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A BRIDGE BETWEEN THE UNIT SQUARE
AND SINGLE INTEGRALS FOR REAL
FUNCTIONS OF THE FORM f(x · y)

Abstract

Sondow and co-workers have employed a key change of variables
in order to evaluate double integrals over the unit square [0, 1] × [0, 1]
in exact closed-form. Motivated by their results, I introduce here a
change of variables which creates a ‘bridge’ between integrals of the form∫ 1

0

∫ 1

0
f(x · y) dx dy and single integrals of the form

∫ 1

0
f(p) ln p dp. This

allows for prompt closed-form evaluations of several interesting integrals,
including some of those investigated recently by Sampedro [Ramanujan
J. 40, 541 (2016)]. I also show that the bridge holds when the intervals
of integration are changed from [0, 1] to [1,∞). Finally, a generalization
for higher dimensions is proved, which reveals an interesting link of those
integrals to Mellin’s transform.

1 Introduction

In [6, 15], Sondow and co-workers investigated exact closed-form evaluations
of certain unit square integrals, most of which were solved by applying the
change of variables (see [6, Theor. 3.1])

x =
u

v
and y = v , (1)

as, e.g., ∫ 1

0

∫ 1

0

1

1− xy
dx dy = ζ(2) (2)
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and ∫ 1

0

∫ 1

0

1

1 + x2y2
dx dy = G , (3)

where G :=
∑
n≥0 (−1)n/(2n+ 1)2 is Catalan’s constant and

ζ(s) :=
∑
n≥1 1/ns, <(s) > 1, is the Riemann zeta function. Other unit square

integrals were solved by those authors, including the more general results∫ 1

0

∫ 1

0

(xy)u−1

lnxy
dx dy = − 1

u
,∫ 1

0

∫ 1

0

(xy)u−1

(1 + xy) lnxy
dx dy = − 1

2

[
ψ

(
u+ 1

2

)
− ψ

(u
2

)]
, (4)

where ψ(u) := Γ′(u)/Γ(u) is the digamma function, Γ(u) :=
∫∞
0
tu−1 e−t dt

being the classical gamma function,∫ 1

0

∫ 1

0

(− lnxy)n

1− xyz
dx dy = (n+ 1)!

Lin+2(z)

z
, (5)

valid for z ∈ C\[1,∞), n ≥ −1 (or z = 1, n ≥ 0), where Lin(z) :=
∑
k≥1 z

k/kn

is the polylogarithm function, and∫ 1

0

∫ 1

0

(− lnxy)s

1− xy
dx dy = Γ(s+ 2) ζ(s+ 2) , <(s) > −1 , (6)∫ 1

0

∫ 1

0

(− lnxy)s

1 + x2y2
dx dy = Γ(s+ 2) β(s+ 2) , <(s) > −2 , (7)

where β(s) :=
∑
n≥0 (−1)n/(2n+ 1)s, <(s) > 0, is the Dirichlet beta function.

align On investigating other similar change of variables, I have found one which
allows for a direct conversion of unit square integrals into single integrals, valid
when the integrand f(x, y) has the form f(x · y). Many examples are given,
some of them involving certain identities for Li2(r), r ∈ Q, discovered by
Ramanujan.

2 The ‘bridge’

The bridge mentioned above comes from the following change of variables:

x = u v , y =
u

v
. (8)

As shown in the theorem below, this change allows for a direct conversion of
unit square integrals of real functions of the form f(x, y) = f(x ·y) into single
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integrals involving just f(p) ln p, where p stands for the product x y. For
Lebesgue integrals, only the requirement that f(p) · ln p is integrable on [0, 1]
is needed to prove the next theorem, but for simplicity, we restrict ourselves
to the Riemann integrable case.

