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A DESCRIPTIVE DEFINITION OF THE
BACKWARDS ITO-HENSTOCK INTEGRAL

Abstract

In this paper, we introduced the backwards derivative of a Hilbert
space-valued function and formulate a version of Fundamental Theorem
for the backwards It6-Henstock integral of an operator-valued stochastic
process with respect to a Hilbert space-valued Wiener process.

1 Introduction.

In 1950s, a Riemann-type integral was discovered independently by R. Hen-
stock and J. Kurzwiel. This integral includes Riemann and that of Lebesgue.
This integral is now known as Henstock-Kurzwiel or HK integral. In this
paper, however, we will call this integral simply as Henstock integral. In con-
trast to Riemann integral, the Henstock integral used non-uniform meshes.
This technique is now known as the Henstock approach.

In dealing with random functions such as functions of a Brownian motion
(BM), it is impossible to define stochastic integrals using Riemann approach
since Brownian motion moves so rapidly and irregularly that almost all of
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its sample paths are nowhere differentiable. The Riemann integral cannot
handle highly oscillating functions like that of a Brownian motion, see [18].
For the same reason, it is not even possible to define the stochastic integral as
a Riemann-Stieltjes integral, see [10]. In the classical approach to stochastic
integration, the stochastic integral of a real-valued adapted process is obtained
from the mean square limit of stochastic integrals of simple processes, see [12].
This is approach to stochastic integration which is almost similar in defining
the Lebesgue integral of a measurable function. Hence, Henstock approach to
stochastic integration have been studied in several papers (see [5], [9], [11], [16],
[17], and [18]), since it gives more explicit definition, reduces the technicalities
in the classical way of defining the stochastic integral, and is less measure
theoretic. In [15], the class of all Henstock-Kurzweil-Itd integrable processes
has been characterized by its primitive processes.

In [6], [7], and [13], the concept of stochastic integral has been extended to
infinite-dimensional spaces, namely Hilbert and Banach spaces. In a Hilbert
space, the stochastic integral is presented in a manner similar to the real-valued
case. The integrator is Q-Wiener process, a Hilbert space-valued Wiener pro-
cess which is dependent on a symmetric nonnegative trace-class operator @
and the integrand is an operator-valued stochastic process. In a general Ba-
nach space, however, there seems to be no unifying treatment of stochastic
integration.

In [19], a stochastic integral called the backwards Ito-Henstock integral is
introduced. This integral was defined using the Henstock approach.

In this paper, we formulate a descriptive definition of the backwards It6-
Henstock integral of an operator-valued stochastic process with respect to a
Hilbert space-valued Wiener process.

2 Preliminaries.

Throughout this note, R denotes the set of real numbers, R denotes the set of
nonnegative real numbers, N the set of positive integers and {2, G, P} denotes
a probability space.

Definition 1. Let {G; : 0 < t < T} be a family of sub o-field of G. Then
{G: : 0 <t < T}is called a backwards filtration if Gy C Gs forall0 < s <t < T.
If in addition, {G; : 0 < ¢ < T'} satisfies the following condition:

(i) Gr contains all sets of P-measure zero in G; and
(ii) for each t € [0,T], Gt = Gi— =y, Gs-
Then {G; : 0 <t < T} is called a standard backwards filtration.
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We often write {G;} instead of {G; : 0 <t < T}. Some terminologies above
can be found in [1].

Definition 2. Let H be a separable Banach space. A stochastic process f or
simply process is a function f : [0,7]xQ — H, where [0, T] is an interval in R{
and f(-,t) is Gi-measurable for each t € [0,T]. A process f = {f;:t € [0,T]}
is said to be backwards adapted to a standard backwards filtration {G;} if f;
is Gi-measurable for each t € [0, 7].

Let U and V be separable Hilbert spaces. Denote L(U,V') the space of
all bounded linear operators from U to V, L(U) := L(U,U), Qu := Q(u) if
Q € L(U,V), and L?(€, V) the space of all square-integrable random variables
from Q to V.

Definition 3. An operator Q € L(U) is said to be self-adjoint or symmetric
if for all u, v’ € U, (Qu, u’); = (u, Qu’),; and is said to be nonnegative definite
if for every u € U, (Qu,u);; > 0.

