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VERIFYING DIFFERENTIABILITY
WITHOUT CALCULATING THE

DERIVATIVE

Abstract

We study various real-variable techniques for determining whether a
function is differentiable without actually calculating a derivative. These
include:

• approximation theory

• Fourier analysis

• Sobolev spaces

• Poisson integral

• finite differences

• Campanato-Morrey theory

• Landau’s inequalities

In most cases complete proofs are given.

1 Introduction

The derivative is one of the oldest ideas in modern analysis. It is natural,
if one wants to determine whether a function is differentiable, to endeavor
to calculate the desired derivative. But there are many contexts in which
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this is not feasible, and it is desirable to find other means to determine the
differentiability of a function. In this paper we explore these other means.

As instances of these ideas, the best way to characterize the duals of the
Hardy spaces is by way of the Campanato-Morrey spaces, which we treat be-
low. One of the most convenient ways to study the regularity for the Laplacian
is by way of finite differences, which we treat below. A useful way to study
joint smoothness of functions of several variables is by way of approximation
theory, which we treat below.

The good news is that most of the alternative techniques presented here
are rather accessible. They may be understood by a relative neophyte in
analysis. The even better news is that some of these techniques are profound
and far-reaching.

In this paper we shall, for simplicity, usually restrict attention to R1,
Euclidean 1-dimensional space. At the expense of some notation, it is not
difficult to extend the results to all dimensions. We shall also concentrate on
the existence of the first derivative. Higher derivatives are handled by similar
but trickier arguments.

2 The Calculus of Finite Differences

Let f be a function on R. The classical first difference operator 4f is defined
by

4hf(x) ≡ f(x+ h)− f(x− h) .

We sometimes also denote this operation by 41
hf(x). The second difference

operator is

42
hf(x) ≡ 4h ◦ 4hf(x) = f(x+ 2h) + f(x− 2h)− 2f(x) .

Most mathematicians will encounter these difference operators in the con-
text of Lipschitz spaces. Let 0 < α ≤ 1. All the functions f that we treat
here are maps from the reals to the reals. Then the classical Lipschitz space
of order α is given by

Lipα =

{
f : sup

h6=0,x
| 41

h f(x)|/|h|α + ‖f‖sup ≡ ‖f‖Lipα <∞

}

Note that, if f ∈ Lipα, then | 42
h f(x)| ≤ C|h|α also.
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For 1 < α < 2 we let

Lipα ={
f ∈ C1 : sup

h6=0,x
| 41

h f
′(x)|/|h|α−1 + ‖f ′‖sup + ‖f‖sup ≡ ‖f‖Lipα <∞

}

In both these definitions, C is a constant independent of x and h. Also ′

denotes the derivative.
For reasons that will be made clear as the paper develops, many of them

arising from harmonic analysis, it is useful to replace the space Lip1 by the
Zygmund space Λ1 defined by

Λ1 =

{
f : sup

h6=0,x
| 42

h f(x)|/|h|+ ‖f‖sup ≡ ‖f‖Lip1
<∞

}

In practice we use the notation Λα to denote the traditional Lipschitz spaces
when 0 < α < 2, α 6= 1 and to denote the Zygmund space when α = 1.

3 Approximation Theory

Let ϕ ∈ C∞c (R) satisfy these properties:

• suppϕ ⊆ [−1, 1];

• 0 ≤ ϕ ≤ 1;

• ϕ is even;

•
∫
ϕdx = 1.

Set ϕj(x) = 2j · ϕ(2jx) and ψj(x) = ϕj+1(x) − ϕj(x) for j = 1, 2, . . . . Let
f : R→ R be a locally integrable function. Now let us define

fj(x) = f ∗ ψj(x) for j = 1, 2, . . .

and
f0(x) = f ∗ ϕ1(x) .

If f is continuous, then it follows from standard results (see [15], [17], [7])
that

f(x) =

∞∑
j=0

fj(x) ,
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with convergence uniform on compact sets.
In fact it is quite standard to approximate real functions in this fashion

(see [15], [17]). Such approximations are useful in harmonic analysis and the
theory of partial differential equations. They also come up naturally in the
modern theory of wavelets (see [7] or [9] for a quick introduction).

Our first significant result of the paper is the following.

Theorem 1. Let f ∈ Λα, 0 < α < 2. Then

|fj(x)| ≤ C2−jα for all j .

Conversely, if
|fj(x)| ≤ C2−jα for all j , (3.1.1)

then f ∈ Λα.

In particular, we see for α > 1 that the condition (3.1.1) is sufficient for f
to be continuously differentiable. And that condition is defined in terms of an
integral—not a derivative.

We begin now with a lemma.

Lemma 2. Let 1 < α < 2. If f ∈ Λα, then

|f(x+ h) + f(x− h)− 2f(x)| ≤ C|h|α

for all x, h ∈ R.

