INROADS

Savita Bhatnagar, Centre for Advanced Study in Mathematics, Panjab University, Chandigarh, 160014, INDIA. email: bhsavita@pu.ac.in

THE RADON NIKODYM PROPERTY AND MULTIPLIERS OF \mathcal{HK} -INTEGRABLE FUNCTIONS

Abstract

We study the space of vector valued multipliers of strongly Henstock-Kurzweil (SHK) integrable functions. We prove that if X is a commutative Banach algebra, with identity e of norm one, satisfying Radon-Nikodym property and $g : [a, b] \to X$ is of strong bounded variation, then the multiplication operator defined by $M_g(f) = fg$ maps SHK to SHK. We also investigate the problems when the domain is HK or when X satisfies weak Radon-Nikodym property.

1 Introduction

A function φ is called a multiplier if the product φf is integrable for every integrable function f. For the Lebesgue integral, every essentially bounded measurable function is a multiplier. Surprisingly, for the real Henstock-Kurzweil integral, real continuous functions need not be multipliers, even on intervals of finite length. In fact, a function φ is a multiplier for the class of Henstock-Kurzweil integrable functions on [a, b] if and only if it is equal almost everywhere to a function of bounded variation on [a, b]. See [8, Theorem 6.1.5 and Theorem 6.1.9] or [7, Theorem 12.9].

The aim of this paper is to strengthen the study of vector valued multipliers of the family of vector valued Henstock-Kurzweil integrable functions

Mathematical Reviews subject classification: Primary: 26A39; Secondary: 28B05

Key words: \mathcal{HK} -integrable, Banach Algebra, Multiplier, Henstock-Kurzweil-Pettis integrable, strong bounded variation

Received by the editors December 13, 2018 Communicated by: Luisa Di Piazza

carried out in [16]. The case of scalar valued multipliers for strongly Henstock-Kurzweil integrable functions is already known [5]. Let X be a commutative Banach algebra with identity e of norm one. In [16], we proved that if $g: [a, b] \to X$ is of strong bounded variation, then the multiplication operator M_g defined by $M_g(f) = fg$ maps \mathcal{SHK} to \mathcal{HK} and the associated operator T_g defined by $T_g(f) = \int_a^b fg$ maps \mathcal{SHK} to X which is the vector analogue of Riesz Representation theorem. For the converse, we put an additional condition that X satisfy Radon-Nikodym property (\mathcal{RNP}) . We proved that if $M: \mathcal{SHK} \to \mathcal{HK}$ is a bounded linear multiplication operator and X has \mathcal{RNP} , then there exists a function g of weak bounded variation such that $\tau(M(f)) = \tau(f)\tau(g)$ for all $f \in \mathcal{SHK}$ and every multiplicative linear functional τ of the Banach algebra X. Analogously, if $T: \mathcal{SHK} \to X$ is a bounded linear operator then there exists a function g of weak bounded variation such that $\tau(T(f)) = \int_a^b \tau(fg)$ for all $f \in \mathcal{SHK}$ and every multiplicative linear functional τ of the Banach algebra X. Analogously, if $T: \mathcal{SHK} \to X$ is a bounded linear operator then there exists a function g of weak bounded variation such that $\tau(T(f)) = \int_a^b \tau(fg)$ for all $f \in \mathcal{SHK}$ and every multiplicative linear functional τ of the Banach algebra X.

In this note, we show that if X satisfies \mathcal{RNP} and $g : [a, b] \to X$ is of strong bounded variation, then the multiplication operator $M_g(f) = fg$ maps \mathcal{SHK} to \mathcal{SHK} . We also show that under the hypothesis of X satisfying \mathcal{RNP} , we have for $f \in \mathcal{HK}$ and $g : [a, b] \to X$ of strong bounded variation there exists $h \in \mathcal{SHK}$ such that $\tau(fg) = \tau(h)$. Moreover, if X satisfies \mathcal{WRNP} , then the function h is in \mathcal{HKP} .

