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A DESCRIPTIVE DEFINITION OF THE
BACKWARDS ITÔ-HENSTOCK INTEGRAL

Abstract

In this paper, we introduced the backwards derivative of a Hilbert
space-valued function and formulate a version of Fundamental Theorem
for the backwards Itô-Henstock integral of an operator-valued stochastic
process with respect to a Hilbert space-valued Wiener process.

1 Introduction.

In 1950s, a Riemann-type integral was discovered independently by R. Hen-
stock and J. Kurzwiel. This integral includes Riemann and that of Lebesgue.
This integral is now known as Henstock-Kurzwiel or HK integral. In this
paper, however, we will call this integral simply as Henstock integral. In con-
trast to Riemann integral, the Henstock integral used non-uniform meshes.
This technique is now known as the Henstock approach.

In dealing with random functions such as functions of a Brownian motion
(BM), it is impossible to define stochastic integrals using Riemann approach
since Brownian motion moves so rapidly and irregularly that almost all of
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its sample paths are nowhere differentiable. The Riemann integral cannot
handle highly oscillating functions like that of a Brownian motion, see [18].
For the same reason, it is not even possible to define the stochastic integral as
a Riemann-Stieltjes integral, see [10]. In the classical approach to stochastic
integration, the stochastic integral of a real-valued adapted process is obtained
from the mean square limit of stochastic integrals of simple processes, see [12].
This is approach to stochastic integration which is almost similar in defining
the Lebesgue integral of a measurable function. Hence, Henstock approach to
stochastic integration have been studied in several papers (see [5], [9], [11], [16],
[17], and [18]), since it gives more explicit definition, reduces the technicalities
in the classical way of defining the stochastic integral, and is less measure
theoretic. In [15], the class of all Henstock-Kurzweil-Itô integrable processes
has been characterized by its primitive processes.

In [6], [7], and [13], the concept of stochastic integral has been extended to
infinite-dimensional spaces, namely Hilbert and Banach spaces. In a Hilbert
space, the stochastic integral is presented in a manner similar to the real-valued
case. The integrator is Q-Wiener process, a Hilbert space-valued Wiener pro-
cess which is dependent on a symmetric nonnegative trace-class operator Q
and the integrand is an operator-valued stochastic process. In a general Ba-
nach space, however, there seems to be no unifying treatment of stochastic
integration.

In [19], a stochastic integral called the backwards Itô-Henstock integral is
introduced. This integral was defined using the Henstock approach.

In this paper, we formulate a descriptive definition of the backwards Itô-
Henstock integral of an operator-valued stochastic process with respect to a
Hilbert space-valued Wiener process.

2 Preliminaries.

Throughout this note, R denotes the set of real numbers, R+
0 denotes the set of

nonnegative real numbers, N the set of positive integers and {Ω,G,P} denotes
a probability space.

Definition 1. Let {Gt : 0 ≤ t ≤ T} be a family of sub σ-field of G. Then
{Gt : 0 ≤ t ≤ T} is called a backwards filtration if Gt ⊆ Gs for all 0 ≤ s ≤ t ≤ T .
If in addition, {Gt : 0 ≤ t ≤ T} satisfies the following condition:

(i) GT contains all sets of P-measure zero in G; and

(ii) for each t ∈ [0, T ], Gt = Gt− :=
⋂
s<t Gs.

Then {Gt : 0 ≤ t ≤ T} is called a standard backwards filtration.
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We often write {Gt} instead of {Gt : 0 ≤ t ≤ T}. Some terminologies above
can be found in [1].

Definition 2. Let H be a separable Banach space. A stochastic process f or
simply process is a function f : [0, T ]×Ω→ H, where [0, T ] is an interval in R+

0

and f(·, t) is Gt-measurable for each t ∈ [0, T ]. A process f = {ft : t ∈ [0, T ]}
is said to be backwards adapted to a standard backwards filtration {Gt} if ft
is Gt-measurable for each t ∈ [0, T ].

Let U and V be separable Hilbert spaces. Denote L(U, V ) the space of
all bounded linear operators from U to V , L(U) := L(U,U), Qu := Q(u) if
Q ∈ L(U, V ), and L2(Ω, V ) the space of all square-integrable random variables
from Ω to V .

Definition 3. An operator Q ∈ L(U) is said to be self-adjoint or symmetric
if for all u, u′ ∈ U , 〈Qu, u′〉U = 〈u,Qu′〉U and is said to be nonnegative definite
if for every u ∈ U , 〈Qu, u〉U ≥ 0.