Proof. We write

|f(x+ h) + f(x− h)− 2f(x)| = |[f(x+ h)− f(x)]− [f(x)− f(x− h)]|
= |f ′(x+ ξ) · h− f ′(x− η) · h|,

where ξ, η exist by the mean value theorem. Note that |ξ| ≤ |h| and |η| ≤ |h|.
Now this last is

= |h| · |f ′(x+ ξ)− f ′(x− η)|
≤ C · |h| · |h|α−1

= C|h|α.

That is the desired result.

Proof of Theorem 1. The case j = 0 is trivial. For j ≥ 1, we write

|fj(x)| =
∣∣∣∣∫ f(x− t)ψj(t) dt

∣∣∣∣
=

1

2

∣∣∣∣∫ [f(x− t) + f(x+ t)]ψj(t) dt

∣∣∣∣
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by the evenness of ψj . But, by the fact that
∫
ψj dt = 0, this last equals

=
1

2

∣∣∣∣∫ [f(x− t) + f(x+ t)− 2f(x)]ψj(t) dt

∣∣∣∣
≤ 1

2

∣∣∣∣∫ |t|α|ψj(t)| dt∣∣∣∣
≤ C · 2−jα · 2j+1 ·

∫
|ϕ(2jt) + ϕ(2j+1(t)| dt

≤ C · 2−jα . (3.1.2)

For the converse direction, we assume that |fj(x)| ≤ C · 2−jα for all j. We
now prove that this implies that

∣∣∣∣ ddxfj
∣∣∣∣ ≤ C · 2−j(α−1) .

We write

fj = f ∗ ϕj+1 − f ∗ ϕj
= ϕj ∗ (f ∗ ϕj+1 − f ∗ ϕj)

+ ϕj+1 ∗ (f − f ∗ ϕj)
+ ϕj ∗ (f − f ∗ ϕj) .

Thus

∣∣∣∣ ddxfj
∣∣∣∣ ≤ ∥∥∥∥ ddxϕj

∥∥∥∥
L1

· ‖f ∗ ψj‖L∞

+

∥∥∥∥ ddxϕj+1

∥∥∥∥
L1

· ‖f − f ∗ ϕj‖L∞

+

∥∥∥∥ ddxϕj
∥∥∥∥
L1

· ‖f − f ∗ ϕj‖L∞

≡ I + II + III .
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Now I ≤ C · 2j · ‖f ∗ ψj‖L∞ ≤ C · 2j · 2−jα = C · 2−j(α−1) . Next,

II ≤ C · 2j · ‖f − f ∗ ϕj‖L∞

≤ C · 2j ·
∞∑
`=j

‖f ∗ ψ`‖L∞

= C · 2j ·
∞∑
`=j

‖f`‖L∞

≤ C · 2j ·
∞∑
`=j

2−α`

= C · 2j · 2−αj ·
∞∑
`=0

2−α`

= C · 2−j(α−1) .

The estimate of III is similar.
We note that a similar argument shows that∣∣∣∣ d2dx2 fj

∣∣∣∣ ≤ C · 2−j(α−2) .
And now we need to verify that f ∈ Λα. For 0 < α < 1 we see that

|f(x+ h)− f(x)| =

∣∣∣∣∣∣
∑
j

fj(x+ h)− fj(x)

∣∣∣∣∣∣
≤
| log2 |h||∑
j=1

|fj(x+ h)− fj(x)|

+

∞∑
j=| log2 |h||+1

|fj(x+ h)− fj(x)|

≤
| log2 |h||∑
j=1

|f ′j(x+ ξ) · h|+
∞∑

j=| log2 |h||+1

2‖fj‖L∞

≤
| log2 |h||∑
j=1

2−j(α−1) · |h|+
∞∑

j=| log2 |h||+1

2 · 2−jα

≤ C · |h|α−1 · |h|+ C · |h|α

= C · |h|α .
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For 1 < α < 2 we apply a similar argument to f ′j(x+ h)− f ′j(x).
For α = 1, we give a similar argument but we use the estimate on f ′′j .

4 Fourier Theory and Sobolev Theory

If f ∈ L1(R) then we define the Fourier transform of f to be

f̂(ξ) =

∫
R
f(t)eixξ dx .

The Fourier transform dates back to Jean-Baptiste Joseph Fourier (1768–
1830), who developed basic Fourier theory in his book The Analytical Theory
of Heat. Indeed, Fourier was the first to present the standard formulas for cal-
culating the Fourier series coefficients of an “arbitrary” function. Although his
arguments were ludicrously incorrect, the work still had considerable impact—
for it answered a question that had been in the air for fifty or more years. It
took Fourier a good many years to get his book published—in fact he fi-
nally published it himself when he was the secretary of the French National
Academy. Fourier treated the Fourier transform on the line in a later work.

Lemma 3. If f ∈ L1 and f ′ ∈ L1 then∣∣∣f̂(ξ)
∣∣∣ ≤ C

1 + |ξ|
.