Section 2 contains preliminaries and the main results are in Section 3.

2 Preliminaries

This section contains the preliminary material from which we shall draw throughout the rest of the paper.

Let [a, b] be a compact real interval, \mathcal{I} be the family of compact subintervals of [a, b], \mathcal{L} be the σ -algebra of all Lebesgue measurable subsets of [a, b], m stand for Lebesgue measure on [a, b] and X be a commutative Banach algebra with identity e such that ||e|| = 1.

A set function $F : \mathcal{I} \to X$ is said to be *additive* if $F(J \cup K) = F(J) + F(K)$, for all non-overlapping intervals $J, K \in \mathcal{I}$ such that $J \cup K \in \mathcal{I}$.

A collection $\{(t_i, J_i); i = 1, ..., k\}$ of point-interval pairs is called a *tagged*partition of the interval [a, b] if each $t_i \in J_i$ and $\{J_i : i = 1, ..., k\}$ are pairwise non-overlapping compact subintervals of [a, b] with $[a, b] = \bigcup_{i=1}^k J_i$.

Any positive function $\delta : [a, b] \to (0, \infty)$ is called a *gauge* on [a, b] and the above tagged partition is said to be δ -fine if $J_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$, for every $i = 1, \ldots, k$.

A function $f : [a, b] \to X$ is said to be strongly Henstock-Kurzweil integrable on [a, b] if there is an additive function $F : \mathcal{I} \to X$ such that for every $\epsilon > 0$ there exists a gauge δ on [a, b] such that the inequality

$$\sum_{i=1}^{k} \|f(t_i) \ m(J_i) - F(J_i)\|_X < \epsilon,$$
(1)

is satisfied, for every δ -fine tagged partition $\{(t_i, J_i) : i = 1, \dots, k\}$ of [a, b].

The \mathcal{HK} -integral is defined on the same lines, except the summation sign in (1) comes inside the norm sign. In that case F([a, b]) is known as the Henstock-Kurzweil integral of f over an interval [a, b] and is denoted by $(\mathcal{HK}) \int_a^b f \ dm$. For more details on these integrals, see ([3], [6], [10], [11], [12]).

The classes of the strongly Henstock-Kurzweil and the Henstock-Kurzweil integrable functions from [a, b] to X are denoted, respectively, by SHK and HK. If X is a finite dimensional space then SHK = HK. In general, $SHK \subseteq HK$.

A function $f : [a,b] \to X$ is said to be *Pettis integrable* on [a,b] if for all $x^* \in X^*$ the function $x^*(f)$ is Lebesgue integrable and for all $E \in \mathcal{L}$ there exists $w_E \in X$ such that

$$\langle x^*, w_E \rangle = \int_E x^*(f) dm.$$

We call w_E the Pettis integral of f over E and we write $w_E = (P) \int_E f dm$. The class of Pettis integrable functions from [a, b] to X is denoted by \mathcal{P} .

A function $f : [a, b] \to X$ is said to be scalarly Henstock-Kurzweil integrable on [a, b] if for all $x^* \in X^*$ the function $x^*(f)$ is Henstock-Kurzweil integrable. A scalarly Henstock-Kurzweil integrable function is Henstock-Kurzweil-Pettis integrable if for all $I \in \mathcal{I}$ there exists $w_I \in X$ such that

$$\langle x^*, w_I \rangle = (\mathcal{HK}) \int_I x^*(f) dm.$$

We call w_I the Henstock-Kurzweil-Pettis integral of f over I and we write $w_I = (\mathcal{HKP}) \int_I f dm$. The class of the Henstock-Kurzweil-Pettis integrable functions from [a, b] to X is denoted by \mathcal{HKP} .