Let {e;}32,, or simply {e;}, be an orthonormal basis (abbrev. as ONB)
in U. If @ € L(U) is nonnegative definite, then the trace of @ is defined
by tr Q@ = 372, (Qej, ej)y, - It is shown in [14] that tr @ is well-defined and
may be defined in terms of an arbitrary ONB. Moreover, there exists a unique
operator Q2 € L(U) such that Q2 is nonnegative definite and (Q%)2 =Q.

Definition 4. An operator Q : U — U is said to be trace-class if tr [Q] :=
tr (QQ*)% < 0o, where @Q* is the adjoint or dual of Q.

If Q € L(U) is a symmetric nonnegative definite trace-class operator, then
there exists an ONB {e;} C U and a sequence of nonnegative real num-
bers {);} such that Qe; = Aje; forall j € N, and A\; — 0 as j — oo [14,
p.203]. We shall call the sequence of pairs {);,e;} an eigensequence defined
by Q. The subspace Ugp := Q%U of U equipped with the inner product
(u,v)UQ = <Q_1/2U,Q_1/2’U>U, where Q'/? is being restricted to [KerQ/?]*
is a separable Hilbert space with {\/)Tjej} as its ONB, see [6, p.90], [7, p.23].

Definition 5. Let {f;} be an ONB in Ug. An operator S € L(Ug, V) is said
to be Hilbert-Schmidt if 3777, 1S£;1% = > (S £, 8fi)y < oo

Denote by Lo(Ug, V') the space of all Hilbert-Schmidt operators from Ug
to V, which is known [13, p.112] to be a separable Hilbert space with norm
IS0 1w v) = /2o 1S £33 The Hilbert-Schmidt operator S € Ly (Ug, V)
and the norm ||S||L2(UQ7V) may be defined in terms of an arbitrary ONB, see [6,
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p.418], [13, p.111]. Tt is shown in [7, p.25] that L(U, V) is properly contained
in LQ(UQ, V)

We fix an element Q € L(U), symmetric nonnegative definite trace-class
operator.

Definition 6. A U-valued stochastic process W, ¢ € [0,T], on a probability
space (€, G,P) is called a Q- Wiener process in U if:

1. W(0,w) = 0y for each w € Q,
2. W has P-almost surely (abbrev. as [P-a.s.) continuous trajectories; i.e.,

W(,w):[0,T] > U is P-a.s. continuous

3. the increments of W are independent; i.e. the random variables
thv Wtz - th Wts - Wtzv ey th - th—l
are independent for all 0 <t} <--- <t, <T,n € N, and

4. the increments have the following Gaussian laws:

Po (W, — W) ' =N(0,(t—5)Q) forall0<s<t<T.

By Proposition 4.2 (see [6, p.88]), such a Q-Wiener process exists.
Let W = {W, : ¢t € [0,T]} be a U-valued Q-Wiener process. Define

N:={AecG|PA) =0}, G :=c(Wp—W,|[t<s<T), G°:=0o(GUN)

and G; == (), ., GO, te[0,T). Since N C GO for all s € [0,T] and {G; }o<i<T
is decreasing, then G, is a standard backwards filtration. It is shown in [19]
that W; — Wy is independent of G; for all 0 < s <t <T.

From now onwards, the backwards filtered probability (€2, G, {G;},P) shall
mean a filtered probability space such that W; is adapted to G; and W; — W
is independent of G; for all 0 < s <t < T.

3 Backwards It6-Henstock Integral, Backwards Deriva-
tive.

In this section, we shall present the backwards It6-Henstock integral and some
related results.

Definition 7. [2] Let ¢ be a positive function on (0, 7.
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1. A finite collection D = {((u4,&;], &)}, of interval-point pairs is said to
be a backwards partial division of [0, T) if {(u;, &)}, is a finite collection
of disjoint subintervals of (0, T].

2. An interval-point pair ((u,£],£) is said to be backwards §-fine if (u, €] C
(& —6(8),€&], whenever (u,&] C (0,7] and £ € (0,7).

3. We call D = {((us,&], &)}, a backwards d-fine partial division of [0, T
if D is a backwards partial division of [0, 7] and for each i, the interval-
point pair ((u;,&;],&) is backwards d-fine.

The term partial is used in Definition 7 since the finite collection of disjoint
subintervals of (0, 7] may not cover the entire (0,7]. Using the Vitali covering
theorem, the following concept can be defined.

