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Abstract

We study the space of vector valued multipliers of strongly Henstock-
Kurzweil (SHK) integrable functions. We prove that if X is a commu-
tative Banach algebra, with identity e of norm one, satisfying Radon-
Nikodym property and g : [a, b] → X is of strong bounded variation,
then the multiplication operator defined by Mg(f) = fg maps SHK to
SHK. We also investigate the problems when the domain is HK or when
X satisfies weak Radon-Nikodym property.

1 Introduction

A function ϕ is called a multiplier if the product ϕf is integrable for every in-
tegrable function f . For the Lebesgue integral, every essentially bounded mea-
surable function is a multiplier. Surprisingly, for the real Henstock-Kurzweil
integral, real continuous functions need not be multipliers, even on intervals
of finite length. In fact, a function ϕ is a multiplier for the class of Henstock-
Kurzweil integrable functions on [a, b] if and only if it is equal almost every-
where to a function of bounded variation on [a, b]. See [8, Theorem 6.1.5 and
Theorem 6.1.9] or [7, Theorem 12.9].

The aim of this paper is to strengthen the study of vector valued mul-
tipliers of the family of vector valued Henstock-Kurzweil integrable functions
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carried out in [16]. The case of scalar valued multipliers for strongly Henstock-
Kurzweil integrable functions is already known [5]. Let X be a commuta-
tive Banach algebra with identity e of norm one. In [16], we proved that if
g : [a, b]→ X is of strong bounded variation, then the multiplication operator
Mg defined by Mg(f) = fg maps SHK to HK and the associated operator

Tg defined by Tg(f) =
∫ b
a
fg maps SHK to X which is the vector analogue

of Riesz Representation theorem. For the converse, we put an additional con-
dition that X satisfy Radon-Nikodym property (RNP). We proved that if
M : SHK → HK is a bounded linear multiplication operator and X has
RNP, then there exists a function g of weak bounded variation such that
τ(M(f)) = τ(f)τ(g) for all f ∈ SHK and every multiplicative linear func-
tional τ of the Banach algebra X. Analogously, if T : SHK → X is a bounded
linear operator then there exists a function g of weak bounded variation such

that τ(T (f)) =
∫ b
a
τ(fg) for all f ∈ SHK and every multiplicative linear

functional τ of the Banach algebra X.

In this note, we show that if X satisfies RNP and g : [a, b] → X is of
strong bounded variation, then the multiplication operator Mg(f) = fg maps
SHK to SHK. We also show that under the hypothesis of X satisfying RNP,
we have for f ∈ HK and g : [a, b] → X of strong bounded variation there
exists h ∈ SHK such that τ(fg) = τ(h). Moreover, if X satisfies WRNP,
then the function h is in HKP.

Section 2 contains preliminaries and the main results are in Section 3.

2 Preliminaries

This section contains the preliminary material from which we shall draw
throughout the rest of the paper.

Let [a, b] be a compact real interval, I be the family of compact subintervals
of [a, b], L be the σ-algebra of all Lebesgue measurable subsets of [a, b], m stand
for Lebesgue measure on [a, b] and X be a commutative Banach algebra with
identity e such that ‖e‖ = 1.

A set function F : I → X is said to be additive if F (J∪K) = F (J)+F (K),
for all non-overlapping intervals J,K ∈ I such that J ∪K ∈ I.

A collection {(ti, Ji); i = 1, . . . , k} of point-interval pairs is called a tagged-
partition of the interval [a, b] if each ti ∈ Ji and {Ji : i = 1, . . . , k} are pairwise

non-overlapping compact subintervals of [a, b] with [a, b] =
⋃k
i=1 Ji.

Any positive function δ : [a, b]→ (0,∞) is called a gauge on [a, b] and the
above tagged partition is said to be δ-fine if Ji ⊂ (ti − δ(ti), ti + δ(ti)), for
every i = 1, . . . , k.
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A function f : [a, b]→ X is said to be strongly Henstock-Kurzweil integrable
on [a, b] if there is an additive function F : I → X such that for every ε > 0
there exists a gauge δ on [a, b] such that the inequality

k∑
i=1

‖f(ti) m(Ji)− F (Ji)‖X < ε, (1)

is satisfied, for every δ-fine tagged partition {(ti, Ji) : i = 1, . . . , k} of [a, b].
The HK-integral is defined on the same lines, except the summation sign in

(1) comes inside the norm sign. In that case F ([a, b]) is known as the Henstock-

Kurzweil integral of f over an interval [a, b] and is denoted by (HK)
∫ b
a
f dm.