Let {ej}∞j=1, or simply {ej}, be an orthonormal basis (abbrev. as ONB)
in U . If Q ∈ L(U) is nonnegative definite, then the trace of Q is defined
by tr Q =

∑∞
j=1 〈Qej , ej〉U . It is shown in [14] that tr Q is well-defined and

may be defined in terms of an arbitrary ONB. Moreover, there exists a unique
operator Q

1
2 ∈ L(U) such that Q

1
2 is nonnegative definite and (Q

1
2 )2 = Q.

Definition 4. An operator Q : U → U is said to be trace-class if tr [Q] :=

tr (QQ∗)
1
2 <∞, where Q∗ is the adjoint or dual of Q.

If Q ∈ L(U) is a symmetric nonnegative definite trace-class operator, then
there exists an ONB {ej} ⊂ U and a sequence of nonnegative real num-
bers {λj} such that Qej = λjej for all j ∈ N, and λj → 0 as j → ∞ [14,
p.203]. We shall call the sequence of pairs {λj , ej} an eigensequence defined

by Q. The subspace UQ := Q
1
2U of U equipped with the inner product

〈u, v〉UQ
=
〈
Q−1/2u,Q−1/2v

〉
U

, where Q1/2 is being restricted to [KerQ1/2]⊥

is a separable Hilbert space with
{√

λjej
}

as its ONB, see [6, p.90], [7, p.23].

Definition 5. Let {fj} be an ONB in UQ. An operator S ∈ L(UQ, V ) is said

to be Hilbert-Schmidt if
∑∞
j=1 ‖Sfj‖

2
V =

∑∞
j=1 〈Sfj , Sfj〉V <∞.

Denote by L2(UQ, V ) the space of all Hilbert-Schmidt operators from UQ
to V , which is known [13, p.112] to be a separable Hilbert space with norm

‖S‖L2(UQ,V ) =
√∑∞

j=1 ‖Sfj‖
2
V . The Hilbert-Schmidt operator S ∈ L2(UQ, V )

and the norm ‖S‖L2(UQ,V ) may be defined in terms of an arbitrary ONB, see [6,
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p.418], [13, p.111]. It is shown in [7, p.25] that L(U, V ) is properly contained
in L2(UQ, V ).

We fix an element Q ∈ L(U), symmetric nonnegative definite trace-class
operator.

Definition 6. A U -valued stochastic process Wt, t ∈ [0, T ], on a probability
space (Ω,G,P) is called a Q-Wiener process in U if:

1. W (0, ω) = 0U for each ω ∈ Ω,

2. W has P-almost surely (abbrev. as P-a.s.) continuous trajectories; i.e.,

W (·, ω) : [0, T ]→ U is P-a.s. continuous

3. the increments of W are independent; i.e. the random variables

Wt1 ,Wt2 −Wt1 ,Wt3 −Wt2 , . . . ,Wtn −Wtn−1

are independent for all 0 ≤ t1 < · · · < tn ≤ T , n ∈ N , and

4. the increments have the following Gaussian laws:

P ◦ (Wt −Ws)
−1 = N (0, (t− s)Q) for all 0 ≤ s ≤ t ≤ T .

By Proposition 4.2 (see [6, p.88]), such a Q-Wiener process exists.
Let W = {Wt : t ∈ [0, T ]} be a U -valued Q-Wiener process. Define

N := {A ∈ G | P(A) = 0}, G̃t := σ(WT −Ws | t ≤ s ≤ T ), G̃0
t := σ(G̃t∪N )

and Gt :=
⋂
s<t G̃0

s , t ∈ [0, T ]. Since N ⊆ G̃0
s for all s ∈ [0, T ] and {Gt}0≤t≤T

is decreasing, then Gt is a standard backwards filtration. It is shown in [19]
that Wt −Ws is independent of Gt for all 0 ≤ s ≤ t ≤ T .

From now onwards, the backwards filtered probability (Ω,G, {Gt},P) shall
mean a filtered probability space such that Wt is adapted to Gt and Wt −Ws

is independent of Gt for all 0 ≤ s ≤ t ≤ T .

3 Backwards Itô-Henstock Integral, Backwards Deriva-
tive.

In this section, we shall present the backwards Itô-Henstock integral and some
related results.

Definition 7. [2] Let δ be a positive function on (0, T ].
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1. A finite collection D = {((ui, ξi], ξi)}ni=1 of interval-point pairs is said to
be a backwards partial division of [0, T ] if {(ui, ξi]}ni=1 is a finite collection
of disjoint subintervals of (0, T ].

2. An interval-point pair ((u, ξ], ξ) is said to be backwards δ-fine if (u, ξ] ⊆
(ξ − δ(ξ), ξ], whenever (u, ξ] ⊆ (0, T ] and ξ ∈ (0, T ].