Theorem 1 (Bridge between unit square and single integrals). Let f :
[0, 1] → R be a function such that f(p) ln p is Riemann-integrable on [0, 1]
and f(x · y) is Riemann-integrable on the unit square [0, 1]× [0, 1]. Then∫ 1

0

∫ 1

0

f(x · y) dx dy = −
∫ 1

0

f(p) ln p dp .

Proof. Since f(x · y) is an integrable real function, we can define

I :=

∫ 1

0

∫ 1

0

f(x · y) dx dy.

On changing the variables according to Eq. (8), one finds

I =

∫∫
S

f(x(u, v) · y(u, v)) |det J(u, v)| du dv , (9)

where S is the domain of integration in the uv-plane, as seen in Fig. 1, and

J(u, v) =

 v u

1/v −u/v2


is the Jacobian matrix. From Fig. 1, it is clear that

I =

∫∫
S

f
(
u2
) ∣∣∣∣−2u

v

∣∣∣∣ du dv
= 2

∫∫
S

f
(
u2
) u
v
du dv

= 2

∫ 1

0

u f
(
u2
) [∫ 1/u

u

1

v
dv

]
du

= 2

∫ 1

0

u f
(
u2
) [

ln

(
1

u

)
− lnu

]
du

= 2

∫ 1

0

u f
(
u2
)

(−2 lnu) du

= − 4

∫ 1

0

u f
(
u2
)

lnu du . (10)
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This change of variables in (9) is a C1 diffeomorphism since the functions
x(u, v) = uv and y(u, v) = u/v, as well as their inverses u(x, y) =

√
xy

and v(x, y) =
√
x/y, are differentiable at all points of the corresponding open

domains. The substitution p = u2 now completes the proof.

1 2

1

2

v =
 u

0

 

v

u

v = 1/u

Figure 1: The hachured region (bounded by the v-axis, the dashed-line v = u,
and above by the curve v = 1/u) is the domain of integration S, in the uv-
plane, corresponding to the change of variables in Eq. (8) taken over the unit
square (x, y) ∈ [0, 1]× [0, 1].

It should be mentioned that the change of variables introduced by Guillera
and Sondow, as given in our Eq. (1), for which the Jacobian determinant
equals 1/v, also leads to this bridge, but those authors missed the interesting
bridge we are emphasizing here. In fact, their change of variables promptly

yields
∫ 1

0

∫ 1

0
f(x · y) dx dy =

∫ 1

0
f(u)

∫ 1

u
(1/v) dv = −

∫ 1

0
f(u) lnu du.

2.1 Some examples

Let us apply the above theorem to some functions f(x·y) in order to illustrate
how our bridge works. Most of the integrals below are hard (if not impossible)
to be solved by other means.
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For instance, the function f(x, y) = 1/ ln (xy) yields∫ 1

0

∫ 1

0

1

ln (xy)
dx dy = −

∫ 1

0

1

ln p
ln p dp = −

∫ 1

0

dp = −1 . (11)

Similarly, ∫ 1

0

∫ 1

0

1

(1 + xy) ln (xy)
dx dy = −

∫ 1

0

1

1 + p
dp = − ln 2 . (12)

A less trivial example is as follows. Given any a ≥ 1,

∫ 1

0

∫ 1

0

1

a− xy
dx dy = −

∫ 1

0

ln p

a− p
dp

= −1

a

∫ 1

0

ln p

1− p/a
dp

= −1

a

∫ 1/a

0

ln (a u)

1− u
a du

= −
∫ 1/a

0

lnu+ ln a

1− u
du

= −
∫ 1/a

0

lnu

1− u
du− ln a

∫ 1/a

0

1

1− u
du , (13)

where we substituted u = p/a. On taking into account the integral def-

inition for the dilogarithm function, namely Li2(z) := −
∫ z
0

ln (1− s)
s

ds [8],

the above integrals are reduced to

∫ 1

0

∫ 1

0

1

a− xy
dx dy = Li2(1)− Li2

(
1− 1

a

)
− ln a

[
− ln

(
1− 1

a

)]
= Li2(1)− Li2

(
1− 1

a

)
+ ln a ln

(
1− 1

a

)
= Li2

(
1

a

)
, (14)

the last step being an application of Euler’s reflection formula (see [9,
Eq.(1.5) ]). In particular, for a = 1 one has∫ 1

0

∫ 1

0

1

1− xy
dx dy = Li2(1) = ζ(2) , (15)



450 F. M. S. Lima

which agrees with Eq. (2), a nice unit square integral taken into account by
Apostol to show that ζ(2) = π2/6 [2].