For more details on these integrals, see ([3], [6], [10], [11], [12]).
The classes of the strongly Henstock-Kurzweil and the Henstock-Kurzweil

integrable functions from [a, b] to X are denoted, respectively, by SHK and
HK. If X is a finite dimensional space then SHK = HK. In general, SHK ⊆
HK.

A function f : [a, b] → X is said to be Pettis integrable on [a, b] if for all
x∗ ∈ X∗ the function x∗(f) is Lebesgue integrable and for all E ∈ L there
exists wE ∈ X such that

< x∗, wE >=

∫
E

x∗(f)dm.

We call wE the Pettis integral of f over E and we write wE = (P )
∫
E
fdm.

The class of Pettis integrable functions from [a, b] to X is denoted by P.
A function f : [a, b]→ X is said to be scalarly Henstock-Kurzweil integrable

on [a, b] if for all x∗ ∈ X∗ the function x∗(f) is Henstock-Kurzweil integrable.
A scalarly Henstock-Kurzweil integrable function is Henstock-Kurzweil-Pettis
integrable if for all I ∈ I there exists wI ∈ X such that

< x∗, wI >= (HK)

∫
I

x∗(f)dm.

We call wI the Henstock-Kurzweil-Pettis integral of f over I and we write
wI = (HKP)

∫
I
fdm. The class of the Henstock-Kurzweil-Pettis integrable

functions from [a, b] to X is denoted by HKP.
Given an additive interval function φ : I → X, a gauge δ and a set E ⊂

[a, b], we define

V ar(φ, δ, E) =

sup

{ p∑
i=1

‖ φ(Ii) ‖: {(Ii, ti) : i = 1, .., p}δ − fine partition anchored on E

}
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Then we set Vφ(E) = inf{V ar(φ, δ, E) : δ-a gauge on E}. We call Vφ the
variational measure generated by φ. It is known [15] that Vφ is a metric outer
measure on [a, b]. In particular, Vφ is a measure over all Borel sets of [a, b].

For more details see [15].

Definitions:

1. Let f : [a, b]→ X be a given function. f is said to be of strong bounded
variation (BV) on [a, b] if

sup
∑
i

‖f(di)− f(ci)‖ <∞,

where the supremum is taken over all finite collections of non-overlapping
intervals {[ci, di]} in [a, b].

2. Let (Ω,Σ) be a measurable space and F : Σ → X be a vector measure.
The variation of F is the extended nonnegative function |F | whose value
on a set E ∈ Σ is given by |F |(E) = sup

∑
‖F (Ei)‖ where the sup

is taken over all finite partitions of E into a finite number of pairwise
disjoint members of Σ. If |F |(Ω) <∞, then F is said to be a measure of
strong bounded variation [4, page 2].

3. A Banach space X is said to have the Radon-Nikodym property (RNP)
[4, page 61] with respect to the finite measure space (Ω,Σ, µ) if for each
µ-continuous vector measure F : Σ → X of strong bounded variation,
there exists g ∈ L1(µ,X) such that

F (E) =

∫
E

g dµ, for all E ∈ Σ.

4. A Banach space X is said to have the Weak Radon-Nikodym prop-
erty (WRNP) [13, page 239] with respect to the finite measure space
(Ω,Σ, µ) if for each µ-continuous vector measure F : Σ → X of σ-finite
variation, there exists g ∈ P such that

F (E) = (P)

∫
E

g dµ, for all E ∈ Σ.

For more details on vector measures, see [4].

As X is a commutative Banach algebra with identity e of norm 1, by [14,
Theorem 18.13], every proper ideal of X is contained in a maximal ideal and
every maximal ideal is closed.
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Let ∆ denote the set of all non-zero multiplicative linear functionals of X.
Since X has an identity, we have ∆ 6= ∅. Moreover, if τ ∈ 4 then ‖τ‖ = 1.
Indeed, by [14, Theorem 18.17], there is a one-to-one correspondence between
∆ and the class of maximal ideals, in the sense that every maximal ideal is
the kernel of some τ ∈ ∆ and conversely, the kernel of every τ(∈ ∆) is the
maximal ideal associated with τ.

It is easy to see that X-valued continuous function are not multipliers of
SHK. For example, take

f(t) =

∞∑
n=1

2ncnχIn(t)e,

where Σcn is a non-absolutely convergent series for which
∑
|cn|/

√
n does not

converge and each In = (2−n, 2−n+1). Take g to have the value 2(sgn cn)e/
√
n

at the midpoint of each In, the value zero at the endpoints of each In and at
0 and linear on the rest of [0, 1]. Then it can be shown that fg /∈ SHK.