Proof. First assume that f ∈ C∞c . For ξ 6= 0 we write∣∣∣f̂(ξ)
∣∣∣ =

∣∣∣∣∫R f(t)eitξ dt

∣∣∣∣ ≤
∣∣∣∣∣f(t)

eitξ

iξ

∣∣∣∣∞
−∞

∣∣∣∣∣+

∣∣∣∣∫R f ′(t)e
itξ

iξ
dξ

∣∣∣∣ =
1

|ξ|

∣∣∣f̂ ′(ξ)∣∣∣ .
In the first inequality we used integration by parts. The result now follows
with the extra assumption. We prove the general case by an approximation
argument.

Now we have a sort of converse.

Proposition 4. Let f ∈ L1(R). Suppose that f̂(ξ)| ≤ 1/(1 + |ξ|)2+ε for some
small ε > 0. Then f can be corrected on a set of measure 0 to be continuously
differentiable.

Proof. Using Fourier inversion, we may write

f(t) = c

∫
R
f̂(ξ)e−itξ dξ .
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Here c is some universal constant (see [7] for the exact value). Since ξf̂(ξ) ∈ L1,
we may differentiate under the integral sign to obtain

f ′(t) = −c
∫
R
f̂(ξ)e−itξiξ dξ .

The continuity of the derivative follows from the Riemann-Lebesgue lemma.

A similar result may be proved, by similar techniques, for Fourier series.
A convenient definition of the L2 Sobolev spaces is the following:

Definition 5. Let f ∈ L2(R). We say that f ∈W s if∫
|f̂(ξ)|2(1 + |ξ|2)s dξ <∞ .

A basic form of the Sobolev embedding theorem is this. If f ∈W 3/2+ε for
some ε > 0, then f is continuously differentiable. For a proof, examine the
inequalities

|f ′(x)| =
∣∣∣∣∫ ξeixξ f̂(ξ) dξ

∣∣∣∣
≤
∣∣∣∣∫ (|ξ|2 + 1)3/4+ε/2

(|ξ|2 + 1)1/4+ε/2
· |f̂(ξ)| dξ

∣∣∣∣
≤
∫

(|ξ|2 + 1)3/2+ε|f̂(ξ)|2 dξ1/2 ·
∫

1

(|ξ|2 + 1)1/2+ε
dξ1/2

≤ C · ‖f‖W 3/2+ε .

Similar statements may be formulated and proved about Bessel spaces,
Nikol’skii spaces, and other Triebel-Lizorkin spaces (see [GRA], for instance).

5 Convergence of the Poisson Integral

In this section we briefly describe a method of recognizing smooth functions
using an idea that dates back to G. H. Hardy. In fact Hardy’s result was
about holomorphic functions on the disc. But the ideas presented here are
quite similar. Departing from the usual paradigm in this paper, we now work
in R2.

In fact Hardy’s classical theorem has inspired a number of modern works—
including [16], [8], [14]. It is an elegant and powerful idea that connects real
and complex analysis in an effective manner.
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Theorem 6. Let Ω be a smoothly bounded domain in R2. Let f be a contin-
uous function on ∂Ω and let u be the solution of the classical Dirichlet problem
on Ω with boundary data f . Let 0 < α < 2 and assume that k is an integer
greater than α. We suppose that, for x ∈ Ω,

|∇ku(x)| ≤ C · δ(x)α−k ,

where δ(x) is the distance of x to the boundary. Then u ∈ Λα(Ω).

Proof. We first treat the case 0 < α < 1. Afterward we shall commente on
the case α ≥ 1.

Let x, x + h ∈ Ω. We estimate u(x + h) − u(x) by looking at a box in Ω.
We only need consider x, x+h near the boundary. If p ∈ Ω is a point near the
boundary then let νp be the unit outward normal vector at p. Now we have

|u(x+ h)− u(x)| ≤ |u(x+ h)− u((x+ h)− |h|νx+h)|
+ |u((x+ h)− |h|νx+h)− u(x− |h|νx)|
+ |u(x− |h|νx)− u(x)|

≤
∫ |h|
0

|∇u(x+ h− tνx+h)| dt

+

∫ |h|
0

|∇u(x− |h|ν(x+h + th)| dt

+

∫ 0

|h|
|∇u(x− tνx)| dt

≤
∫ |h|
0

tα−1 dt+

∫ |h|
0

|h|α−1 dt+

∫ |h|
0

tα−1 dt

≤ C · |h|α .

That is the desired result.
We handle the case 1 ≤ α < 2 by applying the preceding argument to ∇f

and to α− 1.
The case α = 1 is best handled by the technique of interpolation of opera-

tors.

6 Campanato-Morrey Theory

The Campanato-Morrey spaces arose originally in the study of partial dif-
ferential equations. They first appeared in the papers [1], [2], but were also
explored in [12], [13]. See also [11]. These spaces have also proved useful in the
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context of harmonic analysis—in particular in the characterization of the dual
spaces of the Hp spaces. In any event, they are a nice and intuitive way to
think about smoothness of functions. The savvy reader will want to compare
the definitions of the Campanato-Morrey spaces to the definition of BMO.
Here the space BMO is defined as follows:

BMO(R)=

{
f locally integrable : sup

I

1

|I|

∫
I

|f(x)− fI | dx ≡ ‖f‖BMO <∞
}
.