Given an additive interval function $\phi : \mathcal{I} \to X$, a gauge δ and a set $E \subset [a, b]$, we define

$$Var(\phi, \delta, E) = sup\left\{\sum_{i=1}^{p} \| \phi(I_i) \| : \{(I_i, t_i) : i = 1, .., p\}\delta \text{ - fine partition anchored on } E\right\}$$

Then we set $V_{\phi}(E) = inf\{Var(\phi, \delta, E) : \delta$ -a gauge on $E\}$. We call V_{ϕ} the variational measure generated by ϕ . It is known [15] that V_{ϕ} is a metric outer measure on [a, b]. In particular, V_{ϕ} is a measure over all Borel sets of [a, b].

For more details see [15].

Definitions:

1. Let $f : [a, b] \to X$ be a given function. f is said to be of strong bounded variation (\mathcal{BV}) on [a, b] if

$$\sup\sum_{i} \|f(d_i) - f(c_i)\| < \infty,$$

where the supremum is taken over all finite collections of non-overlapping intervals $\{[c_i, d_i]\}$ in [a, b].

- 2. Let (Ω, Σ) be a measurable space and $F : \Sigma \to X$ be a vector measure. The variation of F is the extended nonnegative function |F| whose value on a set $E \in \Sigma$ is given by $|F|(E) = \sup \sum ||F(E_i)||$ where the sup is taken over all finite partitions of E into a finite number of pairwise disjoint members of Σ . If $|F|(\Omega) < \infty$, then F is said to be a measure of strong bounded variation [4, page 2].
- 3. A Banach space X is said to have the Radon-Nikodym property (\mathcal{RNP}) [4, page 61] with respect to the finite measure space (Ω, Σ, μ) if for each μ -continuous vector measure $F : \Sigma \to X$ of strong bounded variation, there exists $g \in L^1(\mu, X)$ such that

$$F(E) = \int_E g \ d\mu$$
, for all $E \in \Sigma$.

4. A Banach space X is said to have the Weak Radon-Nikodym property (WRNP) [13, page 239] with respect to the finite measure space (Ω, Σ, μ) if for each μ -continuous vector measure $F : \Sigma \to X$ of σ -finite variation, there exists $g \in \mathcal{P}$ such that

$$F(E) = (\mathcal{P}) \int_{E} g \ d\mu$$
, for all $E \in \Sigma$.

For more details on vector measures, see [4].

As X is a commutative Banach algebra with identity e of norm 1, by [14, Theorem 18.13], every proper ideal of X is contained in a maximal ideal and every maximal ideal is closed.

Let Δ denote the set of all non-zero multiplicative linear functionals of X. Since X has an identity, we have $\Delta \neq \emptyset$. Moreover, if $\tau \in \Delta$ then $\|\tau\| = 1$. Indeed, by [14, Theorem 18.17], there is a one-to-one correspondence between Δ and the class of maximal ideals, in the sense that every maximal ideal is the kernel of some $\tau \in \Delta$ and conversely, the kernel of every $\tau(\in \Delta)$ is the maximal ideal associated with τ .

It is easy to see that X-valued continuous function are not multipliers of \mathcal{SHK} . For example, take

$$f(t) = \sum_{n=1}^{\infty} 2^n c_n \chi_{I_n}(t) e,$$

where Σc_n is a non-absolutely convergent series for which $\sum |c_n|/\sqrt{n}$ does not converge and each $I_n = (2^{-n}, 2^{-n+1})$. Take g to have the value $2(sgn c_n)e/\sqrt{n}$ at the midpoint of each I_n , the value zero at the endpoints of each I_n and at 0 and linear on the rest of [0, 1]. Then it can be shown that $fg \notin SHK$.