3. We call D = {((ui, ξi], ξi)}ni=1 a backwards δ-fine partial division of [0, T ]
if D is a backwards partial division of [0, T ] and for each i, the interval-
point pair ((ui, ξi], ξi) is backwards δ-fine.

The term partial is used in Definition 7 since the finite collection of disjoint
subintervals of (0, T ] may not cover the entire (0, T ]. Using the Vitali covering
theorem, the following concept can be defined.

Definition 8. [2] Given η > 0, a given backwards δ-fine partial division
D = {((ui, ξi], ξi)}ni=1 is said to be backwards (δ, η)-fine partial division of
[0, T ] if it fails to cover (0, T ] by at most length η, that is,∣∣∣∣∣T − (D)

n∑
i=1

(ξi − ui)

∣∣∣∣∣ ≤ η.
Throughout the following discussions, assume that U and V are separable

Hilbert spaces, Q : U → U is a symmetric nonnegative definite trace-class
operator, {λj , ej} is an eigensequence defined by Q, and W is a U -valued
Q-Weiner process. The backwards Itô-Henstock integral is defined as follows.

Definition 9. Let f : [0, T ]× Ω→ L(U, V ) be a backwards adapted process.
Then f is said to be backwards Itô-Henstock integrable, or IHB-integrable, on
[0, T ] with respect to W if there exists A ∈ L2(Ω, V ) such that for every ε > 0,
there is a positive function δ on (0, T ] and a positive number η such that for
any backwards (δ, η)-fine partial division D = {((ui, ξi], ξi)}ni=1 of [0, T ], we
have

E
[
‖S(f,D, δ, η)−A‖2V

]
< ε

where

S(f,D, δ, η) := (D)
∑

fξ(Wξ −Wu) :=

n∑
i=1

fξi(Wξi −Wui
).

In this case, f is IHB-integrable to A on [0, T ] and A is called the IHB-integral

of f which will be denoted by (IHB)
∫ T

0
ft dWt or (IHB)

∫ T
0
f dW .
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It is worth noting that the backwards Itô-Henstock integral possesses the
following standard properties of an integral. The proofs of the following results
are standard in Henstock-Kurzweil integration, hence omitted.

(1) The backwards Itô-Henstock integral is uniquely determined, in the sense
that if A1 and A2 are two backwards Itô-Henstock integrals of f in
Definition 9, then ‖A1 −A2‖L2(Ω,V ) = 0.

(2) Let α ∈ R. If f and g are IHB-integrable on [0, T ], then

(i) f + g is IHB-integrable on [0, T ], and

(IHB)

∫ T

0

(f + g) dW = (IHB)

∫ T

0

f dW + (IHB)

∫ T

0

g dW ;

(ii) αf is IHB-integrable on [0, T ], and

(IHB)

∫ T

0

(αf) dW = α · (IHB)

∫ T

0

f dW.

(3) If f : [0, T ] × Ω → L(U, V ) is IHB-integrable on [0, c] and [c, T ] where
c ∈ (0, T ), then f is IHB-integrable on [0, T ] and

(IHB)

∫ T

0

f dW = (IHB)

∫ c

0

f dW + (IHB)

∫ T

c

f dW.

(4) If f : [0, T ] × Ω → L(U, V ) is IHB-integrable on [0, T ], then f is also
IHB-integrable on every subinteval [c, d] of [0, T ].

(5) (Sequential Definition). A process f : [0, T ] × Ω → L(U, V ) is IHB-
-integrable on [0, T ] if and only if there exist A ∈ L2(Ω, V ), a decreasing
sequence {δn} of positive functions defined on (0, T ], and a decreasing
sequence of positive numbers {ηn} such that for any backwards (δn, ηn)-
fine partial division Dn of [0, T ], we have

lim
n→∞

E
[
‖S(f,Dn, δn, ηn)−A‖2V

]
= 0.

In this case,

A = (IHB)

∫ T

0

ft dWt.
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(6) (Cauchy criterion). A process f : [0, T ]×Ω→ L(U, V ) is IHB-integrable
on [0, T ] if and only if for every ε > 0, there exist a positive function
δ on (0, T ] and a positive number η such that for any two backwards
(δ, η)-fine partial divisions D and D′ of [0, T ], we have

E
[
‖S(f,D, δ, η)− S(f,D′, δ, η)‖2V

]
< ε.

In the paper of Cao [4], he generalized the definition of the Henstock inte-
gral for real-valued functions taking values in Banach spaces. He also proved
that the Saks-Henstock lemma (strong version) no longer holds for Banach-
valued functions, that is, the summation symbol cannot be put outside the
norm. He then considered the weak version of the lemma. The next result is
a weak version of Saks-Henstock lemma for the IHB-integral.