In [16], we proved that if g : [a, b] → X is of strong bounded variation,
then the multiplication operator Mg defined by Mg(f) = fg maps SHK to

HK and the associated operator Tg defined by Tg(f) =
∫ b
a
fg maps SHK to

X. Conversely, if X has RNP and M : SHK → HK is a bounded linear mul-
tiplication operator, then there exists a function g of weak bounded variation
such that τ(M(f)) = τ(f)τ(g) for all f ∈ SHK and every multiplicative lin-
ear functional τ of the Banach algebra X. Analogously, if T : SHK → X is a
bounded linear operator then there exists a function g of weak bounded vari-

ation such that τ(T (f)) =
∫ b
a
τ(fg) for all f ∈ SHK and every multiplicative

linear functional τ of the Banach algebra X.

In section 3, we show that if X satisfies RNP and g : [a, b] → X is of
strong bounded variation, then the multiplication operator Mg(f) = fg maps
SHK to SHK. This result changes the range space in the results of [16]. In
Theorem 7, under the hypothesis of X satisfying RNP, we prove that for
f ∈ HK, τ ∈ 4 and g : [a, b] → X of strong bounded variation there exists
h ∈ SHK such that τ(fg) = τ(h). In Theorem 8, X satisfies WRNP and we
show that the function h is in HKP.

Remark. For each f ∈ HK, if we define

‖f‖HK := sup

{∥∥(HK)

∫
I

f
∥∥
X

: I ∈ I
}
,

then ‖.‖HK is a semi-norm on HK.
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Further, if we define a relation ∼ on HK as f ∼ g if f = g a.e., then ∼
is an equivalence relation on HK. Therefore HK/∼ is a normed linear space,
which is not a Banach space even for X = R.

In the sequel, we shall need the following results:

Theorem 1. (Lemma 3.3, [1]) Let X be a Banach space and let µ : L → X
be a m-continuous measure of finite variation. If φ : I → X is defined by
φ(I) = µ(I) for all I ∈ I, then Vφ is finite, Vφ � µ and Vφ(E) ≤ |µ|(E),
whenever E ∈ L.

Theorem 2. (Theorem 3.6,(i)⇔(vi) [1]) Let X be a Banach space. Then the
following are equivalent:

(i) X has RNP;

(ii) If Vφ � µ, then there exists f ∈ SHK such that φ(I) = (SHK)
∫
I
f dm.

Here φ : I → X is an additive interval function.

Theorem 3. (Theorem 4.5,(i)⇔(vii) [2]) Let X be a Banach space. Then the
following are equivalent:

(i) X has WRNP;

(ii) If Vφ � µ, then there exists f ∈ HKP such that φ(I) = (HKP)
∫
I
f dm.

Here φ : I → X is an additive interval function.

3 Main results

Theorem 4. Let X be a commutative Banach algebra, with identity of norm
one, satisfying RNP. If ν : [a, b] → X is a vector measure of strong bounded
variation, then for each f ∈ SHK, the product f(.)ν[a, .) ∈ SHK. Moreover,
the linear operator T : SHK → X defined by T (f) = (SHK)

∫
[a,b)

f(t)ν[a, t)dt

is ‖.‖HK-bounded.

Proof. We follow the proof of Theorem 3.2 [9]. By continuity of the integral

(SHK)
∫ b
t
f(s)ds [15, Theorem 7.4.1] and the fact that ν is a vector measure

of strong bounded variation, we have that

Tν(f) = (RS)

∫
[a,b)

(
(SHK)

∫ b

t

f(s)ds

)
dν(t)
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is a ‖.‖HK-bounded linear operator from SHK to X. Since χ[a,t)(s) = χ(s,b](t),
we have for bounded Borel measurable function f ,∫

[a,b)

f(t)ν[a, t)dt =

∫
[a,b]

[
f(t)

∫
[a,b)

χ[a,t)(s)dν(s)

]
dt

=

∫
[a,b)

[ ∫
[a,b]

f(t)χ(s,b](t)dt

]
dν(s)

= (RS)

∫
[a,b)

(
(SHK)

∫ b

s

f(t)dt

)
dν(s),

using Fubini’s theorem.

Fix f ∈ SHK and define H(I) = Tν(fχI), I ∈ I. Note that for bounded
measurable function f , the integral

∫
E
f(t)ν[a, t)dt, E ∈ L is a vector valued

measure. By Theorem 1, VHK(H) � m. Since X satisfies RNP, using The-
orem 2 there exists h ∈ SHK such that H(I) = (SHK)

∫
I
h(t)dt, I ∈ I. It

remains to show that H ′(t) = f(t)ν[a, t), a.e.[m].