When the domain of the integral in Eq. (13) is generalized to [0, α]× [0, α],
0 < α ≤ 1, one finds

∫ α

0

∫ α

0

1

1− xy
dx dy =

∫ 1

0

∫ 1

0

1

1− α2XY
α2 dX dY

=

∫ 1

0

∫ 1

0

1

1/α2 −XY
dX dY

= Li2
(
α2
)
, (16)

where we substituted X = x/α and Y = x/α, and the dilogarithm result
comes from Eq. (14). This corresponds to the 2D case of a general result
obtained by McCartney in a recent paper, see [12, Eq. (27)].

Another interesting result related to the integrals investigated by McCart-
ney is obtained by choosing g1(x) = αx2 and g2(y) = α y2, 0 < α ≤ 1, there
in the main result of [12]. This leads to

G2(g) : =

∫ 1

0

∫ 1

0

1

1− g1(x) g2(y)
dx dy

=

∫ 1

0

∫ 1

0

1

1− α2x2y2
dx dy

=
1

α2

∫ 1

0

∫ 1

0

1

1/α2 − x2y2
dx dy

= − 1

α2

∫ 1

0

ln p

1/α2 − p2
dp

= − 1

α2

(
α

2

∫ 1

0

ln p

1/α+ p
dp+

α

2

∫ 1

0

ln p

1/α− p
dp

)
= − 1

2α
[ Li2(−α)− Li2(α)]

=
Li2(α)

α
−

Li2
(
α2
)

4α
, (17)

where the last step follows from the identity 1
2 Li2(z2) = Li2(z) + Li2(−z)

(see Eq. (1.15) of Ref. [8]). On the other hand, McCartney has shown in [12,
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Eqs. 19 and 20], that

G2(g) =

∞∑
n=0

∫ 1

0

gn1 (x) dx

∫ 1

0

gn2 (y) dy

=

∞∑
n=0

[∫ 1

0

(
αx2

)n
dx

]2

=

∞∑
n=0

α2n

[∫ 1

0

x2n dx

]2
=

∞∑
n=0

α2n

(2n+ 1)2

=
χ2(α)

α
, (18)

where χ2(z) :=
∑∞
n=0 z

2n+1/(2n+ 1)2 is the Legendre chi function. On
equating the above results for G2(g), one finds

χ2(α) = Li2(α)− 1

4
Li2
(
α2
)
, (19)

a nice functional identity stated in [8, Eq. 23].
A similar integral that can be solved with our approach is∫ α

0

∫ β

0

1

1− x2y2
dx dy = χ2(αβ) , 0 < α, β ≤ 1 . (20)

For this, it is enough to substitute x = β X, y = αY , which leads to

αβ

∫ 1

0

∫ 1

0

1

1− α2β2X2Y 2
dX dY . (21)

Now, note that our Eqs. (17) and (18) imply that

α

∫ 1

0

∫ 1

0

1

1− α2x2y2
dx dy = χ2(α) . (22)

The change α→ αβ completes the proof of Eq. (20). A much more complex
proof, in fact the only known one, is found in [7].

