisfies shadowing property, (2) f has
a Markov partition with arbitrarily small diameter.

Lemma 2.4 There exist Cy > 0 and 0 < By < 1 such that for any x € A,
y € y*(x) with s(x,y) < oo and 0 < k <n < s(z,y) — 1,

ilo ‘det(Df’(x)fuN <Y ﬁs(ac y)—n
|d€t(sz(y)fu)’

Lemma 2.5 There exist C3 > 0 and 0 < B3 < 1 such that for any x € M,
y€*(z) andn >1

ilo |det(Dgi(q) f*)]

< C306%.
|det(Dyigy f4)] = 273

i=n

Let (X1,m1) and (X2,m2) be finite measure spaces. We say that a
measurable bijection T : (X1,m1) — (Xao,ms) is absolutely continuous (or
nonsingular) if it maps mi-measure 0 to sets of mo-measure 0. If T is
absolutely continuous, then there exists the Jacobian J(T') = Ji,, m,(T) of
T w.r.t. m; and my which is the Radon-Nykodym derivative M
Let

I :={7"(x)|z € Q;,QNP=0} (oc=s,u).

For any v,+" € I the holonomy map O, : vy N A — v N A is defined by
©, 4 (z) =~°(x) Ny'. Then O, is bijective.
Lemma 2.6 If f satisfies (K-1), then for any v,7" € I'" the holonomy

map ©, . is absolutely continuous and

ﬁ |det(Dyi(py f*)]
o ldet(Dyio () ™)l
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3. Proof of Key Lemma

Throughout this section let f be a C'*“-diffeomorphism of M. Assume
that f satsfies Conditions 1, 2, 4, (K-1) and (K-2). To show the existence
of SRB measures, we need the arguments used in the proof of Theorem 1 in
[27].

Lemma 3.1 % admits an invariant probability measure p such that p® <
Mo (gy With pi(w) < co - Mau(yy(w) for p-a.e.x € A and any Borel set
w C y*(z). Here co >0 is a global constant.

Proof. For any 9 € I'*, let m,, denote the Lebesgue measure on .
Define a probability measure on A by

n—1 RN\J
[ = l (f )im’YO (Tl Z 1)
n J=0 Moy (70)

Then there exist a subsequence {fin,};>1 C {ftn}n>1 such that {p,;} con-
verges to a f invariant probability measure p.

For any j > 1 let p; be the densities of (fR)] (m~,) on the components
of (fB)i(y0) N Qj, for 1 < k < r. Using the argument in [26] and [27] (see
also [1], [16], [24]), (K-1) ensures that there exists K > 0 such that

<K

for any j > 1 and z, y which belong to the same component of (f#)7(v9)NQY}.
Therefore we have the lemma for p by [27] (cf. [8], [10]). O

Let pp be as in Lemma 3.1 and define an f-invariant measure by
e .
po= Zfifl(uo\{Rzz‘})
i=1

Since fv Rdm. < oo (y € T'") by (K-2), i’ is a finite measure by Lemmas
2.6 and 3.1, and so normalize u' (we denote it by v). Clearly v satisfies
accm by Lemma 3.1, and furthermore v is an SRB measure by the following
Lemma 3.2.

For any f-invariant ergodic probability measure u let B(u) be the set
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of points z such that

n—1
nliggoi;w(fi(w)) Z/sodu

for any continuous function ¢. Then by Birkhoff’s ergodic theorem we have
u(B(w)) = 1.

Lemma 3.2 v is a unique ergodic SRB measure.

Proof. Put Sat(Q;) := U{r®* e T [y* N f*(Q;) # 0, n € Z} for any 1 <
i <r. Then f(Sat(Q;)) C Sat(Q;). Discard those Q; with v(Q;) = 0. Let
v; be the normalization of v[g,y(g,). To establish the lemma, let us show
that (i) v; is ergodic and (ii) v; has non-zero Lyapunov exponents.

We show (i). Since v is as in Lemma 3.1, Condition 1 and Lemma 2.1
allow us to apply arguments from [4] (pages 118,119) to (f, v;) to estab-
lish that the forward Birkhoff average of any v;—integrable function % is a
constant on Sat(Q;) (mod v;). This implies that v;(A) = 0 or 1 for any
f—invariant set A.

To prove (ii) it suffices to establish that v; has only positive Lyapunov
exponents along E*. The ergodicity of v; implies that for v;—a.e. = there
exists ng > 1 such that {0 <i <n—1| fi(z) € M\ P} > n% for any
n > ng. This combined with Condition 1 implies (ii).

Let v; be as above. Assume that f admits another ergodic SRB measure
p. By Condition 4, it follows from arguments in [12] that there exist Q; €
Q and x,y € Q; such that m.ui (7" (2) N B(vs)) = myu)(y" (7)) and
M (yy (Y (y) N B(p)) > 0. By Lemma 2.6, we can find z € v*(z) N B(v;)
such that v*(z) Nv*“(y) € B(u). Therefore we have v; = p. O

3.1. The tower map F.

To obtain polynomial upper bounds on correlation for (f, v), we check
it for the tower system conjugating to f which is described by L.-S. Young
(126], [27]).