Definition 8. [2] Given n > 0, a given backwards J-fine partial division
D = {((ui,&], &)}, is said to be backwards (3,7n)-fine partial division of
[0, T7] if it fails to cover (0,7 by at most length 7, that is,

T — (D)) (& —u)| <n.

=1

Throughout the following discussions, assume that U and V' are separable
Hilbert spaces, @ : U — U is a symmetric nonnegative definite trace-class
operator, {\;,e;} is an eigensequence defined by @, and W is a U-valued
@-Weiner process. The backwards It6-Henstock integral is defined as follows.

Definition 9. Let f:[0,7] x Q — L(U,V) be a backwards adapted process.
Then f is said to be backwards It6-Henstock integrable, or ZH p-integrable, on
[0, T] with respect to W if there exists A € L*(£2, V) such that for every ¢ > 0,
there is a positive function ¢ on (0,7 and a positive number 7 such that for
any backwards (9, n)-fine partial division D = {((us,&],&)}, of [0,T], we
have

E[IS(f, D, 6,m) - A} <

where
S(f,D,é,n) == (D)Zfé(wf - Wy) = Zf&(WEI - Wy,).
i=1

In this case, f is ZH p-integrable to A on [0, 7] and A is called the ZH p-integral
of f which will be denoted by (THg) [, fidW; or (THp) [ fdW.
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It is worth noting that the backwards It6-Henstock integral possesses the
following standard properties of an integral. The proofs of the following results
are standard in Henstock-Kurzweil integration, hence omitted.

(1) The backwards It6-Henstock integral is uniquely determined, in the sense
that if A; and A, are two backwards It6-Henstock integrals of f in
Definition 9, then [|A; — Az||z2(q,v) = 0.

(2) Let o € R. If f and ¢ are TH g-integrable on [0, T], then

(i) f+ g is TH g-integrable on [0, T, and
T T T
IH dW = (IH dW + (ITH dW;
@Ho) [ (f+a)dW = @Hp) [ 1 W+ @) [
(ii) af is TH p-integrable on [0, 7], and
T T
IH dW =a - (TH dw.
@Hp) [ (af) dW =a-@Hn) [ 1

(3) If f:[0,T] x Q — L(U,V) is ZH p-integrable on [0, ¢] and [c,T| where
c €(0,7), then f is ZH p-integrable on [0,7] and

T c T
(IHB)/ fdw = (I’HB)/ faw + (I?—[B)/ fdw.
0 0 c
(4) If f:[0,T] x Q2 — L(U,V) is TH p-integrable on [0,T7], then f is also
TH g-integrable on every subinteval [c, d] of [0,T].
(5) (Sequential Definition). A process f : [0,T] x Q@ — L(U,V) is THp-
-integrable on [0, 7] if and only if there exist A € L?(Q, V), a decreasing
sequence {d,} of positive functions defined on (0,7], and a decreasing

sequence of positive numbers {7, } such that for any backwards (J,,, 7, )-
fine partial division D,, of [0, 7], we have

. 2 —
i E [[S(f, D6, ma) — Al = 0.

In this case,

T
A (I’H,B)/ fi dWi,
0
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(6) (Cauchy criterion). A process f : [0, T]|xQ — L(U,V) is TH g-integrable
on [0,T] if and only if for every € > 0, there exist a positive function
0 on (0,T] and a positive number n such that for any two backwards
(0,m)-fine partial divisions D and D’ of [0, T], we have

E[IS(.D,8m) = (D sy | <

In the paper of Cao [4], he generalized the definition of the Henstock inte-
gral for real-valued functions taking values in Banach spaces. He also proved
that the Saks-Henstock lemma (strong version) no longer holds for Banach-
valued functions, that is, the summation symbol cannot be put outside the
norm. He then considered the weak version of the lemma. The next result is
a weak version of Saks-Henstock lemma for the ZH p-integral.

Lemma 10 (Weak Version of Saks-Henstock Lemma). Let f be TH g-integra-
ble on [0,T] and F(u,v] := (ZHp) / fr AWy for any (u,v] C [0,T). Then for

every e > 0, there exist a positive function 6 on (0,T] and a positive number
1 such that for any backwards (8,n)-fine partial division D of [0,T), we have

e[| v - w) - reenf)| <e.

Before we proceed with the It isometry, we need to consider the backwards
Henstock integral defined in [3], which is equivalent to the Lebesgue integral.