Another interesting example comes from Theorem 5 of a recent work by
Sampedro in Ref. [14], namely

−
∫ 1

0

∫ 1

0

xb−1 yg−1

(1− rxcyh) ln(xayd)
dx dy =

∞∑
n=0

rn
ln (d/a)− ln [(hn+ g)/(cn+ b)]

d (cn+ b)− a (hn+ g)
,

(23)
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where a, b, c, d, h, g, and r are any real numbers such that the series converges.
In particular, when d→ a, g → b, and h→ c, Eq. (23) reduces to

−1

a

∫ 1

0

∫ 1

0

(xy)b−1

[1− r(xy)c] ln (xy)
dx dy = lim

ε→0

∞∑
n=0

rn
ln
(
1 + ε

a

)
− ln

(
1 + n+1

cn+b ε
)

(cn+ b) ε− a (n+ 1) ε

=

∞∑
n=0

rn lim
ε→0

ln
(
1 + ε

a

)
− ln

(
1 + n+1

cn+b ε
)

(cn+ b) ε− a (n+ 1) ε
.

(24)

On applying our bridge to the left-hand side and the L’Hôpital rule to the
right-hand side, one finds∫ 1

0

pb−1

1− r pc
dp =

1

c

∞∑
n=0

rn

n+ b/c
. (25)

Let us show that the left-hand side reduces to a hypergeometric value of the

kind 2F1

(
α, β
γ

; r

)
:=
∑∞
n=0

(α)n (β)n
(γ)n

rn

n! , where (α)n := Γ(α+ n)/Γ(α) is

the Pochhammer symbol. For this, put α = 1, β = b/c, and γ = 1 + b/c in
Euler’s integral representation

2F1

(
α, β
γ

; r

)
=

Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0

t β−1 (1− t)γ−β−1

(1− rt)α
dt ,

and then substitute t = pc. Meanwhile, the right-hand side of Eq. (25) can be
written in terms of the Lerch transcendent Φ(z, s, u) :=

∑∞
n=0 z

n/(n+ u)s,
which converges for any real number u > 0 if z and s are complex numbers
with |z| < 1. This reduces Eq. (25) to the nice identity

2F1

(
1, b̃

1 + b̃
; r

)
= b̃ Φ

(
r, 1, b̃

)
, b̃ > 0 , (26)

where b̃ := b/c.
In [14, Ex. 13], Sampedro uses special values of the Lerch transcendent to

show that

−
∫ 1

0

∫ 1

0

1
4
√

(xy)3 (1 + xy) ln (xy)
dx dy =

π + 2 coth−1
(√

2
)

√
2

. (27)

For this unit square integral, our bridge yields
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∫ 1

0

1

p3/4 (1 + p)
dp

=
√

2

[
tan−1

(√
2 4
√
p+ 1

)
− tan−1

(
1−
√

2 4
√
p
)

+ coth−1

(√
p+ 1
√

2 4
√
p

)]1
0

=
√

2

[
tan−1

(√
2 + 1

)
− tan−1

(
1−
√

2
)

+ coth−1
(

2√
2

)]
=
√

2
[ π

2
+ coth−1

(√
2
)]
, (28)

which can be viewed as an alternative, elementary proof of Sampedro’s result.
Here, by elementary we mean that our proof does not involve Fourier series,
complex analysis techniques (e.g., Cauchy’s Residue Theorem), or Plancherel’s
Identity.

In [6, Ex. 3.6], by using special values of the Lerch transcendent Guillera
and Sondow showed that∫ 1

0

∫ 1

0

9 + xy

9− x2y2
dx dy =

π2

6
− ln2 3

2
. (29)

For this unit square integral, our bridge yields

−
∫ 1

0

9 + p

9− p2
ln p dp

=
{

2 Li2

(p
3

)
− Li2

(
−p

3

)
+ ln p [ 2 ln(3− p)− ln(9 + 3p)]

}1

0

= 2 Li2

(
1

3

)
− Li2

(
−1

3

)
= 3 Li2

(
1

3

)
− 1

2
Li2

(
1

9

)
, (30)

in which we have substituted u = p/3 in the integral and the identity
Li2
(
z2
)

= 2 [Li2(z) + Li2(−z)] was applied in the last step. On taking into
account one of the Ramanujan’s dilogarithm identity, namely [3, p. 324]

Li2

(
1

3

)
− 1

6
Li2

(
1

9

)
=
π2

18
− ln2 3

6
, (31)

the result in Eq. (29) promptly follows. Again, this can be viewed as a simpler
proof of Eq. (29).