A tower A is a union of the /-th floors Ay for £ € Zt where Z1 :=
{0} UN. The base A is a finite measure space (A,m). A is defined by a
countable partition Dy := {A?};>1 1<j<, of A (mod m) and a function R
with R; := R|,; for Ag € Dy. Here A, Dy and R be as in Introduction. Let
Ay be a copy of a part of A by
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Ag:={(z,0) |z € A, £ < R(z)}.
Let AZ)Z. be a copy of Ag by
A= {(z,0)|z € A, £ < R(x)}.
Then a system F' on the tower A = Uy>0A, is defined by

e ) (x,0+1) ifl+1< R(x)
@ )'_{(fR(x),O) if £+ 1=R(x).

Here f® : A — A is the first return map. Identifying A with Ay, we can
define the map F® : Ag — Ag by FE(z) := (fF(z),0) for any x € A,.
Define the partition of A by

D= {A} }ex0.iz11<5<r (3.1)

For any A%’i € D and v* € I'*, the Ff-image of each component of ~* QA%JA
is a union of some elements in I'*. Thus D is a Markov partition for F' in
the usual sense.

3.2. Quotienting map F

Define a relation x ~ y if y € v°(z). By this relation we define the
quotient space A := A/ ~ by identifying points on each v* € T'*. A, and
Zzi are defined similary. Since F' sends v € I'® to 7/ € I'*, a quotinent map
F: A — Ais well defined.

We define a reference measure m on Ag := Ag/ ~ by the following way
which is introduced in [27]. If it is done, we can define the measure 7|5, by
using the natural identification of A, with a subset of Ay such that J(F) = 1
except on Fﬁl(Zo), where J(F) = J (fiRofi(Ril)). Here fF is defined by
the similar way as above.

Take an arbitrary 4 € I'*. Let & := v*(x) N4 for any = € A and define

n—1

Op(x) =Y (WU(f'(2)) — 0" (f1(2)))

=0
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where " (z) := log|det(D, f*)| for any z € M. By Lemma 2.5 there exists
a function ® such that @, converges uniformly to ® as n — oo. On each
v € I'* define m., = eq)mﬁ. If fR(Ag N~) C 7 holds, then for = € Ag N~y we
write J(fF)(z) = I, (ff |Agm)($).

By (1) of the following Lemma 3.3 the measure m on Ay whose repre-
sentative on each v € I'* is M., is well defined. By (2) of the lemma J(f%)
is also well defined w.r.t. m.

Lemma 3.3 (1) For any v,y € T" let © = ©, 4 : v — 7 be the sliding
map along the local stable manifolds. Then ©.m. = M.,

(2) J(F)@) = J(FF) ) for any y € v°(2),

(3) There exist Cy > 1 and 0 < B4 < 1 such that

J(fF)(x) s(FR (@), ()
‘J(fR)(y) - 1‘ = Cafl '

foranyi>1,1<j<r,vyel™ andm,yé’yﬂAz.

Proof. By the same argument from [27] (see also [10] Lemma 3.4), we have
(1) and (2). To show (3), we estimate |®(z) — ®(y)| for any z,y € Al N~“
as follows: Choose $s(z,y) < k < £5(x,y). We have that |®(z) — ®(y)| <
(I) + (II) where

k—1 k—1

0= |3 @ (P @) - e P W) - 3 @ @) - (P @)
Jj=0 j=0

) =| 3 @ @) - v @) - 3 P w) - w%fﬂ‘(y)))\.

<.
Il
>
I
>

j
Using Lemma 2.4, (I) < 6’252 . By Lemma 2.5, (II) < C’gﬂs . Thus
(1) + (1) < 2(C5 + Cp);0" 100, (3.2)

Here 0 < (84 = max{/, 1/2, 1/3} < 1. By the similar argument as above
we have

|D(FF(2)) — B(FR(y))| < 2(Cs + Co) 7w, (3.3)
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Therefore, by (3.2), (3.3) and (K-1), there exists C] > 0 such that

tog 2@ _ 14D e
TP )~ 1aet(D, floe)]
— (/™ (y) — (2(x) — 2(y))

R R
< (O] +4(C3 + C)) g3 17

+@(f"(x))

which concludes the lemma. O

(K-2) and Lemmas 2.5 and 2.6 imply that m({Ro7 ! > n}) = O(n™")
for some 7 > 1. Here @ : A — A is the projection such that 7o F = F o T.
Then we have that [+ X Ro7m ldm < oo. We summarize the properties of
F: A — A as follows:

(a) FE : Zé,i — FR(AOZ) is bijective and ﬁ(ﬂfm) is a union of
some Zq 's (mod m), and furthermore there exists n > 0 such that
inf>; 1<]<T{m(FR( Oz))} 21,

(b) D := {A52}5>0,Z>1 1<j<r is a partition such that V52 F (7) is the

partition mtoipouilt’s o ‘ '
(c) m(A) =m(F(A)) for any A C Ay, with F(A) C Ay, ,, and

(d) for any @ > 1 and 1 < j < r, Ff|g, and its inverse are nonsingular
0,1

w.r.t. m.