Definition 11. [3] A real-valued function f defined on [0,T] is said to be
backwards Henstock integrable to A € R if given € > 0, there exists a positive
function 6 on (0,7] and a real constant i > 0 such that

‘ Zf <e

whenever D is a backwards d-fine partial division of [0, 7] with (D) Z(f —v) >
T—n.

The following result can be proved using the sequential definition of ZH g
and Definition 11.

Lemma 12 (It6 Isometry). Let f be ZH g-integrable on [0,T]. Then
E {”ft”QLQ(UQ,V)] is Lebesgue integrable on [0,T] and

E

(IHB)/OT fdwi| | =0 /OTE[HftiZ(UQyJ dt.

v
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Example 1. Let U be a separable Hilbert space with inner product (-,-),,
W :[0,T] x Q= U be a Q-Weiner process, and (W, ), : [0,T] x Q@ — L(U,R)
be a process such that (W,-), (t,w) = (W(t,w,-)) := (Wi, )y is a bounded
linear operator from U to R. Then (Wi, ), is TH p-integrable on [0,T] and

@He) [ Wedo de = 5(IWilfs + T(tr Q).

Next, we define the backwards derivative of a Hilbert space-valued func-
tion. Throughout the following, denote by J, the collection of all half-closed
intervals (u,v] C [0,T]. In the following definition, when no confusion arises,
we may refer to F'((u,v],-) or F((u,v],w) as simply F(u,v].

Definition 13. A function F': J x Q — V is said to be backwards differen-
tiable at & € (0,7 if there exists a random variable fe : Q@ — L(U,V) such
that for every & > 0, there exists a positive function ¢ on (0,7] such that for
any backwards d-fine subinterval (v, ] of [0, 7], we have

E[llfe(We = W) = F(v,€]I}] < (€ — ).
The random variable f¢ is called the backwards derivative of F at the point
¢ € (0,T)and is denoted by DF¢.

The next result shows that the backwards derivative follows the rule of
linearity and can be easily verified.

Theorem 14. Let a €e R. If F : T xQ -V and G : T xQ — V are
backwards differentiable at & € (0,T] with backwards derivatives fe and ge,
respectively, then

(i) F+ G is backwards differentiable at & € (0,T) with backwards derivative
fe 4+ g¢, and

(ii) oF is backwards differentiable at & € (0,T] with backwards derivative
Oéfg,
Definition 15. A function F': J xQ =V

(i) is said to be AC?[0,T] if for every e > 0, there exists n > 0 such that for
any finite collection D = {(v,&]} of disjoint subintervals (v, ] € J with
(D)S2(€ —v) <, we have E [|(D) X F(v, ]I} | < =

(ii) has the orthogonal increment property if for all disjoint intervals (a, ],
(U,’U] - [OvT]a E [<F(a’a b]a F(U,’U]>V] = O
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Remark 1. Let {(v;,&]} be a collection of disjoint subintervals of [0,T). If
F:J xQ —V has orthogonal increment property, then

E Z F(v;,&]
i=1

= > E[IF@ I

2
%

Before proving Theorem 18, we shall consider first the following results.

Proposition 16. [13] Let (E1,&1) and (E2,&2) be two measurable spaces and
U : E; X Es — R be a bounded measurable function. Let X1 and Xo be two
random variables on a probability space (Q, F,P) with values in (E1,&1) and
(E2, &), respectively, and let G C F be a fized o-field. Assume that Xq is
G-measurable and X5 is independent of G. Then

~

E[U(Xy, X)[G] = W(X1),
where U(z1) = E[U(z1, X2)], 21 € E.

In the following lemma, one may refer to [8, Lemma 3.5 and Lemma 3.6]
for analogous proof. For completeness, we shall present its proof.

Lemma 17. Let f : [0,T] x Q — L(U,V) be a backwards adapted process and
{(vi, &}, be a finite collection of disjoint subintervals of [0,T]. Then

(D) B |3 (fe.(We, — War), fe,(We, = W)y, | =0

_i<j
[ n 2 n
(i0) B |||> feeWe, = W) | | = D& — 0B el 00 |-
i=1 v i=1

PRrOOF. (i) It is enough to show that
E[<f§7(wf7 7WU1‘)7f£j(W§j 7VV1)J')>V} =0 fOI‘i<j.

