Real Analysis Exchange
INROADS Vol. 44(2), 2019, pp. 391-402
DOI: 10.14321/realanalexch.41.1.0391

Savita Bhatnagar, Centre for Advanced Study in Mathematics, Panjab
University, Chandigarh, 160014, INDIA. email: bhsavita@pu.ac.in

THE RADON NIKODYM PROPERTY AND
MULTIPLIERS OF HK-INTEGRABLE
FUNCTIONS

Abstract

We study the space of vector valued multipliers of strongly Henstock-
Kurzweil (SHK) integrable functions. We prove that if X is a commu-
tative Banach algebra, with identity e of norm one, satisfying Radon-
Nikodym property and ¢ : [a,b] — X is of strong bounded variation,
then the multiplication operator defined by My(f) = fg maps SHK to
SHK. We also investigate the problems when the domain is H/C or when
X satisfies weak Radon-Nikodym property.

1 Introduction

A function ¢ is called a multiplier if the product ¢ f is integrable for every in-
tegrable function f. For the Lebesgue integral, every essentially bounded mea-
surable function is a multiplier. Surprisingly, for the real Henstock-Kurzweil
integral, real continuous functions need not be multipliers, even on intervals
of finite length. In fact, a function ¢ is a multiplier for the class of Henstock-
Kurzweil integrable functions on [a, b] if and only if it is equal almost every-
where to a function of bounded variation on [a, b]. See [8, Theorem 6.1.5 and
Theorem 6.1.9] or [7, Theorem 12.9].

The aim of this paper is to strengthen the study of vector valued mul-
tipliers of the family of vector valued Henstock-Kurzweil integrable functions
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carried out in [16]. The case of scalar valued multipliers for strongly Henstock-
Kurzweil integrable functions is already known [5]. Let X be a commuta-
tive Banach algebra with identity e of norm one. In [16], we proved that if
g : [a,b] — X is of strong bounded variation, then the multiplication operator
M, defined by My(f) = fg maps SHK to HK and the associated operator

T, defined by T,(f) = f: fg maps SHK to X which is the vector analogue
of Riesz Representation theorem. For the converse, we put an additional con-
dition that X satisfy Radon-Nikodym property (RAP). We proved that if
M : SHK — HK is a bounded linear multiplication operator and X has
RNP, then there exists a function g of weak bounded variation such that
T(M(f)) = 7(f)7(g) for all f € SHK and every multiplicative linear func-
tional 7 of the Banach algebra X. Analogously, if T': SHX — X is a bounded
linear operator then there exists a function g of weak bounded variation such
that 7(T(f)) = f:T(fg) for all f € SHK and every multiplicative linear
functional 7 of the Banach algebra X.

In this note, we show that if X satisfies RANP and g : [a,b] — X is of
strong bounded variation, then the multiplication operator M,(f) = fg maps
SHK to SHK. We also show that under the hypothesis of X satisfying RAP,
we have for f € HK and g : [a,b] = X of strong bounded variation there
exists h € SHK such that 7(fg) = 7(h). Moreover, if X satisfies WRNP,
then the function h is in HICP.

Section 2 contains preliminaries and the main results are in Section 3.

2 Preliminaries

This section contains the preliminary material from which we shall draw
throughout the rest of the paper.

Let [a, b] be a compact real interval, Z be the family of compact subintervals
of [a, b], L be the o-algebra of all Lebesgue measurable subsets of [a, b], m stand
for Lebesgue measure on [a,b] and X be a commutative Banach algebra with
identity e such that ||e|]| = 1.

A set function F : T — X is said to be additive if F(JUK) = F(J)+F(K),
for all non-overlapping intervals J, K € Z such that JU K € 7.

A collection {(¢;,J;);i =1,...,k} of point-interval pairs is called a tagged-
partition of the interval [a, ] if each ¢; € J; and {J; : i = 1,..., k} are pairwise
non-overlapping compact subintervals of [a, b] with [a,b] = Ule J;.