Here I ranges over all open intervals in R and fI is the average of f over the
interval.

The space BMO was invented by John and Nirenberg [5] for applications
in partial differential equations. But it was really put on the map by C.
Fefferman [3] who proved that BMO is the dual of the Hardy space H1.

We work as usual in R = R1. We begin by defining the Campanato-Morrey
spaces. If k is a nonnegative integer, then let Pk denote the polynomials of
degree not exceeding k. If x ∈ R, then (x− r, x+ r) is the usual open interval
centered at x and having radius r.

Definition 7. Let 1 ≤ q < ∞. Let 0 < λ ∈ R and also let 0 ≤ k ∈ Z. We
define the Campanato-Morrey space

L(q,λ)
k (R) =

{
f ∈ Lq(R) : sup

x∈R
r>0

[
r−λ inf

P∈Pk

∫
(x−r,x+r)

|f(t)− P (t)|q dt

]1/q

+ ‖f‖Lq ≡ ‖f‖L(q,λ)
k

<∞
}
.

And now our main result about these spaces is the following:

Theorem 8. Let 0 < α ∈ R and α < k ∈ Z. Suppose that 1 ≤ q < ∞ and

λ > 1 and set α = (λ− 1)/q. Then any element of L(q,λ)
k can be corrected on

a set of measure zero so that it lies in Λα. Furthermore, the injection

L(q,λ)
k → Λα

is continuous.
Finally, for any fixed ϕ ∈ C∞c and any k > α, the map f 7→ ϕ · f is

continuous from Λα to L(q,λ)
k .

This result can be thought of as one of the main results of the present
paper. Certainly its proof is the longest. The theorem is proved by way of a
sequence of lemmas. Most of these lemmas are quite transparent.
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Lemma 9. Fix an η ∈ C∞c . Let 0 < α ∈ R and α < k ∈ Z. Suppose that
1 ≤ q < ∞ and λ > 1 and set α = (λ − 1)/q. Then the map f 7→ η · f is

bounded from Λα to L(q,λ)
k .

Proof. Let f ∈ Λα. Fix a point x0 ∈ R. Let r > 0. Let ϕ, ψ be as in the
section on approximation theory. Define fj = f ∗ψj as we did there. Then we
can be sure that ∣∣∣∣ d`dx` fj

∣∣∣∣ ≤ C · (2−j)α−`
as long as ` > α. Let p be the kth order Taylor polynomial of fj expanded
about x0. Then

|fj(x)− p(x)| ≤ C · ‖fj‖Ck+1 · |x− x0|k+1

≤ C · (2−j)α−k−1 · |x− x0|k+1 . (6.9.1)

As a result,[
r−λ

∫
(x0−r,x0+r)

|f(x)− p(x)|q
]1/q
≤

[
r−λ

∫
(x0−r,x0+r)

|fj(x)− p(x)|q
]1/q

+

[
r−λ

∫
(x0−r,x0+r)

|f(x)− fj(x)|q
]1/q

≡ I + II .

By (6.9.1) we see that

I ≤ C ·

[
r−λ

∫
(x0−r,x0+r)

(
(2−j)α−k−1 · rk+1

)q
dx

]1/q
≤ C · r−λ/q · r1/q · rk+1 · (2−j)α−k−1

≤ C

by the choice of α, λ, q, j.
On the other hand,

II ≤ C ·

[
r−λ

∫
(x0−r,x0+r)

(2−j)qα dx

]1/q
≤ C · r−λ/q · r1/q · (2−j)α

= C .
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Finally, we note that f 7→ η · f is a continuous map from L∞ to Lq. That
completes the proof.

Lemma 10 (Gagliardo). Let 0 ≤ ` ∈ Z. Then there is a constant C = C(k, `)
so that

|∇1p(x)| ≤ C(k, `) ·

[
r−1−`q

∫
(x−r,x+r)

|p(t)|q dt

]1/q
(6.10.1)

| 4`h p(x)| ≤ C(k, `) · |h|` ·

[
r−1−`q

∫
(x−r,x+r)

|p(t)|q dt

]1/q
(6.10.2)

for all x ∈ R, r > 0, |h| ≤ r, and p ∈ Pk.

Proof. By change of scale and translation, we may suppose that r = 1 and
x = 0. Observe that the righthand side of (6.10.1) is a norm on the finite-
dimensional vector space Pk while the lefthand side is a seminorm on that
space. Since there is only one norm (up to equivalence) on a finite-dimensional
vector space, the result is immediate.

The proof of (6.10.2) is similar.

Lemma 11. Let f ∈ L(q,λ)
k and x ∈ R and r > 0 be fixed. Then there is a

unique polynomial p(x, r, · ) in Pk which minimizes[
r−λ

∫
(x−r,x+r)

|f(t)− p(t)|q dt

]1/q
(6.11.1)

over all p ∈ Pk.