We redefine the separation time 3(-,-) on A as follows: Firstly for any z, 7 €
Ao, 5(Z,7) is defined by s(x,y) where (z,0) € 771(Z) and (y,0) € 7~ ().
Secondly for any Z,y € Ay, 5(Z,¢) is defined by 5(zg, 7o) where Zg, 7o € Ag
are the unique preimages of Z,7 by F*, i.e. F*(Zo) = Z and F*(jo) = 7.
Otherwise s5(z,y) = 0.

(e) J(FE) satisfies that ﬁg;g -1 < Cgﬂ?ﬁ(i)’ﬁ@)) for any ¢« > 1

and T,y € Z&i, and
(f) for any ¢, ¢/ > 0, i, i’ > 1 there exists N > 0 such that F’"(&,i) N
Ay iy # () for any n > N (by Condition 4).

Let Cs,(A) = {7 : A — R|3Cs > 0s.t. [3(z) — ()| < Cofy ™Y
(V2,5 € A7)}
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Lemma 3.4 F admits a mizing invariant probability measure U such that
dv = pdm. Here 0 satisfies ¢g ! < 0 < ¢ for ¢y > 0 with

0(z) - o(9)| <@p"Y (2,5 € Ay,).

Proof.  Applying the arguments as in [1], [13], [16], [17], [26], [27], [29], [10]
gives the lemma. O

We define the transfer operator associated with F' and the measure m
by

(3.4)

for p € L*(m) and Z € A. Then £(9) = 0 where 7 is as in Lemma 3.4. Let
L*>°(m) be the set of functions which are essentially bounded w.r.t. m. We
denote the essential sup norm w.r.t. m by || - ||s. For any 1 € Cp, (A) we
define [|] := max{|[¢[|oo, C}-

Proposition 3.5 ([17] Proposition 3.13, Corollary 3.15) Let w :=
{w(€)}oez+ be a positive increasing sequence such that (i) 3,0, w(l) m(A,)

< oo and (ii) the sequence {wq(ﬂe(ﬂ)}gil is also increasing. Then there exist

ki = ki(w) € N and Cs = Cs(w, k1) > 0 such that for any ¢ € Cs(A)
with fg?)dm =1, any n € N with n = kij +r for some 7 € N and
ref{0,....,k1 — 1}, and any £ € ZT,

PN == n w(@)
swp [£7(8)(@) — o(@)] < s ol s

where ¢ is as in Lemma 3.4.

Throughout this section, we fix a positive increasing function v : R —
R such that (i) for any v € T, > 2, v({)m,({R > {}) < oo, and (ii)
the sequence {%};‘il is also increasing. By Lemma 3.3(1) we have that
Yoo v(0) m(Ay) < co. Then we let ky = k1(v) € N and Cs = C5(v, k1) > 0
as in Proposition 3.5. Then by Proposition 3.5 we have that for any n > 1
and ¢ € Cg, (A) with [dm =1,



Decay of correlations 51

sup |L"(4)(2) - o(2)| < C5(¥)

(£>0) (3.5)
TEA, v(

where

CL@) = _max {”(%)

0<j<ki—-1 | v(0)

(L7 (@)oo + ||Q||oo)»05||¢||}- (3.6)

3.3. Polynomial upper bounds on correlations for F

Let 71 : A — M be the natural projection by mi(z,¢) = f*(x) for
(z,£) € A. Then we have fom = m o F. For any function ¢ : M — R,
let @ be the lift of ¢ to A defined by ¢ = ¢ o m;. Define an F-invariant
probability measure 7 by 7 = v o 71, and the correlation function for (F,»)
by Cor, (@, ;D) = | [(@o FYpdo — f@dﬂf@f}dﬂ‘. Then we have that
Cor,(p,9;v) = Cory(p,4; 7). We define D; := ngOF_i(D) for any j >0
where D is as in (3.1). For any € A let Dj(z) denote the element of D;
which containts .

Lemma 3.6 There exists Cg > 0 such that for any k > 1 and x € A,
diam(m o Fk(ng(l'))> < Cgk™".

Proof.  Put g =~°(y1)Nvy“(y2) for y1,y2 € Do (z). Assume that Dok (x) C
A, for some [ > 0. Then there exist 49, yJ and 7° € Ay, such that F*(y)) =
y1, FX(39) = y2 and F*(9°) = 4. Since f o m = m o F, we have

d(mi o FR(§),m 0 F*(y)) = d(fFH(5°), £ (19)).