Since We, —W,, is independent of G¢, and f¢ fe, (We, —=W,,) is G¢,-measurable,
then by Proposition 16,

E |:<W£1 - vafgiffj (W€J - WUJ‘>U

G| @)

= E [(We, — W, S, @) e, (@)(We, (@) = W, (@), ] = 0
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since E [(Wy — Wy, u),;] = 0 for all u € U. Thus,
E |:<f§z(W£'L vq) fEJ (WEJ W”J)>V} = 0.
(id) By (),

E
i=1

2

fo7(W§7 -

v

:| [Z ff Wf - Um)?ffq(Wfl 7in)>v
i=1

+22<f5 Wg - vl) ff;(Wf; WJ)>V

1<J
=Y E[lfe. We, - W)}
=1
Let Sy =Y (fe,(We, = Wi,), b))}, where {b} is an ONB in V. Note that
=1
ngW— )bl> =S5 asm — o0

and Sy, (w) < Sppq1(w), for all m € N. By the monotone convergence theorem
for Lebesgue integral, we have

/ S(w) dP = lim S (w) dP
Q

m—0oQ Q

so that

E [Z <f§1 (WEz - Wvl)vbl>€] = hmOOE [Z <f€7.(W§z - Wﬂ1)7bl>%/‘|

=1

Using Proposition 16,

2 {<W& - vafgiblﬁ]

gg'i:| (w) =E |:<W§7, - in’f& (w)*bl>?]} .
Since E [(Wt - W, u)ﬂ = (t — ) {Qu,u) for all u € U, we obtain

E[(We, = Way, fe, (@) b5 | = (& = vi) (Qfe ()b, fe, (@) bidyy
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It follows that

Z fél ng ) bl> ‘| = Z(&z _'Ui)E |:<Qf§*ibl’f§ibl>U:| ’ (1)

=1

Let {);,e;} be an eigensequence defined by Q. Then

E[(Qfzbi fibi), | =E ZA (febses)y | = Z< (VAer) ),

Thus, using (1) and (2), we have

n

E Z <f£7(Wf@ - in)a ffi(Wfi - in)>v‘|

i=1

I
M=

6w |k (V) ),

i=1 l=1 j=1
n oo 2
=26 - | 3| (Ve )
i=1 =1

|

(€~ 0B I g -

s
Il
_

which completes the proof. (I

Theorem 18. Let f be TH p-integrable on [0,T] and define

3
F(v,&) := (IHB)/ fe dW:

for all (v,§] € J. Then F is AC?[0,T] and has the orthogonal increment
property.

ProoF. F is AC?[0,T] follows from [19, Theorem 4]. Next, we show that
F has the orthogonal increment property. Let (a,b] and (u,v] be disjoint
intervals in [0,T]. From the sequential definition of ZH p integral, there ex-
ist a decreasing sequence {d,} of positive functions defined on (0,7] and a
decreasing sequence {n,} of positive numbers such that for any backwards
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(On,, M )-fine partial divisions D, [a, b] = {((ugn),fgn)],ﬁi(n)) 7 and Dy fu,v] =
{((ug-n),fj(-n)]’f](-n)) “_, of [a,b] and [u, ] respectively, we have

EHIS(f7Dn[a’7b]75na77n) - F(a,b]”] —0asn— oo

and
E[||S(f, Dnlu,v], 80, 1n) — F(u,v]|]] = 0 as n — oc.

In view of Lemma 17 (i), for all n € N,

m P
E [Z Z <f§<n> e = Wom,), fén) (ngm - Wv]<n>)>v] =0.

SinceE[(S(f, Dn[aa ] nvnn)’ (f, [ ]v(snann»v} *)]EKF(G,IJ],F(U,UDV}
as n — 00, it follows that E [(F(a, b], (u v])y ] =0. O

Theorem 19. [19, Theorem 5] Let f : [0,T] x @ — L(U,V) be a backwards
process. Then f is THp-integrable on [0,T] if and only if there exists an
AC?[0,T) function F such that for every e > 0, there exist a positive function
0 on (0,T] such that whenever D = {((v,€],&)} is a backwards §-fine partial
division of [0,T], we have

B |0 L teve - wo) - reg | <

Lemma 20. Let f:[0,7] x Q — L(U, V) be a backwards adapted process and
let F: JxQ — V. Then for any disjoint subintervals (a,b] and (¢, d] of [0,T],
we have

E [<F(a7 b]? fd(Wd - W(,)>V] =0.