In [16], we proved that if $g : [a, b] \to X$ is of strong bounded variation, then the multiplication operator M_g defined by $M_g(f) = fg$ maps \mathcal{SHK} to \mathcal{HK} and the associated operator T_g defined by $T_g(f) = \int_a^b fg$ maps \mathcal{SHK} to X. Conversely, if X has \mathcal{RNP} and $M : \mathcal{SHK} \to \mathcal{HK}$ is a bounded linear multiplication operator, then there exists a function g of weak bounded variation such that $\tau(M(f)) = \tau(f)\tau(g)$ for all $f \in \mathcal{SHK}$ and every multiplicative linear functional τ of the Banach algebra X. Analogously, if $T : \mathcal{SHK} \to X$ is a bounded linear operator then there exists a function g of weak bounded variation such that $\tau(T(f)) = \int_a^b \tau(fg)$ for all $f \in \mathcal{SHK}$ and every multiplicative linear functional τ of the Banach algebra X.

In section 3, we show that if X satisfies \mathcal{RNP} and $g:[a,b] \to X$ is of strong bounded variation, then the multiplication operator $M_g(f) = fg$ maps \mathcal{SHK} to \mathcal{SHK} . This result changes the range space in the results of [16]. In Theorem 7, under the hypothesis of X satisfying \mathcal{RNP} , we prove that for $f \in \mathcal{HK}, \tau \in \Delta$ and $g:[a,b] \to X$ of strong bounded variation there exists $h \in \mathcal{SHK}$ such that $\tau(fg) = \tau(h)$. In Theorem 8, X satisfies \mathcal{WRNP} and we show that the function h is in \mathcal{HKP} .

Remark. For each $f \in \mathcal{HK}$, if we define

$$||f||_{\mathcal{HK}} := \sup\left\{ \left\| (\mathcal{HK}) \int_{I} f \right\|_{X} : I \in \mathcal{I} \right\},\$$

then $\|.\|_{\mathcal{HK}}$ is a semi-norm on \mathcal{HK} .

Further, if we define a relation \sim on \mathcal{HK} as $f \sim g$ if f = g a.e., then \sim is an equivalence relation on \mathcal{HK} . Therefore \mathcal{HK}/\sim is a normed linear space, which is not a Banach space even for $X = \mathbf{R}$.

In the sequel, we shall need the following results:

Theorem 1. (Lemma 3.3, [1]) Let X be a Banach space and let $\mu : \mathcal{L} \to X$ be a m-continuous measure of finite variation. If $\phi : \mathcal{I} \to X$ is defined by $\phi(I) = \mu(I)$ for all $I \in \mathcal{I}$, then V_{ϕ} is finite, $V_{\phi} \ll \mu$ and $V_{\phi}(E) \leq |\mu|(E)$, whenever $E \in \mathcal{L}$.

Theorem 2. (Theorem 3.6,(i) \Leftrightarrow (vi) [1]) Let X be a Banach space. Then the following are equivalent:

- (i) X has \mathcal{RNP} ;
- (ii) If $V_{\phi} \ll \mu$, then there exists $f \in SHK$ such that $\phi(I) = (SHK) \int_{I} f dm$. Here $\phi : \mathcal{I} \to X$ is an additive interval function.

Theorem 3. (Theorem 4.5,(i) \Leftrightarrow (vii) [2]) Let X be a Banach space. Then the following are equivalent:

- (i) X has WRNP;
- (ii) If $V_{\phi} \ll \mu$, then there exists $f \in \mathcal{HKP}$ such that $\phi(I) = (\mathcal{HKP}) \int_{I} f dm$. Here $\phi : \mathcal{I} \to X$ is an additive interval function.

3 Main results

Theorem 4. Let X be a commutative Banach algebra, with identity of norm one, satisfying \mathcal{RNP} . If $\nu : [a,b] \to X$ is a vector measure of strong bounded variation, then for each $f \in S\mathcal{HK}$, the product $f(.)\nu[a,.) \in S\mathcal{HK}$. Moreover, the linear operator $T : S\mathcal{HK} \to X$ defined by $T(f) = (S\mathcal{HK}) \int_{[a,b)} f(t)\nu[a,t)dt$ is $\|.\|_{\mathcal{HK}}$ -bounded.