Lemma 10 (Weak Version of Saks-Henstock Lemma). Let f be IHB-integra-

ble on [0, T ] and F (u, v] := (IHB)

∫ v

u

ft dWt for any (u, v] ⊆ [0, T ]. Then for

every ε > 0, there exist a positive function δ on (0, T ] and a positive number
η such that for any backwards (δ, η)-fine partial division D of [0, T ], we have

E
[∥∥∥(D)

∑
{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥2

V

]
< ε.

Before we proceed with the Itô isometry, we need to consider the backwards
Henstock integral defined in [3], which is equivalent to the Lebesgue integral.

Definition 11. [3] A real-valued function f defined on [0, T ] is said to be
backwards Henstock integrable to A ∈ R if given ε > 0, there exists a positive
function δ on (0, T ] and a real constant η > 0 such that∣∣∣(D)

∑
f(ξ)(ξ − v)−A

∣∣∣ < ε

whenever D is a backwards δ-fine partial division of [0, T ] with (D)
∑

(ξ−v) >

T − η.

The following result can be proved using the sequential definition of IHB
and Definition 11.

Lemma 12 (Itô Isometry). Let f be IHB-integrable on [0, T ]. Then

E
[
‖ft‖2L2(UQ,V )

]
is Lebesgue integrable on [0, T ] and

E

∥∥∥∥∥(IHB)

∫ T

0

ft dWt

∥∥∥∥∥
2

V

 = (L)

∫ T

0

E
[
‖ft‖2L2(UQ,V )

]
dt.
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Example 1. Let U be a separable Hilbert space with inner product 〈·, ·〉U ,
W : [0, T ]×Ω→ U be a Q-Weiner process, and 〈W, ·〉U : [0, T ]×Ω→ L(U,R)
be a process such that 〈W, ·〉U (t, ω) := 〈W (t, ω, ·)〉 := 〈Wt, ·〉U is a bounded
linear operator from U to R. Then 〈Wt, ·〉U is IHB-integrable on [0, T ] and

(IHB)

∫ T

0

〈Wt, ·〉U dWt =
1

2
(||WT ||2U + T (trQ)).

Next, we define the backwards derivative of a Hilbert space-valued func-
tion. Throughout the following, denote by J , the collection of all half-closed
intervals (u, v] ⊂ [0, T ]. In the following definition, when no confusion arises,
we may refer to F ((u, v], ·) or F ((u, v], ω) as simply F (u, v].

Definition 13. A function F : J × Ω → V is said to be backwards differen-
tiable at ξ ∈ (0, T ] if there exists a random variable fξ : Ω → L(U, V ) such
that for every ε > 0, there exists a positive function δ on (0, T ] such that for
any backwards δ-fine subinterval (v, ξ] of [0, T ], we have

E
[
‖fξ(Wξ −Wv)− F (v, ξ]‖2V

]
< ε(ξ − v).

The random variable fξ is called the backwards derivative of F at the point
ξ ∈ (0, T ]and is denoted by DFξ.

The next result shows that the backwards derivative follows the rule of
linearity and can be easily verified.

Theorem 14. Let α ∈ R. If F : J × Ω → V and G : J × Ω → V are
backwards differentiable at ξ ∈ (0, T ] with backwards derivatives fξ and gξ,
respectively, then

(i) F +G is backwards differentiable at ξ ∈ (0, T ] with backwards derivative
fξ + gξ, and

(ii) αF is backwards differentiable at ξ ∈ (0, T ] with backwards derivative
αfξ.

Definition 15. A function F : J × Ω→ V

(i) is said to be AC2[0, T ] if for every ε > 0, there exists η > 0 such that for
any finite collection D = {(v, ξ]} of disjoint subintervals (v, ξ] ∈ J with

(D)
∑

(ξ − v) < η, we have E
[
‖(D)

∑
F (v, ξ]‖2V

]
< ε.;

(ii) has the orthogonal increment property if for all disjoint intervals (a, b],
(u, v] ⊂ [0, T ], E [〈F (a, b], F (u, v]〉V ] = 0.
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Remark 1. Let {(vi, ξi]} be a collection of disjoint subintervals of [0, T ]. If
F : J × Ω→ V has orthogonal increment property, then

E

∥∥∥∥∥
n∑
i=1

F (vi, ξi]

∥∥∥∥∥
2

V

 =

n∑
i=1

E
[
||F (vi, ξi]||2V

]
.

Before proving Theorem 18, we shall consider first the following results.