Proof. Choose a sequence pj ∈ Pk so that[
r−λ

∫
(x−r,x+r)

|f(t)− pj(t)|q dt

]1/q
tends to the infimum. Then, by the convexity of the unit ball in Lq,[

r−λ
∫
(x−r,x+r)

|pj(t)− p`(t)|q dt

]1/q
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tends to 0 as j, ` tend to ∞. If y ∈ (x − r/2, x + r/2) and m is any positive
integer, then [

r−mq−1
∫
(y−r/2,y+r/2)

|pj(t)− p`(t)|q dt

]1/q
tends to 0 as j, ` tend to ∞. By Gagliardo’s lemma,∣∣∣∣ dmdtm pj(t)− dm

dtm
p`(t)

∣∣∣∣→ 0

uniformly on (x − r/2, x + r/2) for any index m. It follows that {pj} has a
limit function which is a polynomial and which minimizes (6.11.1).

The uniqueness part follows because, if p̃j is another sequence that mini-
mizes (6.11.1), then pj − p̃j tends to 0 as in the first half of the proof.

Lemma 12. Let x ∈ R, r > 0, and t ∈ (x− r/2, x+ r/2). Then

|p(t, r, · )− p(x, r, · )| ≤ C‖f‖L(q,λ)
k

· r(λ−1)/q . (6.12.1)

Proof. By Gagliardo’s lemma, the left side of (6.12.1) is

≤ C ·

[
r−1

∫
t−r/2,t+r/2)

|p(t, r, s)− p(x, r, s)|q ds

]1/q

≤ C ·

[
(r/2)−1

∫
(t−r/2,t+r/2)

|p(t, r, s)− f(s)|q ds

]1/q

+

[
r−1

∫
(t−r/2,t+r/2)

|p(x, r, s)− f(s)|q ds

]1/q
≤ C · ‖f‖L(q,λ)

k

· r(λ−1)/q

+

[
r−1

∫
(x−r,x+r)

|p(x, r, s)− f(s)|q ds

]1/q
since (t− r/2, t+ r/2) ⊆ (x− r, x+ r). But the last line is

≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q .
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Lemma 13. If x ∈ R, r > 0, and j ∈ Z+, then[
(2−j−1r)−1

∫
(x−2−j−1r,x+2−j−1r)

|p(x, 2−jr, s)− p(x, 2−j−1r, s)|q ds

]1/q
≤ C · ‖f‖Lq,λk · (2

−j−1r)(λ−1)/q . (6.13.1)

Proof. The lefthand side of (6.13.1) does not exceed

C ·

[
(2−j−1r)−1 ·

∫
(x−2−j−1r,x+2−j−1r)

|p(x, 2−jr, s)− f(s)|q ds

]1/q

+ C ·

[
(2−j−1r)−1 ·

∫
(x−2−j−1r,x+2−j−1r)

|f(s)− p(x, 2−j−1r, s)|q ds

]1/q

≤ C ·

[
(2−jr)−1 ·

∫
(x−2−jr,x+2−jr)

|p(x, 2−jr, s)− f(s)|q ds

]1/q
+ C · ‖f‖L(q,λ)

k

· (2−j−1r)(λ−1)/q

≤ C · ‖f‖L(q,λ)
k

· (2−j−1r)(λ−1)/q . (1)

Lemma 14. Let x ∈ R, r > 0, ` ∈ Z+. Then

|p(x, r, x)− p(x, 2−`r, x)| ≤ C · ‖f‖Lq,λk ·
`−1∑
n=0

r(λ−1)/q · 2−n(λ−1)/q . (6.14.1)

Proof. The lefthand side of (6.14.1) does not exceed

`−1∑
n=0

|p(x, 2−nr, x)− p(x, 2−n−1r, x)|

≤ C ·
`−1∑
n=0

(2−n−1r)−1

∫
(x−2−n−1r,x+2−n−1r)

|p(x, 2−nr, s)− p(x, 2−n−1r, s))|q ds

1/q

(by Gagliardo’s lemma) which is

≤ C · ‖f‖L(q,λ)
k

·
`−1∑
n=0

(2−n−1r)(λ−1)/q

by the preceding lemma. This gives the desired result.
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Lemma 15. For each x ∈ R there is a v(x) ∈ R such that, for any r > 0, we
have

|p(x, r, x)− v(x)| ≤ C · ‖f‖Lq,λk · r
(λ−1)/q .

Proof. The proof consists of two steps:

I. We find v(x) as the limit of a sequence p(x, rj , x).

II. We show that the limit in I is independent of the sequence {rj}.

Step I: Let δ > 0 and x ∈ R be fixed. Define rj ≡ 2−jδ, j = 0, 1, 2, . . . . Let
us estimate, for m > j, the expression

|p(x, rj , x)− p(x, rm, x)| (6.15.1)

by applying the preceding lemma with ` = m − j > 0 and r = 2−jδ. Then
(6.15.1) does not exceed

C · ‖f‖L(q,λ)
k

·
m−j−1∑
n=0

(2−jδ)(λ−1)/q · (2−n)(λ−1)/q

≤ C · ‖f‖L(q,λ)
k

·
m−1∑
n=j

δ(λ−1)/q · (2−n)(λ−1)/q .