PROOF. We follow the proof of Theorem 3.2 [9]. By continuity of the integral $(\mathcal{SHK}) \int_t^b f(s) ds$ [15, Theorem 7.4.1] and the fact that ν is a vector measure of strong bounded variation, we have that

$$T_{\nu}(f) = (RS) \int_{[a,b]} \left((\mathcal{SHK}) \int_{t}^{b} f(s) ds \right) d\nu(t)$$

396

is a $\|.\|_{\mathcal{HK}}$ -bounded linear operator from \mathcal{SHK} to X. Since $\chi_{[a,t)}(s) = \chi_{(s,b]}(t)$, we have for bounded Borel measurable function f,

$$\begin{split} \int_{[a,b)} f(t)\nu[a,t)dt &= \int_{[a,b]} \left[f(t) \int_{[a,b)} \chi_{[a,t)}(s)d\nu(s) \right] dt \\ &= \int_{[a,b)} \left[\int_{[a,b]} f(t)\chi_{(s,b]}(t)dt \right] d\nu(s) \\ &= (RS) \int_{[a,b)} \left((\mathcal{SHK}) \int_s^b f(t)dt \right) d\nu(s), \end{split}$$

using Fubini's theorem.

Fix $f \in S\mathcal{HK}$ and define $H(I) = T_{\nu}(f\chi_I)$, $I \in \mathcal{I}$. Note that for bounded measurable function f, the integral $\int_E f(t)\nu[a,t)dt$, $E \in \mathcal{L}$ is a vector valued measure. By Theorem 1, $V_{\mathcal{HK}}(H) \ll m$. Since X satisfies \mathcal{RNP} , using Theorem 2 there exists $h \in S\mathcal{HK}$ such that $H(I) = (S\mathcal{HK}) \int_I h(t)dt$, $I \in \mathcal{I}$. It remains to show that $H'(t) = f(t)\nu[a,t)$, a.e.[m].

Let $F(t) = (\mathcal{SHK}) \int_a^t f(s) ds$, $t \in [a, b]$. Then F'(t) = f(t) a.e. [15, Theorem 7.4.2] so there exists $W \subset [a, b], m(W) = 0$ such that for $t \in [a, b] \setminus W$ and given $\epsilon > 0$ there exists $\delta_1(t) > 0$ such that

 $\|f(t) - \frac{F(I)}{m(I)}\| < \frac{\epsilon}{2(\|T_{\nu}\| + 1)} \text{ for } t \in I \subset (t - \delta_{1}(t), t + \delta_{1}(t)) \bigcap[a, b].$ Define $g(t) = \nu[a, t)$. Then g is of strong bounded variation and hence bounded measurable function. Enlarging W, if necessary, we may assume that if $t \notin W$ then G'(t) = g(t) where $G(t) = \int_{a}^{t} g(s) ds$, $a \leq t < b$. There exists $\delta_{2}(t) > 0$ such that

 $\|g(t) - \frac{G(I)}{m(I)}\| < \frac{\epsilon}{2(\|f(t)\|+1)} \text{ for all } t \in I \subset (t - \delta_2(t), t + \delta_2(t)) \bigcap [a, b].$ Hence for each $t \in [a, b] \setminus W$, we have

$$\begin{aligned} \left\| \frac{H(I)}{m(I)} - f(t)g(t) \right\| &= \left\| \frac{T_{\nu}(f\chi_{I})}{m(I)} - f(t)g(t) - \frac{f(t)G(I)}{m(I)} + \frac{f(t)G(I)}{m(I)} \right\| \\ &\leq \frac{1}{m(I)} \| T_{\nu}(f(t)\chi_{I}) - T_{\nu}(f\chi_{I})\| + \|f(t)\| \quad \left\| g(t) - \frac{G(I)}{m(I)} \right\| \\ &\leq \frac{\|T_{\nu}\|}{m(I)} \| f(t)\chi_{I} - f\chi_{I}\|_{\mathcal{SHK}} + \|f(t)\| \quad \left\| g(t) - \frac{G(I)}{m(I)} \right\| \\ &\leq \epsilon \end{aligned}$$

for $t \in I \subset (t - \delta(t), t + \delta(t)) \cap [a, b]$, where $\delta(t) = \min\{\delta_1(t), \delta_2(t)\}$. This completes the proof.