Using Condition 2, (K-2) and Lemma 5.1 we have that (see [10] Lemma
4.12) there exists K; > 0 such that

d(f* (5, fHR) < Kk (3.7)

Note that m o F~*(§)) € v*(m1 o F~*(y1)). Then we have that d(m; o
F=(g),m 0 F~*(y1)) < 1, and thus by (2.1)

d(m o F¥(y1),m o F*(§)) < d(f* om0 F~(y1), f+ om0 F74(H))

< LAk, (3.8)
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Combining (3.7) and (3.8), we estimate that d(m; o F*(y;), 71 o F¥(y)) <
K1k~ + LAk, This concludes the proof.

O

For any continuous function ¢ define a function @* : A — R by B*|A =
inf{@(z) |z € F*(A)} for A € Dyy,. Put ¢ = d(FF(p,0))/dp.

Lemma 3.7 For any ¢,¢ € H,, there exists C7 = C7(p,v) > 0 such that
forany 1 <k <n,

| Cory (¢, ;) — Corn_i(B*,4hy; )| < Crk™™.

Proof.  Using the same argument as in [27] it follows from Lemma 3.6 (see
also [10] Lemma 3.9) that there exists Ko = K3(¢,1) > 0 such that

|Cor g (¢ 0 F*,1b; ) — Corpi (@, 45 7)| < Kok~
|Cory—i (@, 95 7) = Corng (9", 0n; 7)| < Kok™™ (1 <k <n).
This concludes the proof. O

Let k € N be such that k € [§, §]. Since @k and @"* are constant on

v$ €T and To F = F o7, we have by Lemma 3.4 that
/(¢kopn—k) .@zkdp:/(gpkm—lopn) T
= /gpk o ! -Z”(@k o7 . p)dm,
where p is as in Lemma 3.4. By the similar argument as above, we have

that [@"dv = [@* o7 ! - pdm and f@kdﬁ = f@k o7 tdv. Thus we have
that

COI‘n k 80 wkn )

‘/(p o E”(?/J o ,Q)d’m—/(pko7r1-gdW/¢ko7rld7

Let ay = 2max |¢p| + 1. Then it follows from the argument in [26] (page
175) (cf. [10] Lemma 3.10) that
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COI’n_k (¢k7 QLka 17)

oo
< 2a, max || Zm Ay) su
=0 ;Y:EA@

p |2k 052k<f(¢k + ay)

where £ is as in (3.4). Since Cor,(p,¢;v) = Cor,, (¢, 1; 7), Lemma 3.7
implies that

COfn(% ¢; V) < Cornfk (@kv &k; ﬁ) + C'7'I€_‘M7' (310)

_ —k __ _
To apply Proposition 3.5 to £2k<f((%,€(z;7—:j%) in (3.9), we

Fok (" o7 'tay)s A
need to show that L <W€°f‘—1+ai);> € Cs,(A) and the constant

_ —k _

Ci (E% (f((%koii—llia’”));)) as in (3.6) is bounded above by some constant
o1 aw 17

independent of k.

Lemma 3.8 There exists Cs = Cs(1,0) > 0 such that

W |

—k
Ej“’c( (i — tay)e )H <Cy (0<j<ki)
J@ o7t +ay)dv

(o) (o)

< Csﬁi(z’y) (x,y € Ay;i).

Here ki is the number as in Proposition 3.5.

Proof. We note that L()(z) = Yoo T (#)=z J(; )( z') for ¢ : A — R and
¢ > 1. By Lemma 3.3 it follows from the same argument in Theorem 1 in [26]
(see also [10] Lemma 3. 5( )) that there exists K3 > 0 (independent of ¢) such

that > _ < K3. Since v is Holder continuous, there exists

@/ F(a')=2 J(F)( ’) -
Cy > 0 such that \w o7 1(z)| < Cy for any x € A. Since@ o ltay >1,

— . Tk == -
by Lemma 3.3 we have that ‘Eﬁ'% (&27—%) (i)’ < K3(Cy + ay)to
for any x € A. (1) is shown.

We prove (2). For any Z,j € Ay, let {Z};en, {#)}jen be the paired
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preimages of Z,y by F2¥, i.e. for any j € N, F%(_’) = 7 and F%(g;) =7,
and for each j € N and every h € {0,...,2k}, F"(z}) and F"(}) belong to
the same element of D. Using that wk + ay > 1, we have that

(o0 ) ({08 ) ) < a4 v

(Vr + ay)dv (Vi + ay)dv
where
oo 1 ~ /
(I11) :;J(F%)(g)’w k(T) + ay) 0(Z5) — (V(7)) + ay) 8(75)],
- ., 1 J(F?%)(57})
1) = 3165 + ) 20 5y ey -1

We estimate (III). By the definition of 1y, 1 is constant on each element
of Dy, where D; = v{ZOF—i(@). Since 7/ and 7 are belong to the same
element of Dy, we have that for any j € N, (¢x)(Z}) = (¥x)(¥;). So we
estimate that

| (41 (] )+a¢) o(z) — (Vw()) + ay) o(y;))|
= (¥ (@]) + ay) (0(z5) — o(7})))]
SQ%!@ ;) — o(y;)|
< 2ay e F°% %) (- Lemma 3.4)
(.