Let F (t) = (SHK)
∫ t
a
f(s)ds, t ∈ [a, b]. Then F ′(t) = f(t) a.e. [15, Theorem

7.4.2] so there exists W ⊂ [a, b],m(W ) = 0 such that for t ∈ [a, b] \W and
given ε > 0 there exists δ1(t) > 0 such that

‖f(t)− F (I)
m(I)‖ <

ε
2(‖Tν‖+1) for t ∈ I ⊂ (t− δ1(t), t+ δ1(t))

⋂
[a, b].

Define g(t) = ν[a, t). Then g is of strong bounded variation and hence bounded
measurable function. Enlarging W , if necessary, we may assume that if t /∈W
then G′(t) = g(t) where G(t) =

∫ t
a
g(s)ds, a ≤ t < b.

There exists δ2(t) > 0 such that

‖g(t)− G(I)
m(I)‖ <

ε
2(‖f(t)‖+1) for all t ∈ I ⊂ (t− δ2(t), t+ δ2(t))

⋂
[a, b].

Hence for each t ∈ [a, b] \W, we have

∥∥∥∥H(I)

m(I)
− f(t)g(t)

∥∥∥∥ =

∥∥∥∥Tν(fχI)

m(I)
− f(t)g(t)− f(t)G(I)

m(I)
+
f(t)G(I)

m(I)

∥∥∥∥
≤ 1

m(I)
‖Tν(f(t)χI)− Tν(fχI)‖+ ‖f(t)‖

∥∥∥∥g(t)− G(I)

m(I)

∥∥∥∥
≤ ‖Tν‖
m(I)

‖f(t)χI − fχI‖SHK + ‖f(t)‖
∥∥∥∥g(t)− G(I)

m(I)

∥∥∥∥
< ε

for t ∈ I ⊂ (t − δ(t), t + δ(t))
⋂

[a, b], where δ(t) = min{δ1(t), δ2(t)}. This
completes the proof.
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Conversely, we have the following results.

Theorem 5. If the Banach algebra X has RNP and T : SHK → X is a
bounded linear operator, then there exists a function g of weak bounded varia-
tion such that

τ(T (f)) = (HK)

∫ b

a

τ(f)τ(g), for all f ∈ SHK and τ ∈ ∆.

For the proof, see [16, Theorem 4.1].

Theorem 6. If the Banach algebra X has RNP and M : SHK → SHK is a
bounded linear multiplication operator, then there exists a function g of weak
bounded variation such that

τ(M(f)) = τ(fg), for all f ∈ SHK and τ ∈ ∆.

In other words, τ(M) = τ(Mg).

For the proof of this, see [16, Theorem 4.2].
The following theorem deals with multipliers of HK-integrable functions.

Theorem 7. Let X be a commutative Banach algebra, with identity of norm
one, satisfying RNP. If ν : [a, b]→ X is a vector measure of strong bounded
variation, then for f ∈ HK and τ ∈ 4 the product

τ(f(.)ν[a, .)) = τ(h(.)) a.e.[m]

for some h ∈ SHK.(The set of measure zero depends on τ.)

Proof. By continuity of the integral (HK)
∫ b
t
f(s)ds [15, Theorem 7.4.1] and

the fact that ν is a vector measure of strong bounded variation, we have that

Tν(f) = (RS)

∫
[a,b)

(
(HK)

∫ b

t

f(s)ds

)
dν(t)

is a ‖.‖HK-bounded linear operator from HK to X. Since χ[a,t)(s) = χ(s,b](t),
we have for bounded Borel measurable function f ,∫

[a,b)

f(t)ν[a, t)dt =

∫
[a,b]

[
f(t)

∫
[a,b)

χ[a,t)(s)dν(s)

]
dt

=

∫
[a,b)

[ ∫
[a,b]

f(t)χ(s,b](t)dt

]
dν(s)

= (RS)

∫
[a,b)

(
(HK)

∫ b

s

f(t)dt

)
dν(s),
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using Fubini’s theorem.