Proposition 16. [13] Let (E1, E1) and (E2, E2) be two measurable spaces and
Ψ : E1 × E2 → R be a bounded measurable function. Let X1 and X2 be two
random variables on a probability space (Ω,F ,P) with values in (E1, E1) and
(E2, E2), respectively, and let G ⊆ F be a fixed σ-field. Assume that X1 is
G-measurable and X2 is independent of G. Then

E [Ψ(X1, X2) |G ] = Ψ̂(X1),

where Ψ̂(x1) = E[Ψ(x1, X2)], x1 ∈ E1.

In the following lemma, one may refer to [8, Lemma 3.5 and Lemma 3.6]
for analogous proof. For completeness, we shall present its proof.

Lemma 17. Let f : [0, T ]×Ω→ L(U, V ) be a backwards adapted process and
{(vi, ξi]}ni=1 be a finite collection of disjoint subintervals of [0, T ]. Then

(i) E

∑
i<j

〈
fξi(Wξi −Wvi , ), fξj (Wξj −Wvj )

〉
V

 = 0;

(ii) E

∥∥∥∥∥
n∑
i=1

fξi(Wξi −Wvi)

∥∥∥∥∥
2

V

 =

n∑
i=1

(ξi − vi)E
[
‖fξi‖

2
L2(UQ,V )

]
.

Proof. (i) It is enough to show that

E
[〈
fξi(Wξi −Wvi), fξj (Wξj −Wvj )

〉
V

]
= 0 for i < j.

Since Wξi−Wvi is independent of Gξi and f∗ξifξj (Wξj−Wvj ) is Gξi-measurable,
then by Proposition 16,

E
[〈
Wξi −Wvi , f

∗
ξifξj (Wξj −Wvj

〉
U

∣∣∣∣Gξi] (ω)

= E
[〈
Wξi −Wvi , f

∗
ξi(ω)fξj (ω)(Wξj (ω)−Wvj (ω)

〉
U

]
= 0
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since E [〈Wt −Ws, u〉U ] = 0 for all u ∈ U . Thus,

E
[〈
fξi(Wξi −Wvi), fξj (Wξj −Wvj )

〉
V

]
= 0.

(ii) By (i),

E

∥∥∥∥∥
n∑
i=1

fξi(Wξi −Wvi)

∥∥∥∥∥
2

V

 = E

[
n∑
i=1

〈fξi(Wξi −Wvi), fξi(Wξi −Wvi)〉V

+2
∑
i<j

〈
fξi(Wξi −Wvi), fξj (Wξj −Wvj )

〉
V


=

n∑
i=1

E
[
‖fξi(Wξi −Wvi)‖

2
V

]
.

Let Sm =

m∑
l=1

〈fξi(Wξi −Wvi), bl〉
2
V , where {bl} is an ONB in V . Note that

Sm −→
∞∑
l=1

〈fξi(Wξi −Wvi), bl〉
2
V := S as m→∞

and Sm(ω) ≤ Sm+1(ω), for all m ∈ N. By the monotone convergence theorem
for Lebesgue integral, we have∫

Ω

S(ω) dP = lim
m→∞

∫
Ω

Sm(ω) dP

so that

E

[ ∞∑
l=1

〈fξi(Wξi −Wvi), bl〉
2
V

]
= lim
m→∞

E

[
m∑
l=1

〈fξi(Wξi −Wvi), bl〉
2
V

]

=

∞∑
l=1

E
[
E
[〈
Wξi −Wvi , f

∗
ξibl
〉2
U

∣∣∣∣Gξi]] .
Using Proposition 16,

E
[〈
Wξi −Wvi , f

∗
ξibl
〉2
U

∣∣∣∣Gξi] (ω) = E
[
〈Wξi −Wvi , fξi(ω)∗bl〉2U

]
.

Since E
[
〈Wt −Ws, u〉2U

]
= (t− s) 〈Qu, u〉 for all u ∈ U , we obtain

E
[
〈Wξi −Wvi , fξi(ω)∗bl〉2U

]
= (ξi − vi) 〈Qfξi(ω)∗bl, fξi(ω)∗bl〉U .
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It follows that

E

[ ∞∑
l=1

〈fξi(Wξi −Wvi), bl〉
2
U

]
=

∞∑
l=1

(ξi − vi)E
[〈
Qf∗ξibl, f

∗
ξibl
〉
U

]
. (1)

Let {λj , ej} be an eigensequence defined by Q. Then

E
[〈
Qf∗ξibl, f

∗
ξibl
〉
U

]
= E

 ∞∑
j=1

λj
〈
f∗ξibl, ej

〉2
U

 = E

 ∞∑
j=1

〈
fξi

(√
λjej

)
, bl

〉2

U

 .
(2)

Thus, using (1) and (2), we have

E

[
n∑
i=1

〈fξi(Wξi −Wvi), fξi(Wξi −Wvi)〉V

]