Since (λ− 1)/q = α > 0, we see that {p(x, rj , x)} is a Cauchy sequence.

Step II: Let 0 < δ1 ≤ δ2. We wish to see that {p(x, 2−jδ1, x)}∞j=0 and

{p(x, 2−jδ2, x)}∞j=0, both Cauchy sequences, have the same limit. But, for any

` ∈ Z+, we have
|p(x, 2−`δ1, x)− p(x, 2−`δ2, x)|

≤ C ·

[
(2−`δ1)−1

∫
(x−2−`δ1,x+2−`δ1)

|p(x, 2−`δ1, s)− p(x, 2−`δ2, s)|q ds

]1/q
by Gagliardo’s lemma. This in turn is

≤ C ·

[
(2−`δ1)−1

∫
(x−2−`δ1,x+2−`δ1)

|p(x, 2−`δ1, s)− f(x)|q ds

]1/q

+ C ·

[
(2−`δ1)−1

∫
(x−2−`δ2,x+2−`δ1)

|p(x, 2−`δ2, s)− f(s)|q ds

]1/q
≡ I + II .
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It remains to estimate I and II.
Now

I ≤ C · ‖f‖L(q,λ)
k

· (2−`δ1)(λ−1)/q .

Also

II ≤ C ·(δ2/δ1)1/q ·

[
(2−`δ2)−1

∫
(x−2−`δ2,x+2−`δ2)

|p(x, 2−`δ2, s)− f(s)|q ds

]1/q
≤ C · (δ2/δ1)1/q · ‖f‖L(q,λ)

k

· (2−`δ2)(λ−1)/q .

As a result,

|p(x, 2−`δ1, x)− p(x, 2−`δ2, x)| ≤ C(δ1, δ2) · ‖f‖L(q,λ)
k

· (2−`)(λ−1)/q .

That completes Step II. Thus v exists and is well defined.

Our next, and most important, goal is to show that v equals f almost
everywhere and that v has the desired boundedness and smoothness properties.

Lemma 16. Let x ∈ R and r > 0. Then∣∣∣∣4mr p(x, r, · )
∣∣
x
−4mr v(x)

∣∣∣∣ ≤ C · ‖f‖L(q,λ)
k

.

Proof. By Lemma 12, for any t ∈ (x− r/2, x+ r/2),

|p(t, r, t)− p(x, r, t)| ≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q .

But now, letting m = [α] + 1 and r̃ = r/(2m), we have that∣∣∣∣4mr̃ p( · , r, · )
∣∣
x
−4mr̃ p(x, r, · )

∣∣
x

∣∣∣∣ ≤ C · ‖f‖L(q,λ)
k

. (6.16.1)

The preceding lemma now tells us that

|p(t, r, t)− v(t)| ≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q .

As a consequence,∣∣∣∣4mr p( · , r, · )
∣∣
x
−4mr v( · )

∣∣
x

∣∣∣∣ ≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q . (6.16.2)

Finally, (6.16.1) and (6.16.2) and the triangle inequality give the result.
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Lemma 17. Let x ∈ R and r > 0. Then∣∣∣∣4mr p(x, r, · )
∣∣
x

∣∣∣∣ ≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q .

Proof. By Gagliardo’s lemma, for any ρ > 0, n ∈ Z+, and 0 < r ≤ 2−nρ,∣∣∣∣4mr {p(x, 2−nρ, · )− p(x, 2−n−1ρ, · )
}∣∣
x

∣∣∣∣
≤ C · rm(2−nρ)−m−1/q∫

(x−2−n−1ρ,x+2−n−1ρ)

|p(x, 2−nρ, s)− p(x, 2−n−1ρ, s)|q dx1/q

≤ C · rm · (2−nρ)−m+(λ−1)/q‖f |L(q,λ
k .

In the last line we have used the idea of Lemma 13.
Now choose M so that 2−M−1 ≤ r ≤ 2−M . Write r = 2−M r̃ with 1/2 <

r̃ ≤ 1. Then∣∣∣∣4mr p(x, r̃, · )
∣∣
x
−4mr p(x, 2−M r̃, · )

∣∣
x

∣∣∣∣
≤
M−1∑
n=0

∣∣∣∣4mr p(x, 2−nr̃, · )
∣∣
x
−4mr p(x, 2−n−1r̃, · )

∣∣
x

∣∣∣∣
≤
M−1∑
n=0

C · rm(2−nr̃)−m+(λ−1)/q · ‖f‖L(q,λ)
k

≤ C · rm · ‖f‖L(q,λ)
k

· 2−M(−m+(λ−2)/q)

≤ C · ‖f‖L(q,λ)
k

· r(λ−1)/q . (6.17.1)

At last, by using Gagliardo’s lemma and the fact that 1/2 < r̃ ≤ 1, we see
that ∣∣∣∣4mr p(x, r̃, · )