S 2(111, %ﬁg(?’g,) ( vaj) 2 g(jag))

Substituting this into (III) and using the inequality »__

-——t—— < K3 ([10] Lemma 3.5), we have that
J(F™) (@)

5" (w’)—x

(I11) < 2ayeoK33°@).
By Lemma 3.3(3) we have that for any z,57 € D € Dayy, E?;;Ex; -1
Cy BEEF@F @) (see [10] Lemma 3.5(1)). Using this inequality and
Lemma 3.4, we esimate that (IV) < (Cy + aw)%Kg)CélﬁZ(m’y). Therefore
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(ID) + (IV) < 2K325(Cyy + a)Ca B3 7.

(2) is proved. O
Let 7> 1beasin (K-2). Forany 1 <7/ <7, let v(t) =1 (0 <t < 1)
and v(t) = t7 ! (¢ > 1). Then by Lemmas 2.5 and 2.6, we have that
o0 m(A Aok ($" o 1 tay)e ) —
% v(0)(By) < co. By Lemma 3.8(2), £ <—f@koﬁ—1+aww € 05, (D).
Then by (3.5) we have that

sup
TEN,

<o <£—2k(f(¢’“ oT ' 4 ay)o )) : U(ff_ggk (n>1).  (3.11)

. (Ek o t4ap)o \,.. _, _
L2 o L7 T)—olx
(f(¢k ol 4 a¢)dy>( ) o)

(¢ o ' 4 ay)dv

_ —k _——1 _
By (3.6) and Lemmas 3.4 afd 3.8, we have that Cf (L% (%))
< Cg where (g := max { uig(?))) (Cs+7¢o), C5Cg} (see [10] Lemma 3.12). Thus
by (3.11) we have that

Z”—%oc‘?k( (0 om' +ay)o )(x)—g(m)

sup — < —
zeh, [@" 07! + ay)dp v(25%)

(3.12)
By (3.9), (3.10) and (3.12) we have that

1
Cory,(p, ;) < Cro——y T C7k7™ (n2>1)
v(25%)

where Cip = 2ay max |¢|Cy >0 v(0)m(Ay). Since k € [%,%] and v(t)

increases with ¢, we have that v(2) < v(252£), and obtain that

1 4 7' =1
COI‘n(QO,dJ; V) < 0107 + C7k™™ < Cqp <> + 3™Cn T,
v(%) n

The proof of Key Lemma is complete.
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4. Appendix A: Proofs of Lemmas 2.1-2.6

In this section we prove Lemmas 2.1-2.6. Throughout this section we
assume that f : M O is an almost Anosov diffeomorphism with uniformly
contracting direction (not necessarily co-dimension one uniformly contract-
ing direction). We begin by noting the basic properties of the local stable
and center unstable manifolds. We have the following (]23]):

(i) T,WZ(x) = E?(x) for 0 = s, u,
) W2(z) C{y € M|d(f"(x), f"(y)) < € for any n € Z¥},
iii; fW2(z)) c W (f(2)),
)

WZ(z) (o = s,u),
d? (y,z) < L1d(y,x) (4.1)

where d” denotes the Riemannian distance measured along W7 (z).

Since the correspondence x +— W (z) is continuous w.r.t. the C! metric,
there exists d; > 0 such that if z,y satisfies d(x,y) < d1, then W2(x) and
W (y) have a single transeverse intersection point, so write

[z, y] = Wi (x) N W2 (y) (x,y € M with d(z,y) < d1). (4.2)

Proof of Lemma 2.1. It suffices to show that for any * € M and y €
Wit (z), T,W(r) = E"(y). Arguing by contradiction, assume that there
exist x € M and y € Wy (x) such that T,W(r) # E"(y). Then there
exist z € B, (x) \ Wy (x) and a piecewise C'-curve C : [0,1] — M with
C(0) = = and C(1) = z such that (a) the length of C([0,1]) is less than
6, and (b) %L(t) € E*(C(t)) for any 0 < t < 1. Indeed, since the set
A= {z € Wi ()| T.Wt(z) = E"(2)} is closed in W!(z), the set A° is
open. We let y' € CI(A€) be such that d*(z,y’) = d“(x, C1(A°)). We take
a C'—curve 71 : [0, 3] — W (z) with 71(0) =  and 71(3) = ' such that
%(t) € E“(y1(t)) for any 0 < t < 1, and the length of v, is less than
61/2. Then we can find a Cl-curve vo : [3,1] — Bs, (y') with y2(3) = ¢/
and z 1= y2(1) ¢ W2(z) such that %(t) € E%(y2(t)) for any § <t <1,
and the length of 75 is less than 6;/2. It is clear that a piecewise C'-curve
C:[0,1] — W (x) defined by Cjg 17 := 71 and Cy 1) := 72 is desired. Since
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We (0 %

Figure 1. a figure of C([0,1])

d(z,z) is less than the length of C([0,1]), by (a) we have that d(z,x) < d;.
Thus W$(z) and W2 (z) have a single transeverse intersection, w = [z, z]
(see Figure 1).