PROOF. Since f;(F(a,b]) is Gg-measurable and Wy — W, is independent of
Gq, then by Proposition 16, for each w € ,

E[(f;(F(a,b]), Wa — Wo) | Gal (w) = E[(f5(w)(F(a,b], (W), Wa — We)y] -
Since E[(W; — Wy, u);;] =0 forall 0 < s <t < T and for all uw € U,
E[(fi(w)(F(a,b], (w)), Wa = We)y] = 0.

Hence, for each w € Q, E [< *(F(a,b]), Wy — WC>U’ gd} (w) = 0. This implies
that E [E [( f5(F(a,b]), Wa — We),;| Ga]] = 0. Thus,

E [<f;(F(aa b])a Wa — Wc>U} =0.
It follows that E [(F(a,b], fa(Waq — W.))] = 0. 0
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In view of Lemma 17 and Lemma 20, we have the following result.

Lemma 21. Let f : [0,T] x Q@ — L(U,V) be a backwards adapted process,
F : J xQ — V with orthogonal property, and {(v;, &)}, be a finite collection
of disjoint subintervals of [0,T]. Then

2

E

Z{ffz(W& - We,) — F(vﬂgl}}
i=1

\%
n
2
= > E [Ife.(We, - W) — Flus &ll13 | -
i=1
By Lemma 10, Theorem 18, and Lemma 21, we have the strong version of

Saks-Henstock Lemma as follows.

Lemma 22 (Strong Version of Saks-Henstock Lemma). Let f be ZH p-integra-
ble on [0,T] and F(u,v] := (ZHp) [, fr dW; for any (u,v] C [0,T]. Then for
every € > 0, there exists a positive function § on (0,T] such that for any
backwards §-fine partial division D = {(v,&],&} of [0,T], we have

(D)Y_E [Ilfe(We = W) = F(u.vlll} | <=

4 Descriptive Definition of Backwards It6-Henstock In-
tegral.

We shall now prove the main result of this paper. Here we will show that an
antiderivative of a process f is the backwards It6-Henstock integral of f under
some specific conditions. Recall that F' is an antiderivative of f if DF = f,
a.e. In the proofs, denote by p* and p, the Lebesgue outer measure and
Lebesgue measure, respectively.

Theorem 23. Let f :[0,T] x Q@ — L(U,V) be TH p-integrable on [0,T] with
F(u,v] = (IHp) [, fr dW; for all (u,v] C [0,T]. Then

(i) F is AC?[0,T) and has orthogonal increment property; and
(ii) DFe = fe a.e. on (0,T).

PRrROOF. We note that (i) follows directly from Theorem 18. We are left to
show that DF¢ = f¢ a.e. on (0,T]. Let

S ={s€(0,T]: DF, does not exist or DFs # f,}.
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We will show that the Lebesgue measure of S, u(S), is zero. Let £ € S. Then
there exists y(£) > 0 such that for every positive function ¢ on (0,7, there
exists a backwards J-fine subinterval (v,&] C [0, 7] with

E Il fe(We = W) = F(u,€llI3| = %(€)(€ o). (3)

For each k € N, let Sy = {s € S : 7(s) > £}. Then S = UgenSk. Let T
be the collection of point-interval pairs ((v,£],€) such that £ € Sy and (v, €]
is a backwards d-fine subinterval of [0,77] that satisfies (3). Then for every
¢ € Sk and any £; > 0 (constant function ¢), there exists a point-interval pair
((v,£],€) in T such that £ — v < 1. This means that ' covers S, in the sense
of Vitali. By the strong version of Saks-Henstock Lemma and (3), for each
€ > 0, there exists a positive function d; on (0, 7] such that for any backwards
d1-fine partial division Dy = {((vs,&],&)}iey C T of [0,T], we have

£
2k’

T =

D (6 —vi) < (D) DD e, We, = Wa) = Fui, &l ] <

i=1

Therefore

> Gi—w) <

=1

NCRNO)

Using the Vitali covering lemma, we can find a partial division

D ={((v,€],€)} CcT such that p*(Sg) < (D)Z(f —v)+ g <e

Since ¢ is arbitrary, p*(Sk) = 0. Thus, p*(S) = 0, since S is the countable
union of Si. Hence, u(S) = 0. O

The following result is the converse of the above theorem.