∣∣
x

∣∣∣∣ ≤ C · rm · (r̃)−M−1/q ∫
(x−r̃,x+r̃)

|p(x, r̃, s)|q ds1/q

≤ C · rmr̃−λ/q
∫
(x−r̃,x+r̃)

|p(x, r̃, s)− f(x)|q ds1/q

+ C · rm
∫
(x−r̃,x+r̃)

|f(s)|q ds1/q

≤ C · rm ·
(
‖f‖L(q,λ)

k

+ ‖f‖Lq
)
. (6.17.2)
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Now (6.17.1), (6.17.2), and the triangle inequality tell us that∣∣∣∣4mr p(x, r, · )
∣∣
x

∣∣∣∣ ≤ C · (rm + r(λ−1)/q) · ‖f‖L(q,λ)
k

≤ C · r(λ−1)/q‖f‖L(q,λ)
k

for m > (λ− 1)/q and 0 < r < 1.

Lemma 18. The function v is bounded.

Proof. Let 0 ≤ n ∈ Z. Let x ∈ R. By Step I of the proof of Lemma 15,

|p(x, 2−n, x)− p(x, 1, x)| ≤
n−1∑
j=0

1(λ−1)/q · (2−j)(λ−1)/q‖f‖L(q,λ)
k

≤ C · ‖f‖L(q,λ)
k

(6.18.1)

since (λ− 1)/q > 0.
Now, by Gagliardo’s lemma,

|p(x, 1, x)| ≤ C · 1−1/q ·

∫
(x−1,x+1)

|p(x, 1, s)|q ds1/q

≤ C ·

∫
(x−1,x+1)

|p(x, 1, s)− f(s)|q ds1/q + C ·

∫
(x−1,x+1)

|f(s)|q ds1/q

≤ C · ‖f‖L(q,λ)
k

. (6.18.2)

Combining now (6.18.1) and (6.18.2), we see that

|p(x, 2−n, x)| ≤ C · ‖f‖L(q,λ)
x

.

By definition of v, the result follows.

Lemma 19. It holds that v = f almost everywhere. More precisely, v(x) =
f(x) at every point x where

lim
r→0

r−1/q
∫
(x−r,x+r)

|f(x)− f(s)|q ds1/q = 0 , (6.19.1)

that is, at each Lebesgue point of f .
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Proof. Let x be a Lebesgue point for f . Then f is defined by equation
(6.19.1). Then, for any 0 < r < 1,

|f(x)− v(x)| ≤ |f(x)− p(x, r, x)|+ |p(x, r, x)− v(x)| .

The second term here of course tends to 0 with r by the definition of v.
For x fixed, the function f(x) − p(x, r, · ) is a polynomial. So we may

apply Gagliardo’s lemma to see that

|f(x)− p(x, r, x)| ≤ C · r−1/q
∫
(x−r,x+r)

|f(x)− p(x, r, s)|q ds1/q

≤ C · r−1/q
∫
(x−r,x+r)

|f(x)− f(s)|q ds1/q

+ C · r−1/q
∫
(x−r,x+r)

|f(s)− p(x, r, s)|q ds1/q

≤ o(1) +O(r(λ−1)/q) .

Completion of the Proof of Theorem 8: First suppose that 0 < α =
(λ− 1)/q < 1. Let m = 1. Then Lemmas 16 and 17 yield that

| 41
r v(x)| ≤ C · r(λ−1)/q .

Since v is bounded, we conclude that v ∈ Λ(λ−1)/q. By Lemma 19 and the
Lebesgue differentiation theorem, we conclude that v = f almost everywhere.
So the proof in this case is complete.

In case α = (λ− 1)/q ≥ 1, the first case applies a fortiori. So v is contin-
uous. But then Lemmas 16 and 17 tell us that

| 4mr v(x)| ≤ C · r(λ−1)/q .

Since v is bounded, we see that v ∈ Λ(λ−1)/q. That completes the proof.

7 Landau’s Inequalities

We begin this treatment with some notation.

Definition 20. Let f be a function on R and let δ > 0. We define

ω0
f (δ) = ωf (δ) = sup

|h|<δ
x∈R

|f(x+ h)− f(x)|

and
ωkf (δ) = ωdk/dxkf (δ) .
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Although the results presented in this section are not strictly results about
the existence of derivatives (without actually taking any derivatives), they
are still of some interest in the context of theorems about interpolation of
operators and other contexts of harmonic analysis. They can be thought of as
a priori estimates for derivatives.

Lemma 21. Let 0 < k ∈ Z. Let 0 ≤ ` ≤ k be another integer. Then there
are constants a0(k, `), a1(k, `), . . . , ak(k, `) and integers s0(k, `), s1(k, `), . . . ,
sk(k, `) such that, for all f ∈ Ck(R) and all h, k ∈ R with |h| ≤ 1 we have

h`f (`)(x) =

k∑
p=0

ap · f(x+ sph) +O(ωkf (k|h|)) .

Here f (`) denotes the `th derivative of f .