Conversely, we have the following results.

Theorem 5. If the Banach algebra X has \mathcal{RNP} and $T : \mathcal{SHK} \to X$ is a bounded linear operator, then there exists a function g of weak bounded variation such that

$$\tau(T(f)) = (\mathcal{HK}) \int_{a}^{b} \tau(f)\tau(g), \text{ for all } f \in \mathcal{SHK} \text{ and } \tau \in \Delta.$$

For the proof, see [16, Theorem 4.1].

Theorem 6. If the Banach algebra X has \mathcal{RNP} and $M : \mathcal{SHK} \to \mathcal{SHK}$ is a bounded linear multiplication operator, then there exists a function g of weak bounded variation such that

$$\tau(M(f)) = \tau(fg), \text{ for all } f \in SHK \text{ and } \tau \in \Delta.$$

In other words, $\tau(M) = \tau(M_q)$.

For the proof of this, see [16, Theorem 4.2].

The following theorem deals with multipliers of \mathcal{HK} -integrable functions.

Theorem 7. Let X be a commutative Banach algebra, with identity of norm one, satisfying \mathcal{RNP} . If $\nu : [a,b] \to X$ is a vector measure of strong bounded variation, then for $f \in \mathcal{HK}$ and $\tau \in \Delta$ the product

$$\tau(f(.)\nu[a,.)) = \tau(h(.)) \ a.e.[m]$$

for some $h \in SHK$. (The set of measure zero depends on τ .)

PROOF. By continuity of the integral $(\mathcal{HK}) \int_t^b f(s) ds$ [15, Theorem 7.4.1] and the fact that ν is a vector measure of strong bounded variation, we have that

$$T_{\nu}(f) = (RS) \int_{[a,b]} \left((\mathcal{HK}) \int_{t}^{b} f(s) ds \right) d\nu(t)$$

is a $\|.\|_{\mathcal{HK}}$ -bounded linear operator from \mathcal{HK} to X. Since $\chi_{[a,t)}(s) = \chi_{(s,b]}(t)$, we have for bounded Borel measurable function f,

$$\begin{split} \int_{[a,b)} f(t)\nu[a,t)dt &= \int_{[a,b]} \left[f(t) \int_{[a,b)} \chi_{[a,t)}(s)d\nu(s) \right] dt \\ &= \int_{[a,b)} \left[\int_{[a,b]} f(t)\chi_{(s,b]}(t)dt \right] d\nu(s) \\ &= (RS) \int_{[a,b)} \left((\mathcal{HK}) \int_{s}^{b} f(t)dt \right) d\nu(s), \end{split}$$

398

using Fubini's theorem.

Fix $f \in \mathcal{HK}$ and define $H(I) = T_{\nu}(f\chi_I)$, $I \in \mathcal{I}$. Note that for bounded measurable function f, the integral $\int_E f(t)\nu[a,t)dt$, $E \in \mathcal{L}$ is a vector valued measure. By Theorem 1, $V_{\mathcal{HK}}(H) \ll m$. Since X satisfies \mathcal{RNP} , we have using Theorem 2 that there exists $h \in \mathcal{SHK}$ such that $H(I) = (\mathcal{SHK}) \int_I h(t)dt$, $I \in \mathcal{I}$. It remains to show that for $\tau \in \Delta$, $\tau(H'(t)) = \tau(f(t)\nu[a,t))$, *a.e.*[m].