454 F. M. S. Lima

2.2 Crossing the ‘bridge’ in the opposite direction

The bridge also works in the opposite direction; i.e., we can make use of a
known unit square integral to deduce an exact closed-form expression for the
corresponding single integral.

The simplest example is found by taking into account the constant function
f(x · y) = c, c 6= 0. For this function, one has

−
∫ 1

0

c ln p dp =

∫ 1

0

∫ 1

0

c dx dy = c

∫ 1

0

∫ 1

0

dx dy = c , (32)

which promptly yields
∫ 1

0
ln p dp = −1. This improper integral can also

be solved by parts, as done, within the rigour of mathematical analysis, by
Tavares [11], but the solution is considerably lengthier than ours.

A less obvious example involves Catalan’s constant and it comes from entry
2 of Adamchik’s list of representations for G, where one finds

−
∫ 1

0
ln p/(1 + p2) dp = G [1]. Our bridge transforms this integral into∫ 1

0

∫ 1

0

1

1 + x2y2
dx dy = G . (33)

This is a simple alternative proof for Eq. (3). Interestingly, we can use this
unit square integral to explore other integral representations for G, e.g. by
applying the non-trivial change of variables (see, e.g., [10])

x =
sinu

cosh v
, y =

sinh v

cosu
, (34)

whose Jacobi determinant is det J = 1 + x2 y2 = 1 + tan2 u tanh2 v. This
yields

∫∫
S
du dv = G, where S is the region in the uv-plane bounded by the

coordinate axes, and above by the curve v(u) = arcsinh(cosu). Since this
double integral equals the area of S, then∫ π/2

0

arcsinh(cosu) du = G. (35)

Although this result is not found in the literature, it resembles an integral

found in [1, entry 17] namely,
∫ π/2
0

sinh−1(sinu) du = G. Analogously, by

calculating the area of S via
∫ b
0
u(v) dv, with u(v) = arccos (sinh v) and

b = arcsinh(1), one finds∫ ln (1+
√
2 )

0

arccos (sinh v) dv = G , (36)



A Bridge Between the Unit Square and Single Integrals 455

which is also new.
A more complex example related to Catalan’s constant will reveal the

power of our bridge. From entry 33 of Adamchik’s webpage, one knows that

G =

∫ 1

0

(
2

p2 − 4p+ 8
− 3

p2 + 2p+ 2

)
ln p dp . (37)

For this integral, our bridge yields

G = −
∫ 1

0

∫ 1

0

(
2

x2y2 − 4xy + 8
− 3

x2y2 + 2xy + 2

)
dx dy , (38)

for which Mathematica (release 11) returns a closed-form expression with some
dilogarithm values. After some algebra, that result simplifies to

6G = − i Li2

(
ei(π−b)

)
− 3 iLi2

(
eib
)
− 2 iLi2

(
eia
)

+ i

[
π2

4
− π

4
arctan

(
336

527

)
− a2

2
− 3

2
ab+ b arctan (3)

]
, (39)

where a = arctan (3/4) and b = arctan (4/3) = π/2− a. Fortunately, all the
dilogarithms above are for points on the unit-circle in the complex plane, for
which the expansion Li2

(
eiθ
)

= g(θ) + iCl2(θ) holds, where g(θ) := π2/6 +

θ2/4 − π |θ|/2 and Cl2(θ) :=
∑∞
n=1 sin (nθ)/n2 = −

∫ θ
0

ln (2 sin (θ/2)) dθ is
the Clausen integral. On equating the real part of each side of Eq. (39), one
finds the identity