Any positive function § : [a,b] — (0, 00) is called a gauge on [a,b] and the
above tagged partition is said to be d-fine if J; C (t; — 6(t;),t; + 6(t;)), for
every i =1,... k.
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A function f : [a,b] — X is said to be strongly Henstock-Kurzweil integrable
on [a,d] if there is an additive function F' : Z — X such that for every ¢ > 0
there exists a gauge d on [a, b] such that the inequality

k
STIFE) m(T) - F(I)lx < e (1)
=1

is satisfied, for every d-fine tagged partition {(¢;,J;) : i =1,...,k} of [a,d].

The H/C-integral is defined on the same lines, except the summation sign in
(1) comes inside the norm sign. In that case F'([a, b]) is known as the Henstock-
Kurzweil integral of f over an interval [a,b] and is denoted by (HK) f: f dm.
For more details on these integrals, see ([3], [6], [10], [11], [12]).

The classes of the strongly Henstock-Kurzweil and the Henstock-Kurzweil
integrable functions from [a,b] to X are denoted, respectively, by SHK and
HK. If X is a finite dimensional space then SHX = HK. In general, SHI C
HK.

A function f : [a,b] — X is said to be Pettis integrable on [a,b] if for all
x* € X* the function z*(f) is Lebesgue integrable and for all E € L there
exists wg € X such that

<z*,wg >:/x*(f)dm.
E

We call wg the Pettis integral of f over E and we write wg = (P) [, fdm.
The class of Pettis integrable functions from [a,b] to X is denoted by P.

A function f : [a,b] — X is said to be scalarly Henstock-Kurzweil integrable
on [a,b] if for all * € X* the function z*(f) is Henstock-Kurzweil integrable.
A scalarly Henstock-Kurzweil integrable function is Henstock-Kurzweil-Pettis
integrable if for all I € 7 there exists w; € X such that

< 2% wy >= (HK) / 2 (f)dm.
I

We call w; the Henstock-Kurzweil-Pettis integral of f over I and we write
wy = (HKP) [, fdm. The class of the Henstock-Kurzweil-Pettis integrable
functions from [a, b] to X is denoted by HIP.

Given an additive interval function ¢ : Z — X, a gauge 6 and a set E C
[a, b], we define

Var(¢,d,FE) =

P
sup{z Il o(L;) ||: {(L;, ;) : ¢ =1,..,p}d — fine partition anchored on E}
i=1
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Then we set V,(E) = inf{Var(¢,d, E) : 6-a gauge on E}. We call V; the
variational measure generated by ¢. It is known [15] that Vj is a metric outer
measure on [a, b]. In particular, Vy is a measure over all Borel sets of [a, b].

For more details see [15].

Definitions:

1. Let f: [a,b] = X be a given function. f is said to be of strong bounded
variation (BY) on [a,b] if

SupZ [f(di) = f(ei)ll < oo,

where the supremum is taken over all finite collections of non-overlapping
intervals {[¢;,d;]} in [a,b].

2. Let (2, %) be a measurable space and F' : ¥ — X be a vector measure.
The variation of F' is the extended nonnegative function |F'| whose value
on a set E € ¥ is given by |F|(E) = sup)_ ||F(E;)|| where the sup
is taken over all finite partitions of E into a finite number of pairwise
disjoint members of 3. If |F|(2) < oo, then F is said to be a measure of
strong bounded variation [4, page 2].

3. A Banach space X is said to have the Radon-Nikodym property (RN'P)
[4, page 61] with respect to the finite measure space (§2, 3, p) if for each
p-continuous vector measure F' : ¥ — X of strong bounded variation,
there exists g € L'(u, X) such that

F(E) = / g dp, forall E € X.
E

4. A Banach space X is said to have the Weak Radon-Nikodym prop-
erty (WRNP) [13, page 239] with respect to the finite measure space
(Q, %, ) if for each p-continuous vector measure F : 3 — X of o-finite
variation, there exists g € P such that

F(E) = (77)/ g du, forall E € X.
B

For more details on vector measures, see [4].