Let $F(t) = (\mathcal{HK}) \int_a^t f(s) ds$, $t \in [a, b]$. Then, as f is the scalar derivative of F, we have for $x^* \in X^*$, $(x^*F)'(t) = x^*(f(t))$ a.e. [15, Theorem 7.4.20] so there exists a set W (depending on x^*), $W \subset [a, b], m(W) = 0$ such that for $t \in [a, b] \setminus W$ and given $\epsilon > 0$ there exists $\delta_1(t) > 0$ such that

 $\|x^*(f(t)) - \frac{x^*(F(I))}{m(I)}\| < \frac{\epsilon}{2(|\nu|([a,b])+1)} \text{ for } t \in I \subset (t - \delta_1(t), t + \delta_1(t)) \cap [a,b].$ Define $g(t) = \nu[a,t)$. Then g is of strong bounded variation and hence bounded measurable function. Enlarging W, if necessary, we may assume that if $t \notin W$ then G'(t) = g(t) where $G(t) = \int_a^t g(s) ds$, $a \leq t < b$. There exists $\delta_2(t) > 0$ such that

 $\|g(t) - \frac{G(I)}{m(I)}\| < \frac{\epsilon}{2(\|f(t)\|+1)} \text{ for all } t \in I \subset (t - \delta_2(t), t + \delta_2(t)) \bigcap [a, b].$ Hence for $\tau \in \Delta \subseteq X^*$ and $t \in [a, b] \setminus W$ (W depending on τ), we have

$$\begin{split} \left\| \frac{\tau(H(I))}{m(I)} - \tau(f(t)g(t)) \right\| &= \left\| \tau \left[\frac{T_{\nu}(f\chi_{I})}{m(I)} - f(t)g(t) - \frac{f(t)G(I)}{m(I)} + \frac{f(t)G(I)}{m(I)} \right] \right\| \\ &\leq \frac{1}{m(I)} \left\| \tau \left[T_{\nu}(f(t)\chi_{I}) - T_{\nu}(f\chi_{I}) \right] \right\| \\ &+ \left\| \tau(f(t)) \right\| \left\| \tau \left(g(t) - \frac{G(I)}{m(I)} \right) \right\| \\ &\leq \frac{1}{m(I)} \left\| T_{\tau\nu}(\tau(f(t)\chi_{I} - f\chi_{I})) \right\| \\ &+ \left\| \tau \right\|^{2} \|f(t)\| \left\| g(t) - \frac{G(I)}{m(I)} \right\| \\ &\leq \left\| T_{\tau\nu} \right\| \frac{1}{m(I)} \left\| \tau(f(t)\chi_{I} - f\chi_{I}) \right\|_{\mathcal{HK}} \\ &+ \left\| f(t) \right\| \left\| g(t) - \frac{G(I)}{m(I)} \right\| \\ &\leq \epsilon \end{split}$$

for $t \in I \subset (t - \delta(t), t + \delta(t)) \cap [a, b]$, where $\delta(t) = \min\{\delta_1(t), \delta_2(t)\}$, using the fact that $\|\tau\| = 1$. Note that $\|T_{\tau\nu}\| = \sup_{\|f\|_{\mathcal{HK}} \leq 1} \|T_{\tau\nu}(f)\| \leq \|\tau\| |\nu|[a, b] = |\nu|[a, b]$. This completes the proof. \Box

Remark: If in the above theorem $\nu : [a, b] \to X$ is a vector measure of weak bounded variation, then for $f \in \mathcal{HK}$ and $x^* \in X^*$, the product $x^*(f(.)\nu[a,.)) = x^*(h_{x^*})$ a.e.[m] for some $h_{x^*} \in \mathcal{SHK}$. Indeed, the function $g_{x^*}(t) = x^*\nu[a, t)$ is a scalar function of bounded variation on [a, b].