Cl2(π − b) + 3 Cl2(b) + 2 Cl2

(π
2
− b
)

= 6G . (40)

Our bridge then yields a simple alternative proof for [8, Eq. 20].
Another interesting example comes from [9, Eq. 16.21], namely

− q2
∫ 1

0

t p−1

1− tq
ln t dt = ψ ′

(
p

q

)
, (41)

where p, q are positive integers and ψ ′(u) := dψ/du is the trigamma function.
This also appears as ζ(2, l/m) in [13, p. 289], where ζ(s, x) :=

∑
n≥0 1/(n+ x)s

is the Hurwitz-zeta function. There the result is justified by the well-known
identity ψ ′(x) = ζ(2, x), which is valid for all x > 0, which in turn follows
from the series expansion of ψ ′(x). But via our bridge, we have that

q2
∫ 1

0

∫ 1

0

(xy)p−1

1− (xy)q
dx dy = ψ ′

(
p

q

)
, (42)
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a result that seems hard to be obtained by other methods. This unit square
integral generalizes that in [6, Eg. 41], namely∫ 1

0

∫ 1

0

(xy)u−1

1− xy
dx dy = ψ ′(u) , (43)

for which our bridge yields

−
∫ 1

0

pu−1

1− p
ln p dp = ψ ′(u) , (44)

which can be confirmed by substituting p = e−t in ψ ′(u) =∫∞
0
t e−ut/(1− e−t) dt, an integral representation obtained from

ψ(u) =
∫∞
0

[ e−t/t− e−ut/ (1− e−t)] dt [5].

3 The ‘bridge’ for integrals over [1,∞)

Let us show that our bridge remains valid (apart from a minus sign) when the
intervals of integration are changed from [0, 1] to [1,∞).

Theorem 2 (Bridge for integrals over [1,∞) ). Let f : [1,∞) → R be a
function such that f(p) ln p is Riemann-integrable on [1,∞) and f(x · y) is
Riemann-integrable on [1,∞)× [1,∞). Then∫ ∞

1

∫ ∞
1

f(x · y) dx dy =

∫ ∞
1

f(p) ln p dp .

Proof. Let K :=
∫∞
1

∫∞
1
f(x · y) dx dy. On changing the variables according

to Eq. (8), one finds

K =

∫∫
S̃

f(x(u, v) · y(u, v)) |det J(u, v)| du dv = 2

∫∫
S̃

f
(
u2
) u
v
du dv ,

(45)

where S̃ is the domain of integration in the uv-plane bounded below by the
curve v = 1/u and above by the line v = u. Therefore,

K = 2

∫ ∞
1

u f
(
u2
) [∫ u

1/u

1

v
dv

]
du (46)

= 2

∫ ∞
1

u f
(
u2
) [

lnu− ln

(
1

u

)]
du

= 4

∫ ∞
1

u f
(
u2
)

lnu du . (47)

The substitution p = u2 completes the proof.
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Alternatively, we could have applied the change of variables x = 1/X,

y = 1/Y to
∫ 1

0

∫ 1

0
f(x · y) dx dy in order to get a simple proof that the above

theorem follows from our Theorem 1, but we have preferred to exhibit a proof
independent of that theorem.

3.1 Examples

Theorem 2 allows for the direct evaluation of many double integrals.
For instance, we begin with the ‘harmless’ double integral∫ ∞

1

∫ ∞
1

1

(1 + x2y2) ln (xy)
dx dy (48)

which Mathematica (release 11) cannot solve analytically. Our bridge promptly
reduces it to∫ ∞

1

1

1 + p2
dp = lim

b→∞

∫ b

1

1

1 + p2
dp

= lim
b→∞

arctan (b)− arctan (1)

=
π

2
− π

4
=
π

4
. (49)

Other double integrals related to classical mathematical constants are∫ ∞
1

∫ ∞
1

1

1 + x2y2
dx dy =

∫ ∞
1

ln p

1 + p2
dp = G (50)

and ∫ ∞
1

∫ ∞
1

ln (xy)