Since [ Dgf ™" |r,c0,1) || < |1Dgf ™" [Eu(q)|l < 1 for any ¢ € C([0,1]) and
n € Z* by (b), we have that for any n € Z*,

dp-nc(f7"(2), 7" (@) < de(z,2)(< 01) (4.3)

where d;-n¢ is the Riemannian metric on f~"(C([0,1])). Then we have
that for any n € Z*, d(f~"(z), f"(x)) < 1, and so we can define for any
nezt,

[f77 (), f7 ()] = W2 (F 77 (2)) N W (7 ()

Since w is the single transeverse intersection of W2(z) and W*(x), we have
Y (w) = [f~Y(2), f~'(x)]. Repeating this manner, we have that for any
ne€Zt,

[ w) = [F7"R), @) M (w) # F7 () (4.4)

Thus, for any n € Z*, f~"(w) € W2(f~"(z)), and then d(f~"(z), f~™(w))
< e. By (2.1) we have that for any n € Z*,

d(z,w) < LX(f (=), f " (w)) < LATe.

Therefore, taking the limit as n — oo, we obtain that d(z,w) = 0. This is a
contradiction since z # w. O
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Proof of Lemma 2.2. Since the correspondence z — WZ(x) is continu-
ous w.r.t. the C! topology (0 = s,u), there exists & > 0 such that if
d(y,y’) < ¢, then d(y, [y,y']) < d1/2 and d(y, [y, y]) < d1/2. Assume, by a
contradiction, that there exist y,y’ € By (x) with [z,y] # [z,y'] such that
W2(y)NWE(y' YN B (x) # 0. Then there exist z € W (y) "W (y")N Bs ()
and 2’ € (WX (y") \ W2(y)) N Bs/(x). By definition of ¢’, d(z,z’) < §1. By
(4.2), W2 (z) and W (2') have a single transeverse intersection, w := [2/, z].
We have that

1 w) =D MR M) #FED) (n20).

This implies that f~"(w) € WZ(f~"(2)) for any n > 0. Since d(f~"(w),
f7"(2")) < e, we have by (2.1) that d(w,z’) < LA?¢ (n > 0) and thus
d(w,z") = 0. This is a contradiction with the fact that w # 2’. O

For any n > 0 and = € M let WZ(&') ={ye M|d(f~"(y), f"(x)) <
n(n > 0)} and W, (2) = {y € M|d(f"(y), f"(x)) < n(n > 0)}. For the
proof of Lemma 2.3 we need the following Lemma 4.1.

Lemma 4.1 For anyx € M, ng/z(x) CcWZ(x) C Wzls(x) (0 =s,u).

Proof. We show that W:;lm(a:) C Wk(x). Take z € ng/z () and assume
z & W(z). Then WZ(z) and W} (z) have a single transeverse intersec-
tion, w = [z,z]. By the same argument as in (4.4) we have f~*(w) =
[f7F(2), f% ()], f7%(w) # f~%(2) (k > 0). Using (2.1) we have d(w, z) =
0. This contradicts that z # w.

To prove that W (z) C Wzle(:c), it is enough to show that for any
y € WX(x)and n > 0, d*(f~"(z), f"(y)) < Lie. Since d“(z,y) < Lie
for y € WX(z), it is obvious the case when m = 0. Assume that
d“(f~™(zx), f~"(y)) < Lie. Then we have that

d"(f7" (@), f7 ()
< sup {[| Do (f )" [l w € [T (W2 (2)) }a" (f " (), F " (y)).
Since [[Duw(f~H)"l = I1Dwf ™ pu(s-n(yll < 1 for any w € W (f7"(x))
by Lemma 2.1, we have that d“(f~""1(x), f~""!(y)) < Lie. Therefore our

disire is proved for n + 1. The case ¢ = w is proved. The similar arguments
as above works for the case o = s. O



Decay of correlations 59

f has canonical coordinates if for any 1 > 0 there exists §(n) > 0 such
that d(z,y) < §(n) implies Wf](a;) ﬂWZ(y) #0.

Proof of Lemma 2.3. We prove that f is expansive. Indeed take z,y € M
with d(f*(z), fi(y)) < 61/2 (i € Z). This implies that y € W§1/2(:1;) N
ngm(a:). By Lemma 4.1 we have that y € W2 (xz) N W(x). Thus by (4.2),
y=zx.