=

n∑
i=1

∞∑
l=1

(ξi − vi)E

 ∞∑
j=1

〈
fξi

(√
λjej

)
, bl

〉2

V


=

n∑
i=1

(ξi − vi)E

 ∞∑
j=1

∥∥∥fξi (√λjej)∥∥∥2

V


=

n∑
i=1

(ξi − vi)E
[
‖fξi‖2L2(UQ,V )

]
,

which completes the proof. �

Theorem 18. Let f be IHB-integrable on [0, T ] and define

F (v, ξ] := (IHB)

∫ ξ

v

ft dWt

for all (v, ξ] ∈ J . Then F is AC2[0, T ] and has the orthogonal increment
property.

Proof. F is AC2[0, T ] follows from [19, Theorem 4]. Next, we show that
F has the orthogonal increment property. Let (a, b] and (u, v] be disjoint
intervals in [0, T ]. From the sequential definition of IHB integral, there ex-
ist a decreasing sequence {δn} of positive functions defined on (0, T ] and a
decreasing sequence {ηn} of positive numbers such that for any backwards
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(δn, ηn)-fine partial divisions Dn[a, b] = {((u(n)
i , ξ

(n)
i ], ξ

(n)
i )}mi=1 and Dn[u, v] =

{((u(n)
j , ξ

(n)
j ], ξ

(n)
j )}pj=1 of [a, b] and [u, v] respectively, we have

E [‖S(f,Dn[a, b], δn, ηn)− F (a, b]‖]→ 0 as n→∞

and
E [‖S(f,Dn[u, v], δn, ηn)− F (u, v]‖]→ 0 as n→∞.

In view of Lemma 17 (i), for all n ∈ N,

E

 m∑
i=1

p∑
j=1

〈
f
ξ
(n)
i

(W
ξ
(n)
i
−W

v
(n)
i
, ), f

ξ
(n)
j

(W
ξ
(n)
j
−W

v
(n)
j

)
〉
V

 = 0.

Since E [〈S(f,Dn[a, b], δn, ηn), S(f,Dn[u, v], δn, ηn)〉V ]→ E [〈F (a, b], F (u, v]〉V ]
as n→∞, it follows that E [〈F (a, b], F (u, v]〉V ] = 0. �

Theorem 19. [19, Theorem 5] Let f : [0, T ] × Ω → L(U, V ) be a backwards
process. Then f is IHB-integrable on [0, T ] if and only if there exists an
AC2[0, T ] function F such that for every ε > 0, there exist a positive function
δ on (0, T ] such that whenever D = {((v, ξ], ξ)} is a backwards δ-fine partial
division of [0, T ], we have

E
[∥∥∥(D)

∑
{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥2

V

]
< ε.

Lemma 20. Let f : [0, T ]×Ω→ L(U, V ) be a backwards adapted process and
let F : J ×Ω→ V . Then for any disjoint subintervals (a, b] and (c, d] of [0, T ],
we have

E [〈F (a, b], fd(Wd −Wc)〉V ] = 0.

Proof. Since f∗d (F (a, b]) is Gd-measurable and Wd −Wc is independent of
Gd, then by Proposition 16, for each ω ∈ Ω,

E [〈f∗d (F (a, b]),Wd −Wc〉U | Gd] (ω) = E [〈f∗d (ω)(F (a, b], (ω)),Wd −Wc〉U ] .

Since E[〈Wt −Ws, u〉U ] = 0 for all 0 ≤ s < t ≤ T and for all u ∈ U ,

E [〈f∗d (ω)(F (a, b], (ω)),Wd −Wc〉U ] = 0.

Hence, for each ω ∈ Ω, E
[〈
f∗d (F (a, b]),Wd −Wc〉U

∣∣Gd] (ω) = 0. This implies

that E
[
E
[〈
f∗d (F (a, b]),Wd −Wc〉U

∣∣Gd]] = 0. Thus,

E [〈f∗d (F (a, b]),Wd −Wc〉U ] = 0.

It follows that E [〈F (a, b], fd(Wd −Wc)〉V ] = 0. �



A Definition of the Backwards Itô-Henstock Integral 439

In view of Lemma 17 and Lemma 20, we have the following result.

Lemma 21. Let f : [0, T ] × Ω → L(U, V ) be a backwards adapted process,
F : J ×Ω→ V with orthogonal property, and {(vi, ξi]}ni=1 be a finite collection
of disjoint subintervals of [0, T ]. Then

E

∥∥∥∥∥
n∑
i=1

{fξi(Wξi −Wvi)− F (vi, ξi]}

∥∥∥∥∥
2

V


=

n∑
i=1

E
[
‖fξi(Wξi −Wvi)− F (vi, ξi]‖2V

]
.