Fix f ∈ HK and define H(I) = Tν(fχI), I ∈ I. Note that for bounded
measurable function f , the integral

∫
E
f(t)ν[a, t)dt, E ∈ L is a vector valued

measure. By Theorem 1, VHK(H)� m. Since X satisfiesRNP, we have using
Theorem 2 that there exists h ∈ SHK such that H(I) = (SHK)

∫
I
h(t)dt, I ∈

I. It remains to show that for τ ∈ 4, τ(H ′(t)) = τ(f(t)ν[a, t)), a.e.[m].

Let F (t) = (HK)
∫ t
a
f(s)ds, t ∈ [a, b]. Then, as f is the scalar derivative of

F, we have for x∗ ∈ X∗, (x∗F )′(t) = x∗(f(t)) a.e. [15, Theorem 7.4.20] so
there exists a set W (depending on x∗),W ⊂ [a, b],m(W ) = 0 such that for
t ∈ [a, b] \W and given ε > 0 there exists δ1(t) > 0 such that

‖x∗(f(t))− x∗(F (I))
m(I) ‖ <

ε
2(|ν|([a,b])+1) for t ∈ I ⊂ (t− δ1(t), t+ δ1(t))

⋂
[a, b].

Define g(t) = ν[a, t). Then g is of strong bounded variation and hence bounded
measurable function. Enlarging W , if necessary, we may assume that if t /∈W
then G′(t) = g(t) where G(t) =

∫ t
a
g(s)ds, a ≤ t < b.

There exists δ2(t) > 0 such that

‖g(t)− G(I)
m(I)‖ <

ε
2(‖f(t)‖+1) for all t ∈ I ⊂ (t− δ2(t), t+ δ2(t))

⋂
[a, b].

Hence for τ ∈ 4 ⊆ X∗ and t ∈ [a, b] \W (W depending on τ), we have

∥∥∥∥τ(H(I))

m(I)
− τ(f(t)g(t))

∥∥∥∥ =

∥∥∥∥τ[Tν(fχI)

m(I)
− f(t)g(t)− f(t)G(I)

m(I)
+
f(t)G(I)

m(I)

]∥∥∥∥
≤ 1

m(I)

∥∥∥∥τ[Tν(f(t)χI)− Tν(fχI)
]∥∥∥∥

+ ‖τ(f(t))‖
∥∥∥∥τ(g(t)− G(I)

m(I)

)∥∥∥∥
≤ 1

m(I)

∥∥∥∥Tτν(τ(f(t)χI − fχI)
∥∥∥∥

+ ‖τ‖2‖f(t)‖
∥∥∥∥g(t)− G(I)

m(I)

∥∥∥∥
≤ ‖Tτν‖

1

m(I)
‖τ(f(t)χI − fχI)‖HK

+ ‖f(t)‖
∥∥∥∥g(t)− G(I)

m(I)

∥∥∥∥
< ε

for t ∈ I ⊂ (t− δ(t), t+ δ(t))
⋂

[a, b], where δ(t) = min{δ1(t), δ2(t)}, using the
fact that ‖τ‖ = 1. Note that ‖Tτν‖ = sup‖f‖HK≤1‖Tτν(f)‖ ≤ ‖τ‖ |ν|[a, b] =
|ν|[a, b]. This completes the proof.



400 S. Bhatnagar

Remark: If in the above theorem ν : [a, b] → X is a vector measure
of weak bounded variation, then for f ∈ HK and x∗ ∈ X∗, the product
x∗(f(.)ν[a, .)) = x∗(hx∗) a.e.[m] for some hx∗ ∈ SHK. Indeed, the function
gx∗(t) = x∗ν[a, t) is a scalar function of bounded variation on [a, b].

Defining Tν(f) = (RS)
∫
[a,b)

(
(HK)

∫ b
t
f(s)ds

)
dgx∗(t) and proceeding as in

the above proof, we get that (x∗H)′(t) = x∗(f)gx∗ = x∗(fgx∗) = x∗(hx∗) for
some hx∗ ∈ SHK. In [5], it is proved that the scalar multipliers of SHK(HK)
functions are functions of essentially bounded variation. Our functions h(hx∗)
are from SHK because of the additional condition that X has RNP.

Theorem 8. Let X be a commutative Banach algebra, with identity of norm
one, satisfying WRNP. If ν : [a, b] → X is a vector measure of strong
bounded variation, then for f ∈ HK and τ ∈ 4 the product τ(f(.)ν[a, .)) =
τ(h(.)) a.e.[m] for some h ∈ HKP.(The set of measure zero depends on τ.)

The proof is similar to the above proof with the only difference that we
now use Theorem 3 instead of Theorem 2.

Remark: If X = R, then SHK = HK = HKP and our results reduce to
real valued multipliers case. Thus Theorems 4, 7 and 8 are generalizations of
real multipliers case to vector valued case.

Acknowledgement: The author is grateful to Professor(retired) Ajit Iqbal
Singh of University of Delhi for her helpful suggestions and continuous encour-
agement.
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