As X is a commutative Banach algebra with identity e of norm 1, by [14,
Theorem 18.13], every proper ideal of X is contained in a maximal ideal and
every maximal ideal is closed.
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Let A denote the set of all non-zero multiplicative linear functionals of X.
Since X has an identity, we have A # (). Moreover, if 7 € A then ||7] = 1.
Indeed, by [14, Theorem 18.17], there is a one-to-one correspondence between
A and the class of maximal ideals, in the sense that every maximal ideal is
the kernel of some 7 € A and conversely, the kernel of every 7(€ A) is the
maximal ideal associated with 7.

It is easy to see that X-valued continuous function are not multipliers of
SHK. For example, take

FO) =Y 2"eaxr, (e,
n=1

where Xc¢,, is a non-absolutely convergent series for which > |¢,|/+/n does not
converge and each I,, = (27,27 ""1). Take g to have the value 2(sgn c,)e//n
at the midpoint of each I,,, the value zero at the endpoints of each I,, and at
0 and linear on the rest of [0,1]. Then it can be shown that fg ¢ SHK.

In [16], we proved that if ¢ : [a,b] — X is of strong bounded variation,
then the multiplication operator M, defined by M,(f) = fg maps SHK to

HK and the associated operator T, defined by T,(f) = f: fg maps SHK to
X. Conversely, if X has RNP and M : SHK — HK is a bounded linear mul-
tiplication operator, then there exists a function g of weak bounded variation
such that 7(M(f)) = 7(f)7(g) for all f € SHK and every multiplicative lin-
ear functional 7 of the Banach algebra X. Analogously, if T': SHK — X is a
bounded linear operator then there exists a function g of weak bounded vari-
ation such that 7(T(f)) = f: 7(fg) for all f € SHK and every multiplicative
linear functional 7 of the Banach algebra X.

In section 3, we show that if X satisfies RNP and g : [a,b] — X is of
strong bounded variation, then the multiplication operator My(f) = fg maps
SHK to SHK. This result changes the range space in the results of [16]. In
Theorem 7, under the hypothesis of X satisfying RA'P, we prove that for
feHK, 7€ A and g: [a,b] = X of strong bounded variation there exists
h € SHK such that 7(fg) = 7(h). In Theorem 8, X satisfies WRNP and we
show that the function h is in HICP.

Remark. For each f € HIC, if we define

1l = Sup{||(HIC)/If||X 1 eI},

then ||| is a semi-norm on HK.
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Further, if we define a relation ~ on HK as f ~ g if f = g a.e., then ~
is an equivalence relation on HK. Therefore H/I/~ is a normed linear space,
which is not a Banach space even for X = R.

In the sequel, we shall need the following results:

Theorem 1. (Lemma 3.3, [1]) Let X be a Banach space and let pn: L — X
be a m-continuous measure of finite variation. If ¢ : T — X is defined by
o) = pu(I) for all T € I, then Vy is finite, Vy, < p and Vu(E) < |u|(E),
whenever E € L.

Theorem 2. (Theorem 8.6,(i)< (vi) [1]) Let X be a Banach space. Then the
following are equivalent:

(i) X has RNP;

(i) If Vo < i, then there exists f € SHK such that ¢(I) = (SHK) [, f dm.
Here ¢ : T — X is an additive interval function.

Theorem 3. (Theorem 4.5,(i)< (vii) [2]) Let X be a Banach space. Then the
following are equivalent:

(i) X has WRNP;

(i) If Vg < p, then there exists f € HKP such that ¢(I) = (HKP) [, f dm.
Here ¢ : T — X is an additive interval function.