By Lemma 10, Theorem 18, and Lemma 21, we have the strong version of
Saks-Henstock Lemma as follows.

Lemma 22 (Strong Version of Saks-Henstock Lemma). Let f be IHB-integra-
ble on [0, T ] and F (u, v] := (IHB)

∫ v
u
ft dWt for any (u, v] ⊂ [0, T ]. Then for

every ε > 0, there exists a positive function δ on (0, T ] such that for any
backwards δ-fine partial division D = {(v, ξ], ξ} of [0, T ], we have

(D)
∑

E
[
‖fξ(Wξ −Wv)− F (u, v]‖2V

]
< ε.

4 Descriptive Definition of Backwards Itô-Henstock In-
tegral.

We shall now prove the main result of this paper. Here we will show that an
antiderivative of a process f is the backwards Itô-Henstock integral of f under
some specific conditions. Recall that F is an antiderivative of f if DF = f ,
a.e. In the proofs, denote by µ∗ and µ, the Lebesgue outer measure and
Lebesgue measure, respectively.

Theorem 23. Let f : [0, T ]× Ω → L(U, V ) be IHB-integrable on [0, T ] with
F (u, v] = (IHB)

∫ v
u
ft dWt for all (u, v] ⊂ [0, T ]. Then

(i) F is AC2[0, T ] and has orthogonal increment property; and

(ii) DFξ = fξ a.e. on (0, T ].

Proof. We note that (i) follows directly from Theorem 18. We are left to
show that DFξ = fξ a.e. on (0, T ]. Let

S = {s ∈ (0, T ] : DFs does not exist or DFs 6= fs}.
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We will show that the Lebesgue measure of S, µ(S), is zero. Let ξ ∈ S. Then
there exists γ(ξ) > 0 such that for every positive function δ on (0, T ], there
exists a backwards δ-fine subinterval (v, ξ] ⊂ [0, T ] with

E
[
‖fξ(Wξ −Wv)− F (u, ξ]‖2V

]
≥ γ(ξ)(ξ − v). (3)

For each k ∈ N, let Sk = {s ∈ S : γ(s) ≥ 1
k}. Then S = ∪k∈NSk. Let Γ

be the collection of point-interval pairs ((v, ξ], ξ) such that ξ ∈ Sk and (v, ξ]
is a backwards δ-fine subinterval of [0, T ] that satisfies (3). Then for every
ξ ∈ Sk and any ε1 > 0 (constant function δ), there exists a point-interval pair
((v, ξ], ξ) in Γ such that ξ − v < ε1. This means that Γ covers Sk in the sense
of Vitali. By the strong version of Saks-Henstock Lemma and (3), for each
ε > 0, there exists a positive function δ1 on (0, T ] such that for any backwards
δ1-fine partial division D1 = {((vi, ξi], ξi)}ni=1 ⊂ Γ of [0, T ], we have

1

k

n∑
i=1

(ξi − vi) ≤ (D1)

n∑
i=1

E
[
‖fξi(Wξi −Wvi)− F (vi, ξi]‖2V

]
<

ε

2k
.

Therefore
n∑
i=1

(ξi − vi) <
ε

2
.

Using the Vitali covering lemma, we can find a partial division

D = {((v, ξ], ξ)} ⊂ Γ such that µ∗(Sk) < (D)
∑

(ξ − v) +
ε

2
< ε.

Since ε is arbitrary, µ∗(Sk) = 0. Thus, µ∗(S) = 0, since S is the countable
union of Sk. Hence, µ(S) = 0. �

The following result is the converse of the above theorem.

Theorem 24. Let f : [0, T ] × Ω → L(U, V ) be a backwards adapted process
on [0, T ]. Suppose that

(i) F : J × Ω→ V be AC2[0, T ] with orthogonal increment property, and

(ii) DFξ = fξ a.e. on (0, T ].

Then f is IHB-integrable on [0, T ] with F (v, ξ] = (IHB)
∫ ξ
v
ft dWt.

Proof. Let S = {s ∈ (0, T ] : DFs does not exists or DFs 6= fs}. Then
µ(S) = 0. Let ξ ∈ Sc = [0, T ]\S. Then for every ε > 0, there exists a
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positive function δ1 on (0, T ] such that for any backwards δ1-fine subinterval
(v, ξ] ⊂ [0, T ], we have

E
[
‖fξ(Wξ −Wv)− F (v, ξ]‖2V

]
<
ε(ξ − v)

4T
.