Defining $T_{\nu}(f) = (RS) \int_{[a,b)} \left((\mathcal{HK}) \int_{t}^{b} f(s) ds \right) dg_{x^*}(t)$ and proceeding as in the above proof, we get that $(x^*H)'(t) = x^*(f)g_{x^*} = x^*(fg_{x^*}) = x^*(h_{x^*})$ for some $h_{x^*} \in S\mathcal{HK}$. In [5], it is proved that the scalar multipliers of $S\mathcal{HK}(\mathcal{HK})$ functions are functions of essentially bounded variation. Our functions $h(h_{x^*})$ are from $S\mathcal{HK}$ because of the additional condition that X has \mathcal{RNP} .

Theorem 8. Let X be a commutative Banach algebra, with identity of norm one, satisfying WRNP. If $\nu : [a,b] \to X$ is a vector measure of strong bounded variation, then for $f \in HK$ and $\tau \in \Delta$ the product $\tau(f(.)\nu[a,.)) =$ $\tau(h(.))$ a.e.[m] for some $h \in HKP$. (The set of measure zero depends on τ .)

The proof is similar to the above proof with the only difference that we now use Theorem 3 instead of Theorem 2.

Remark: If $X = \mathbf{R}$, then $\mathcal{SHK} = \mathcal{HKP}$ and our results reduce to real valued multipliers case. Thus Theorems 4, 7 and 8 are generalizations of real multipliers case to vector valued case.

Acknowledgement: The author is grateful to Professor(retired) Ajit Iqbal Singh of University of Delhi for her helpful suggestions and continuous encouragement.

References

- B. Bongiorno, L. Di Piazza and K. Musial, A variational Henstock integral characterization of the Radon-Nikodym property, Illinois J. Math., 53(1) (2009), 87–99.
- [2] B. Bongiorno, L. Di Piazza and K. Musial, A characterization of the weak Radon-Nikodym property by finitely additive interval functions, Bull. Aus. Math. Soc., 80 (2009), 476–485.
- [3] S. Cao, The Henstock integral for Banach valued function, SEA Bull. Math., 16(1) (1992), 35–40.
- [4] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc. Mathematical Surveys, 15 (1977).

- [5] L. Di Piazza and V. Marraffa, The McShane, PU and Henstock integrals of Banach valued functions, Czech. Math. Jour., 52(127) no. 3, (2002) 609–633.
- [6] L. Di Piazza, V. Marraffa and K. Musial, Variational Henstock integrability of Banach space valued functions, Math. Bohem., 141(2) (2016), 287–296.
- [7] Lee Peng Yee, Lanzhou Lectures on Henstock integration, Series in Real Analysis Vol.2, World Scientific Singapore (1989).
- [8] Lee Tuo-Yeong, Henstock-Kurzweil integration on Euclidean spaces, Ser. Real Anal., 12, World Scientific Publishing Co., Singapore, (2011)
- [9] Lee Tuo-Yeong, A characterisation of multipliers for the Henstock-Kurzweil integral, Math. Proc. Camb. Phil. Soc., 138 (2005), 487–492.
- [10] V. Marraffa, A descriptive characterization of the variational Henstock integral, Matimyas Mathematica, 22(2) (1999), 73–84.
- [11] V. Marraffa, A characterization of strongly measurable Kurzweil-Henstock integrable functions and weakly continuous operators, J. Math. Anal. Appl., 340(2) (2008), 1171–1179.
- [12] V. Marraffa, Strongly measurable Kurzweil-Henstock type integrable functions and series, Quaestiones Mathematicae, 31(4) (2008), 379–386.
- [13] K. Musial, Topics in the theory of Pettis integration, Rend. Instit. Mat. Univ. Trieste, 23 (1991), 177–262.
- [14] W. Rudin, *Real and Complex Analysis*, Third edition, McGraw Hill International edition (1987).
- [15] Stefań Schwabik and Ye Guoju, *Topics in Banach Space Integration*, Series in Real Analysis, **10**, World Scientific, (2005).
- [16] S. P. Singh and S. Bhatnagar, On vector valued multipliers for the class of strongly HK- integrable functions, Tatra Mountains Math. Publ., 68 (2017), 69–79.

S. BHATNAGAR

402