Proof. This is just a linear algebra problem. For p = 0, 1, . . . , k we write,
using Taylor’s expansion,

f(x+ ph) =

k∑
q=0

f (q)(x)

q!
(ph)q +O(ωkf (p|h|)) .

Hence

k∑
p=0

ap · f(x+ ph) =

k∑
q=0

k∑
p=0

(
ap ·

pq

q!

)
hqf (q)(x) +O(ωkf (k|h|)) .

Thus we can take our integers s0, s1, . . . , sk to be 0, 1, 2, . . . , k provided we
can find a0, a1, . . . , ak satisfying

k∑
p=0

ap ·
pq

q!
= 0 for 0 ≤ q ≤ k , q 6= `

and
k∑
p=0

ap ·
p`

`!
= 1 .

Since the coefficients of this system form a Vandermonde matrix, the system
can certainly be solved.

Landau’s result, which we treat below, is classical (see [10]). There is
an entire industry devoted to calculating best constants in various Landau
inequalities.
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Theorem 22 (Landau). Let n0 < n1 be nonnegative integers. Then there is
a constant K = K(n0, n1) such that, if n is an integer strictly between n0 and
n1 and g ∈ Cn, then

‖g(n)‖sup ≤ K · ‖g(n0)‖(n1−n)/(n1−n0)
sup · ‖g(n1)‖(n−n0)/(n1−n0)

sup .

Proof. First we assume that

‖g(n0)‖sup = ‖g(n1)‖sup = 1 .

Let us apply the preceding lemma with k = n1−n0 = 1, ` = n−n0, f = g(n0).
Then there are constants a0, a1, . . . , ak and s0, s1, . . . , sk such that

hn−n0g(n)(x) =

k∑
j=0

ajg
(n0)(x+ sjh) +O(ωn1−1

g (k|h|) , any h ∈ R .

Of course the aj , sj are independent of g, x, h. Set h = 1 to obtain

∣∣∣∣ dndxn g(x)

∣∣∣∣ ≤ k∑
j=0

|aj |+O(ωn1−1
g (k|h|))

≤
k∑
j=0

|aj |+ c‖g(n1)‖sup

≤ K ,

since ‖g(n0)‖sup = ‖g(n1)‖sup = 1.

For the general case, let m = ‖g(n0)‖sup and M = ‖g(n1)‖sup. Define

g̃(x) =
1

m
·
(
M

m

)n0/(n1−n0)

· g
(
x ·
(m
M

)1/(n1−n0)
)
.

Then

‖g̃(n0)‖sup = 1

and

‖g̃(n1)‖sup = 1 .

By the first part of the proof, we may then conclude that

‖g̃(n)‖sup ≤ K .
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But this just says that∥∥∥∥∥ 1

m

(
M

m

)n0/(n1−n0) (m
M

)n/(n1−n0)

g(n)

∥∥∥∥∥
sup

≤ K .

In other words,

‖g(n)‖sup ≤ K ·m(n−n0)/(n1−n0) ·M (n1−n)/(n1−n0) ,

as was to be proved.

We conclude this discussion by presenting a version of Landau’s theorem
that is adapted to the Lipschitz spaces Λα. This result is due to the present
author.

Theorem 23. Let 0 < n0 < n1 be integers. There is a constant K =
K(n0, n1) such that, if g ∈ Cn1 and n0 < α < n1 then, for any n1 ≤ ` ∈ Z,

sup
x,h∈R

∣∣∣∣4khg(x)

|h|α

∣∣∣∣ ≤ K · ‖g(n0)‖(n1−α)/(n1−n0)
sup · ‖g(n1)‖(α−n0)/(n1−n0)

sup .

Proof. Fix x, h ∈ R and consider 4n1

h g(x). On the one hand,

| 4n1

h g(x)| = | 41
h (4n1−1

h g(x))|
= |h| · | 4n1−1

h g′(ξ1)|

with x − h < ξ1 < x + h by the mean value theorem. And this last, after n0
iterations, equals

|h|n0 · |g(n0)(ξn0
)| .

On the other hand,

| 4n1

h g(x)| = |h|n1 · |g(n1)(ξn1
)| .

As a result,

| 4n1

h g(x)| = | 4n1

h g(x)|(n1−n)/(n1−n0) · | 4n1

h g(x)|(n−n0)/(n1−n0)

≤ |h|α · ‖g(n0)‖n1−n)/(n1−n0)
sup · ‖g(n1)‖n−n0)/(n1−n0)

sup .

In conclusion,

sup
h,x

∣∣∣∣4`hg(x)

|h|α

∣∣∣∣ ≤ C · ‖g(n0)‖(n1−n)/(n1−n0)
sup · ‖g(n1)‖(n−n0)/(n1−n0)

sup ,

any ` ≥ n1. That is the desired conclusion.
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8 Concluding Remarks

In many different contexts in analysis it is desirable to study the existence of,
and other properties of, derivatives of functions without actually calculating
the derivatives in the traditional sense. We have endeavored in this paper
to present several different methods, taken from many different contexts, for
doing so.

This is an open-ended discussion, and we look forward to further develop-
ments in these directions in the future.
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