Let us show that f has canonical coordinates. Then the shadowing
property of f follows from Theorem in [18]. If p € (0,1], then there exists
0" € (0,1) such that (4.2) holds with replacing € by p/L; and ¢ by ¢”. Let
x,y be such that d(z,y) < ¢”. By definition of 6", W7, (x) and W}, (y)
have a single transeverse intersection point. On the one hand by Lemma 4.1
we have that W7, (z) C W;(x) and W7, (y) C WZ(y) Combining the
arguments above we have that Wi(w) N WZ(@/) # (0. If p > 1, then there
exists ¢’ € (0,1) such that (4.2) holds with replacing € by 1/L; and § by
0"". Then using the similar arguments as above allows us to have the disired
result. (1) is proved. By (1), (2) follows from Theorem 4.2.8 in [3]. O

Let dist be the distance in the Grassmannian bundle generated by the
Riemannian metric. An 1-dimensional distribution E is (8, L, £)-Holder con-
tinuous if for any x,y € M with d(x,y) < 6, dist(E(z), E(y)) < Ld(z,y)S.
It follows from [4] (Theorem 2.3.2) that there exist d2 € (0,01), Ly > 0 and
&1 € (0,a] such that the distributions E® and E" are (da, Lo, &1)-Holder
continuous.

Lemma 4.2  There exist C11 > 0 and 03 € (0,02) such that the following
hold for any x,y,z € M:

o det(D, f*
(1) For any y, 2 € Wg, (@) (0 = s,u), log [Pk < Cuad(y, )%,

(2) Especially if f satisfies Conditions 1 and 2, then for any y,z € W (z),

det(D,, f* o
log 192033l < Chad(y, 2)°.

Proof. Using the arguments in [4] (page 104) together with [14] (Lemma
3.2 (page 49)), there exist K4 > 0 and ¢; € (0,02) such that for any z € M
and Y,z € B§1 ($)7

|det(D, /") — det(D. f*)| < Ka(dist(E" (y), B"(2)) + d(y. 2)*).
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Then (1) follows from the fact that E" is (02, Cio, &1)-Holder continuous.
Condition 2 combined with Lemma 2.1 tells us that the correspondence
w — E*(w) is C' on each W' (x). So there exist K5 > 0 and ¢ € (0,¢1)
such that for any z € M and y,z € Wl (x), dist(E"(y), E*(z)) < Ksd(y, 2).
This combined with the ineqality above gives the proof of (2). O

By Lemma 2.3 (2) we may assume that the diameter of the Markov
partition {Q;} is less than d3. To show Lemma 2.4, we need the following
Lemma 4.3.

Lemma 4.3 There exist C12 > 0 and 0 < 85 < 1 such that for any x € A,

y € v“(x) with s(x,y) < oo, and 0 < k < s(z,y) — 1, d(f*(y), fF¥(2)) <
s(z,y)—k

Cl?ﬂs .

Proof. We put A, := max{||Dyf |guw)ll |z € A}(< 1). Let & € A,
y € y*(x) with s(z,y) < oo, and 0 < k < s(z,y) — 1. There exist {n;}i>1
and {m;};>1 with0=mp=n¢o <ni <mi; <ng <mag <---ng<my <---
such that fiti(z), friti(y) ¢ P (0 < j < my—mn; —1,i > 1), and
fmiti(z), friti(y) e P (0 <j <njr1 —m;—1,i>0). Then one of the
following two cases holds:

(1) f¥), fFy) e P,ie. miy <k <mn—1(i>1),

(i) fE(x), fFy) € P, ie n; <k <m;—1.
Let 7¢ denote the curve of the minimum length in W*((fF)¢(z)) which
connects between (fF)¢(z) and (f%)!(y) for any 0 < £ < s(z,y) — 1. We
denote £(7¢) the length of v,. We deal with case (i). Case (ii) is estimated

similarly as case (i). Since s(f™(z), ™ (y)) = s(z,y) — {H—Z;;B(m] —nj)}
holds, by Condition 1 and Lemma 2.1 we have
d(f*(x), f*(y))
< sup {|| D, fo I EOTOH g )|[| 2 € Yo @), g )1
s @), 57 ) -1)
< )\Z(fni(z),fni ()-1 _ i)\i(mvy)*{”z;;é(mj*"j)}'

u

Since k > i + Z;;E(mj — n;), the last term above is bounded above by
< %Ai(r’y)_k. O
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Proof of Lemma 2.4. Let z,y € v € I'* be such that s(x,y) < co. Since
d(fi(x), fi(y)) < 63 for any 0 < i < s(x,y) — 1, Lemmas 4.2(1) for case
o = u and 4.3 conclude the proof. O

Proof of Lemma 2.5. Since the diameter of the Markov parition is less than
o', for any x,y € v° € I'?, d(x,y) < d3. Then Lemma 4.2(1) for case 0 = s
and (2.1) conclude the proof. O

Proof of Lemma 2.6. For any v, 7 €' let © =0, :yNA =+ NA
be the holonomy map. To show the lemma, it suffices to prove that there
exists Kg > 0 such that for any = € v and any r > 0,

my (O(B(x,7)))
my (B(x, 7))