1− x2y2
dx dy =

∫ ∞
1

ln2 p

1− p2
dp = − 7

4
ζ(3) , (51)

in which the Apéry’s constant ζ(3) makes an appearance.
For the improper double integral∫ ∞

1

∫ ∞
1

e−xy

xy ln (xy)
dx dy , (52)

which Mathematica (release 11) cannot solve, our bridge promptly yields∫ ∞
1

e−p

p
dp = −Ei(−1) = 0.21938393 . . . , (53)

where Ei(z) := −
∫∞
−z e

−t/t dt is the Euler integral. It’s interesting that the

same result is found when our bridge is applied to
∫∞
1

∫∞
1

e−xy dx dy, since,

using integration by parts,
∫∞
1

e−p ln p dp also reduces to −Ei(−1).
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4 Generalization to higher dimensions and a connection
to Mellin’s transform

Our Theorem 1 and the several examples presented above suggest that it could
exist a similar bridge linking multiple integrals over [0, 1]N to a single integral
over [0, 1], where N > 2 is an integer. This generalization is established below.

Theorem 3 (Bridge for multiple integrals). Let f : [0, 1] → R be a contin-
uous function such that f(p) ln p is Riemann-integrable on [0, 1]. Then, for
any integer N > 1,∫ 1

0

· · ·
∫ 1

0

f(x1 x2 · · ·xN ) dx1 dx2 · · · dxN =
(−1)N−1

(N − 1)!

∫ 1

0

f(p) (ln p)N−1 dp .

Proof. First, let us show that the theorem holds for f(x) = xm, m ≥ 0
being an integer. For this simple function, one finds∫ 1

0

· · ·
∫ 1

0

f(x1 x2 · · ·xN ) dx1 dx2 · · · dxN

=

N∏
n=1

∫ 1

0

xmn dxm =
1

(m+ 1)N
, (54)

whereas

(−1)N−1

(N − 1)!

∫ 1

0

f(p) (ln p)N−1 dp =
1

(N − 1)!

∫ 1

0

pm (− ln p)N−1 dp

=
1

(N − 1)!

∫ ∞
0

e−(m+1) t tN−1 dt

=
1

(N − 1)! (m+ 1)N

∫ ∞
0

e−u uN−1 du

=
1

(m+ 1)N (N − 1)!
Γ(N)

=
1

(m+ 1)N
. (55)

The well-known identity Γ(k) = (k−1)!, valid for all integers k ≥ 1, was taken
into account in the last step. Since the integral is a linear operator, clearly the
theorem also holds for any polynomial f(p) =

∑M
m=0 am p

m, where M ≥ 0 is
an integer and the coefficients am are arbitrary real numbers.

Now, suppose that f : [0, 1] → R is a continuous function. By the Weier-
strass approximation theorem, we know that for every ε > 0 there is a poly-
nomial PM (x) such that |f(x)−PM (x)| < ε for all x ∈ [0, 1]. As the theorem
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holds for any polynomial, one has∫ 1

0

· · ·
∫ 1

0

PM (x1 x2 · · ·xN ) dx1 dx2 · · · dxN =
(−1)N−1

(N − 1)!

∫ 1

0

PM (p) (ln p)N−1 dp.

(56)
The Weierstrass theorem then yields∣∣∣∣∫ 1

0

· · ·
∫ 1

0

[f(x1 x2 · · ·xN )− PM (x1 x2 · · ·xN )] dx1 dx2 · · · dxN
∣∣∣∣

≤
∫ 1

0

· · ·
∫ 1

0

|f(x1 x2 · · ·xN )− PM (x1 x2 · · ·xN )| dx1 dx2 · · · dxN

< ε . (57)

Similarly,∣∣∣∣∣ (−1)N−1

(N − 1)!