Let D1 = {((vi, ξi], ξi)}ni=1 be a backwards δ1-fine partial division on [0, T ]
with ξi ∈ Sc. Then by Lemma 21

E

∥∥∥∥∥
n∑
i=1

{fξi(Wξi −Wvi)− F (vi, ξi]}

∥∥∥∥∥
2

V


=

n∑
i=1

E
[
‖fξi(Wξi −Wvi)− F (vi, ξi]‖2V

]
<

ε

4T

n∑
i=1

(ξi − vi) ≤
ε

4
.

If S = ∅, then we are done. Suppose that S 6= ∅. Let ξ ∈ S. Note that for
v < ξ,

E
[
||fξ(Wξ −Wv)||2V

]
= (ξ − v)E

[
‖fξ‖2L2(UQ,V )

]
.

Let Gm =

m∑
j=1

〈fξ(Wξ −Wv), gj〉2V , where {gj} is an ONB in V . Since

Gm → G :=

∞∑
j=1

〈fξ(Wξ −Wv), gj〉2V as m→∞

and Gm ≤ Gm+1, by the monotone convergence theorem for Lebesgue integral,
we have

lim
m→∞

E

 m∑
j=1

〈fξ(Wξ −Wv), gj〉2V

 = E

 ∞∑
j=1

〈fξ(Wξ −Wv), gj〉2V


= E

[
||fξ(Wξ −Wv)||2V

]
<∞.

This implies that there exists N ∈ N such that N−1 ≤ E
[
‖fξ‖2L2(UQ,V )

]
< N .

Since F is AC2[0, T ], there exists η > 0 with η ≤ ε
N ·24 such that for any finite

collection of disjoint subintervals {(v, ξ]} of [0, T ] with
∑

(ξ−v) < η, we have

E
[∥∥∥∑F (v, ξ]

∥∥∥2

V

]
<

ε

24
.
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Since S is a set of Lebesgue measure zero, there exists an open set O ⊃ S
such that µ(O) < η. Now, we define a function δ2 on S as follows: let ξ ∈ S
and define δ2(ξ) > 0 such that whenever ((v, ξ], ξ) is a backwards δ2-fine with
ξ ∈ S, we have (v, ξ] ⊂ O. Then by Lemma 17 (ii) and Remark 1, for every
backwards δ2-fine partial division D2 = {((v, ξ], ξ)} of [0, T ] with ξ ∈ S, we
have

E
[∥∥∥(D2)

∑
{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥2

V

]
≤ 2E

[∥∥∥(D2)
∑

fξ(Wξ −Wv)
∥∥∥2

V

]
+ 2E

[∥∥∥(D2)
∑

F (v, ξ]
∥∥∥2

V

]
= 2(D2)

∑
(ξ − v)E

[
‖fξ‖2L2(UQ,V )

]
+ 2(D2)

∑
E
[
‖F (v, ξ]‖2V

]
< 2N · ε

N · 24
+ 2 · ε

24
=
ε

4
.

If ξ ∈ S, choose a positive function δ defined on S such that δ(ξ) = δ2(ξ)
and if ξ /∈ S, choose δ(ξ) = δ1(ξ). Let D = {((v, ξ], ξ)} be a backwards δ-fine
partial division of [0, T ]. Then

E
[∥∥∥(D)

∑
{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥2

V

]

≤ 2E


∥∥∥∥∥∥
∑
ξ∈Sc

{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥∥∥∥
2

V


+ 2E


∥∥∥∥∥∥
∑
ξ∈S

{fξ(Wξ −Wv)− F (v, ξ]}

∥∥∥∥∥∥
2

V


< 2

(ε
4

)
+ 2

(ε
4

)
= ε.

By Theorem 19, f is IHB-integrable on [0, T ]. �

Combining Theorem 18, Theorem 23, and Theorem 24, we get the following
result, which is referred to as the descriptive definition of the backwards Itô-
Henstock integral.

Theorem 25. Let f : [0, T ] × Ω → L(U, V ) be a backwards adapted process
on [0, T ]. Then f is IHB-integrable on [0, T ] if and only if there exists an
AC2[0, T ] function F : J × Ω → V with orthogonal increment property and
DFξ = fξ a.e. on (0, T ].
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5 Conclusion and Recommendations.

In this paper, we formulate a version of Fundamental Theorem for the back-
wards Itô-Henstock integral of an operator-valued stochastic process with re-
spect to a Hilbert space-valued Q-Wiener process. We use the notion of back-
wards derivative and AC2[0, T ]-property, a version of absolute continuity, to
attain this objective. A worthwhile direction for further investigation is to
formulate an equivalent definition of this type of integral using double Lusin
condition and AC2[0, T ]-property.

Acknowledgment. The authors wish to thank the anonymous referee for his
valuable comments for the improvement of this paper.
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