3 Main results

Theorem 4. Let X be a commutative Banach algebra, with identity of norm
one, satisfying RNP. If v : [a,b] — X is a vector measure of strong bounded
variation, then for each f € SHI, the product f(.)v]a,.) € SHK. Moreover,
the linear operator T : SHK — X defined by T'(f) = (SHK) f[a,b) f@)via,t)dt

18 ||.||2xc-bounded.

PROOF. We follow the proof of Theorem 3.2 [9]. By continuity of the integral

(SHK) ftb f(s)ds [15, Theorem 7.4.1] and the fact that v is a vector measure
of strong bounded variation, we have that

n() = s) [ (5w | b s ()

[a;b)
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is a ||.||3x-bounded linear operator from SHK to X. Since X[q,4)(5) = X (5,5 (1),
we have for bounded Borel measurable function f,

F(OWla, t)dt = /

[a,b]

[f(t) /[a,b) X[a,t)(s)dl/(s):l dt

[a’b)

_ /H [ » f<t>x<s,b]<t>dt] v (s)

— (RS) /[a)b) ((SHIC) / ’ f(t)dt) dv(s),

using Fubini’s theorem.

Fix f € SHK and define H(I) = T, (fxr), I € Z. Note that for bounded
measurable function f, the integral [, f(t)v[a,t)dt, E € L is a vector valued
measure. By Theorem 1, Vyc(H) < m. Since X satisfies RN P, using The-
orem 2 there exists h € SHK such that H(I) = (SHK) [, h(t)dt, I €I. 1t
remains to show that H'(t) = f(t)v[a,t), a.e.m].

Let F(t) = (SHK) f: f(s)ds, t € [a,b]. Then F'(t) = f(¢t) a.e. [15, Theorem
7.4.2] so there exists W C [a,b], m(W) = 0 such that for ¢ € [a,b] \ W and
given € > 0 there exists d1(t) > 0 such that

IIf () — %H < s for t € I C (E—01(t),t + 61(¢)) Na, b].

Define g(t) = v[a,t). Then g is of strong bounded variation and hence bounded
measurable function. Enlarging W, if necessary, we may assume that if ¢t ¢ W
then G'(t) = g(t) where G(t) = fat g(s)ds, a <t <b.

There exists d2(¢) > 0 such that

llg(t) — %H < gD for all t € I C (t — 02(t),t + 62(t)) Nla, b].

m

Hence for each t € [a, b] \ W, we have

) BN iy HOGW) | F0EW)
|57~ ot = |5 - s - 02 L0
1 a(I)
< e Im O - Tl + 1701 a0 - S|
17, 0
< Bl - ruallsnc + 1o o0 - £
<€

for t € T C (t—46(t),t+ 0(t))Na,b], where §(t) = min{d1(t),I2(t)}. This
completes the proof. O
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Conversely, we have the following results.

Theorem 5. If the Banach algebra X has RNP and T : SHK — X is a
bounded linear operator, then there exists a function g of weak bounded varia-
tion such that

b
T(T(f)) = (’HIC)/ 7(f)7(g), for all f € SHK and T € A.

For the proof, see [16, Theorem 4.1].

Theorem 6. If the Banach algebra X has RNP and M : SHK — SHK is a
bounded linear multiplication operator, then there exists a function g of weak
bounded variation such that

T(M(f)) =7(fg), for all f € SHK and T € A.
In other words, (M) = 17(M,).

For the proof of this, see [16, Theorem 4.2].
The following theorem deals with multipliers of HK-integrable functions.

Theorem 7. Let X be a commutative Banach algebra, with identity of norm
one, satisfying RNP. If v : [a,b] — X is a vector measure of strong bounded
variation, then for f € HIC and T € A the product

T(f()vla,.)) = 7(h(.)) a.e.[m]
for some h € SHK.(The set of measure zero depends on T.)