∫ 1

0

f(y) (ln y)N−1 dy − (−1)N−1

(N − 1)!

∫ 1

0

PM (y) (ln y)N−1 dy

∣∣∣∣∣
≤ 1

(N − 1)!

∫ 1

0

|f(y)− PM (y)| (− ln y)N−1 dy

< ε
1

(N − 1)!

∫ 1

0

(− ln y)N−1 dy

= ε . (58)

Finally, from the triangle inequality it follows that the two real numbers∫ 1

0

· · ·
∫ 1

0

f(x1 x2 · · ·xN ) dx1 dx2 · · · dxN

and
1

(N − 1)!

∫ 1

0

f(p) (− ln p)N−1 dp

differ by at most 2 ε.

The above theorem has an interesting consequence for the Mellin transform
of continuous functions.

Theorem 4 (Mellin transform of a continuous function). Let f : [0, 1]→ R
be a continuous function such that f(p) ln p is Riemann-integrable on [0, 1].
Then,

∞∑
N=1

CN zN−1 =

∫ 1

0

f(p) p−z dp ,
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holds for all complex z with |z| < 1, where

CN :=
∫ 1

0
· · ·
∫ 1

0
f(x1 x2 · · ·xN ) dx1 dx2 · · · dxN .

Proof. Since the function f(x) is continuous in [0, 1], then it is bounded in
this interval. Hence the real numbers CN are also bounded in [0, 1]. This
means that if B > 0 is such that |f(x)| ≤ B for all x ∈ [0, 1], then

|CN | =
∣∣∣∣∫ 1

0

· · ·
∫ 1

0

f(x1 x2 · · ·xN ) dx1 dx2 · · · dxN
∣∣∣∣

≤
∫ 1

0

· · ·
∫ 1

0

|f(x1 x2 · · ·xN )| dx1 dx2 · · · dxN

≤
∫ 1

0

· · ·
∫ 1

0

B dx1 dx2 · · · dxN

= B . (59)

Now, let z be a complex variable. Because the numbers CN are bounded, the
power series

F (z) :=

∞∑
N=1

CN zN−1 (60)

converges for all z with |z| < 1, a domain in which it defines an analytic
function. Of course, the analytic function F (z) is also given by

F (z) =

∞∑
N=1

∫ 1

0
f(p) (− ln p)N−1 dp

(N − 1)!
zN−1 . (61)

Again, using the fact that f is continuous and |f(p)| is bounded by B, accord-
ing to the dominated convergence theorem the series and the integral can be
interchanged. This yields

F (z) =

∫ 1

0

f(p)

[ ∞∑
N=1

(−z ln p)N−1

(N − 1)!

]
dp

=

∫ 1

0

f(p) e−z ln p dp

=

∫ 1

0

f(p) p−z dp , (62)

which completes the proof.
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From the above proof, we have

F (z) =

∞∑
N=1

CN zN−1 =

∫ 1

0

f(y) y−z dy ,

which holds for all complex z with |z| < 1. The series in the above theorem
is obviously a power series, and the integral on the right is an example of a
Mellin transform,an integral transform closely related to the theory of Dirichlet
series, Laplace transform, and Fourier transform, as well as the theory of the
gamma function and allied special functions (see, e.g., [4]). More precisely,
the function F (z) defined by the power series is the Mellin transform of the
continuous function f(y), y ∈ [0, 1].

Clearly, many other interesting integrals can be explored with the ‘bridges’
put forward here in this paper. At last, I leave for the readers a conjecture
that I have found to be true for many special cases, but I could not find the
suitable conditions, nor a rigorous proof.

Conjecture (Bridge for integrals over [0,∞) ). Let f : [0,∞)→ R be a real
function. Under certain conditions (to be determined),∫ ∞

0

f(p) ln p dp
?
= −

∫ 1

0

∫ 1

0

f(x · y) dx dy +

∫ ∞
1

∫ ∞
1

f(x · y) dx dy .
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