Theorem 24. Let f : [0,T] x Q@ — L(U,V) be a backwards adapted process
on [0,T]. Suppose that

(i) F: J xQ—V be AC?[0,T] with orthogonal increment property, and
(i1) DF: = fe a.e. on (0,T].
Then f is TH g-integrable on [0,T] with F(v,§] = (IHp) ff frdWr.

PROOF. Let S = {s € (0,T] : DF; does not exists or DFy; # fs}. Then
w(S) = 0. Let £ € 8¢ = [0,T]\S. Then for every e > 0, there exists a
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positive function é; on (0,7] such that for any backwards d;-fine subinterval
(v,&] C [0,T], we have

e€-v)
E[lfe(We = W) = Fw.glll} | < =2
Let D1 = {((v;,&],&)}™, be a backwards d;-fine partial division on [0, T
with &; € S¢. Then by Lemma 21

n 2

Z{f§1 (W& - Wy,) - F(vzvfl]}

=1 |4
= > E [Ife(We, - Wo) = F(vi, &I}
=1
3 ~ 3
<7 Z(s vi) < 7

If S = @, then we are done. Suppose that S # @. Let £ € S. Note that for
v <§,

E [l fe(We — W] = (€~ 0 [I e, 000 -

Let G, = Z (fe(We = W,), g]>v, where {g;} is an ONB in V. Since
j=1
Gp — G = Z fe(W, )g]> as m — 0o

j=1

and G, < G411, by the monotone convergence theorem for Lebesgue integral,
we have

oo

lim B> (fe(We = Wo)gi)y | =E | D (fe(We = W), 9507
j=1

m—»00
Jj=1

=E[||fe(We = Wo)|I}] < 0.

This implies that there exists N € N such that N—1 <E {HngiQ(UQ V)} < N.
Since F is AC?[0,T], there exists n > 0 with < ~o7 such that for any finite
collection of disjoint subintervals {(v, ]} of [0, T with Z(f— v) < 1, we have

s reell] <5
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Since S is a set of Lebesgue measure zero, there exists an open set O O §
such that p(O) < n. Now, we define a function d2 on S as follows: let £ € S
and define d2(§) > 0 such that whenever ((v,£],€) is a backwards do-fine with
€ €S, we have (v,€] C O. Then by Lemma 17 (ii) and Remark 1, for every
backwards d9-fine partial division Dy = {((v,£],£)} of [0,T] with £ € S, we
have

& [|0a Stseore - wy - e
<9E [H(D2) > fe(We = W) q +2E [H(DZ) ZF(v’ﬂHi]
= 2(D2) Y (€ V) [ fell 7, 00 v | +2(D2) DS [P, €I

€ L, f_c¢

N -24 244
If £ € S, choose a positive function ¢ defined on S such that §(§) = d2(&)
and if £ ¢ S, choose §(§) = §1(§). Let D = {((v,&],€)} be a backwards d-fine
partial division of [0,7]. Then

< 2N

E [H(D) > {fe(We —W,) — F(”’ﬂ}Hi}

2

<2E || > {fe(We = W,) — F(v,£]}

gese v

2

+ 2B || Y {fe(We = W,) — F(v, ]}

£es

<2 +2(5) -

By Theorem 19, f is ZH g-integrable on [0, T. O

v

Combining Theorem 18, Theorem 23, and Theorem 24, we get the following
result, which is referred to as the descriptive definition of the backwards It6-
Henstock integral.

Theorem 25. Let f : [0,T] x Q — L(U,V) be a backwards adapted process
on [0,T). Then f is THp-integrable on [0,T] if and only if there exists an
AC?[0,T) function F : J x Q — V with orthogonal increment property and
DF¢ = fe a.e. on (0,T].
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5 Conclusion and Recommendations.

In this paper, we formulate a version of Fundamental Theorem for the back-
wards [to-Henstock integral of an operator-valued stochastic process with re-
spect to a Hilbert space-valued @Q-Wiener process. We use the notion of back-
wards derivative and AC?[0, T]-property, a version of absolute continuity, to
attain this objective. A worthwhile direction for further investigation is to
formulate an equivalent definition of this type of integral using double Lusin
condition and AC?[0, T]-property.

Acknowledgment. The authors wish to thank the anonymous referee for his
valuable comments for the improvement of this paper.
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