PROOF. By continuity of the integral (HK) ftb f(s)ds [15, Theorem 7.4.1] and
the fact that v is a vector measure of strong bounded variation, we have that

(e | bf(S)d8> av)

is a ||.[[x-bounded linear operator from HI to X. Since X[q,4)(5) = X (5,5 (1),
we have for bounded Borel measurable function f,

f@)wvla,t)dt = /

[a,b]

7,(7) = (&) [

[CL,b)

[f(t) /[a’b) - <5)dy<s>} it

[a,b)

_ /W { y (O] o)

— (RS) /H (e | bf(t)dt) av(s),
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using Fubini’s theorem.

Fix f € HK and define H(I) = T, (fx1), I € Z. Note that for bounded

measurable function f, the integral fE f@)wvla,t)dt, E € L is a vector valued
measure. By Theorem 1, Vayxc(H) < m. Since X satisfies RA'P, we have using
Theorem 2 that there exists h € SHK such that H(I) = (SHK) [, h(t)dt, I €
T. Tt remains to show that for 7 € A, 7(H'(t)) = 7(f(t)v [a t)), a.e. [m]
Let F(t) = (HK) f f(s)ds, t € [a,b]. Then, as f is the scalar derivative of
F, we have for S X* ( *FY(t) = 2*(f(t)) a.e. [15, Theorem 7.4.20] so
there exists a set W (depending on z*),W C [a,b],m(W) = 0 such that for
t € [a,b] \ W and given € > 0 there exists d1(¢) > 0 such that

(£ (1)) = P < sy for t € T C (t=61(8), t+ 61 (1) Nla, b]-
Define g(t) = v[a,t). Then g is of strong bounded variation and hence bounded
measurable function. Enlargmg W if necessary, we may assume that if t ¢ W
then G'(t) = g(t) where G(t) fg a<t<b.

There exists d2(t) > 0 such that
llg(t) — %H < s forallte I C (t —d2(t),t + d2(t)) Na, b].
Hence for 7 € A C X* and t € [a,b] \ W (W depending on 7), we have

T(H(I))
m(I)

~ (00| -

<
< e mrox) - 1) \

IA

Tr(r(f(t)x1 — fxr)

G

+riPl ol - S0

1Tl —= I (F(O)xr = fxn)llmx

< )
+ |f(t>||Hg<f> B %H
<e

fort €I C (t—46(t),t+46(t))Na,b], where §(t) = min{d1(t), d2(t)}, using the
fact that ||7]| = 1. Note that || T5,| = supjs,.c<i|Tro ()] < |I7]] [v][a,b] =
|v|[a, b]. This completes the proof.
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Remark: If in the above theorem v : [a,b] — X is a vector measure
of weak bounded variation, then for f € HK and z* € X*, the product
z*(f()v]a,.)) = x*(hy) a.e.lm] for some h,~ € SHK. Indeed, the function
gz+(t) = x*v]a, t) is a scalar function of bounded variation on [a, b].

Defining T, (f) = (RS) f[a,b) ((HIC) ftb f(s)ds> dg.+(t) and proceeding as in

the above proof, we get that (z*H)'(t) = 2*(f)gsr = *(fgar) = x*(hy) for
some hy« € SHK. In [5], it is proved that the scalar multipliers of SHA(HK)
functions are functions of essentially bounded variation. Our functions h(hy+)
are from SHK because of the additional condition that X has RNP.

Theorem 8. Let X be a commutative Banach algebra, with identity of norm
one, satisfying WRNP. If v : [a,b] — X is a vector measure of strong
bounded variation, then for f € HK and 7 € A the product 7(f(.)v]a,.)) =
7(h(.)) a.e.[m] for some h € HKP.(The set of measure zero depends on T.)

The proof is similar to the above proof with the only difference that we
now use Theorem 3 instead of Theorem 2.

Remark: If X = R, then SHK = HK = HKP and our results reduce to
real valued multipliers case. Thus Theorems 4, 7 and 8 are generalizations of
real multipliers case to vector valued case.
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