— 1| < Ked(v,7')° (4.5)

for my-a.e.x € v. Here d(v,7") = sup{d(z,O(z)) |z € v}. If (4.5) is proved,
then the same arguments as in [4] (p.110) allows us to have the desired
result. Since z +— W(x) is Cl-continuous by Condition 1, we can find
partitions {v;};>1 of YN B(y,r) (mod m,) and {7/};>1 of ¥/ N O(B(y,r))
(mod m.+) with the following properties:

(a) v; and ~; are intervals such that v, = ©(y;),

(b) for any i > 1 there exists n; > 1 such that (f%)"i(v;) and (f%)"(v))
are intervals such that (f%)"i(v!) is the ©; image of (f#)"i(v;). Here
¥, 7 € Tv satisfy (ff)"(y) € 77 € T, (ff)™(v]) € 77, and ©; :
~: — 7 is a holonomy map sliding along stable disks,

(c) for any =,y € ~;, ﬂs((fR)ni(I)’(fR)ni(y)) < d(7,v), and the same holds
for z,y € v/, and

—(( FRY"i (~,
(d) there exists K7 > 0 such that )% — 1’ < Kqd(v,7').

Then by (c) and (K-1) for any z,y € v,

TLi—l

Z log

=0

det(D(fR)z(z) (fR)u
det(Dsryiy) (f5)

Cq

15

d(v,7'). (4.6)

Then by the same estimation as above, (4.6) holds with ~/ instead of ;. By
Lemma 4.2(1) for case o = s and (2.1) we have that for any z € 7,
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n;—1
: det(Dpryioy ()" | i LS
Do det(D S < zd(v,7")°. (4.7)
i=0 et( (fR)”(@(z)(f ) 1—A:
Combining (d), (4.6) and (4.7) we have (4.5). n

5. Appendix B: Verifying (K-1) and (K-2) under Conditions 1-3

In this section we show that Conditions 1-4 imply (K-1) and (K-2) of
Key Lemma. Throughout this section we assume that f satisfies Conditions
1-4. We say that I is an interval belonged to W¥(x) if there exists an
interval J C DY such that ¢"(z)(J) = I. For any interval I C WX (z), let
¢(I) denote the length of I, and for any x,q € M with d(z,q) < J§, we put

[1,q] = {ly,q] |y € T}
Lemma 5.1 There exists Ci3 > 0 such that

CHl(J) < €([J,q) < Cisl(J).

for any interval J C WX(y) and any y,q € M with d(y,q) < 4.

Proof. By Conditions 1, 4 and Lemma 4.2 the same argument from [12]
(Proposition 2.5) allows us to have the desired result. g

By Conditions 2, 3 and Lemma 5.1 we easily have the following Lemma
5.2, which implies (K-2).

Lemma 5.2  There exists C14 > 0 such that for any v € T,
my({R>n}) < Cuun~= (n>1).
The next Lemma 5.3 implies (K-1).
Lemma 5.3 There exist C15 > 0 such that

[det(Do (/)] _ W Fife
deD, (e 1| S Ced @), W)

foranyi>1,1<j<r,ze A andye A ny*(z).

Proof. To show the lemma, it suffices to prove that there exists Kg =
Kg(a) > 0 such that
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1 _ Jdet(Dy(f)"] :
ESWSKB (1<2<i9) (5.1)
forany i > 1,1 <q<r,z €Al and 2/ € Al Ny“(x).

Let x € A and 2’ € A} N~y*“(z). Let I, ; be the connected component
of v*(z) N A} which contains z € A}. Fix p € S. Let ©, be a holonomy map
to f(v“(p)) by sliding along stable disks. We denote I; = 6, o fi(I,), and
I=f(v*(p)) \ v*“(p). Then we have that I, C I for any ¢ > 1. By Lemma
5.1 we have that £(f7(I,;)) < Ci30(f?7*(1;)) for 0 < j < i. Then we have
that

d“(f7 (z), f7 (")) < Crsl(f77(L)) (0 <j <i). (5.2)

Using Conditions 2 and 3 we have that ¢(f*(I;)) < Kok~ =~ for some
Kg > 0 (]26], see also [10] Lemma 4.6), from which >, <, £(f~*(1;))* < occ.
Noting that d(f7(x), f/(y)) < 3 for any 0 < j < i — 1, and combining the
arguments as above with Lemma 4.2(2), we estimate that

4 i—1
|[det(Dgs() f*)] : :
log — <Cn d(f? (x), f7(x))*
]Z::O [det (D ps (@) f)] JZ::O
< CnCRHRKS > ke, (5.3)
k>1

which proves (5.1) for K19 = exp{C11CK§ D 4 ko)
By (5.1), (5.2) and Lemma 5.1 we have that

d*(f'(z), f'(y))
(1)

d*(f7(z), f7 (y))

(m) = s

(0<j<i—1).

Substituting this into (5.3), we conclude the proof. O
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