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Rodrigo López Pouso,∗ Department of Statistics, Mathematical Analysis and
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FOURIER METHOD REVISED TO SOLVE
PARTIAL DIFFERENTIAL EQUATIONS
AND PROVE UNIQUENESS AT ONE

STROKE

Abstract

We present a novel application of Fourier analysis for solving PDEs
which is much faster than the usual separation of variables method and,
moreover, it implies uniqueness of the obtained solution at the same
time.

1 Introduction

The heat conduction problem

ut − auxx = 0, 0 ≤ x ≤ L, t > 0, (1)

u(x, 0) = f(x), 0 ≤ x ≤ L, (2)

u(0, t) = u(L, t) = 0, t ≥ 0, (3)

where a > 0, L > 0 and f : [0, L] −→ R are given, is a mathematical model for
the evolution of temperatures in a thin rod of length L. Equation (1) is the
well–known heat equation in dimension one. The initial condition (2) means
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that the point x of the rod has temperature f(x) at the initial time t = 0.
Finally, the boundary conditions (3) mean that the temperature is kept equal
to zero at every moment.

The standard Fourier method of separation of variables for solving (1)–
(2)–(3) starts by searching for solutions of the form

u(x, t) = X(x)T (t),

which, upon substitution in (1) and (3), leads to an eigenvalue problem.
Namely, we have to find all possible constants λ ∈ R so that the boundary
value problem

X ′′ + λX = 0, X(0) = X(L) = 0, (4)

and the equation T ′ = λ k T, have non-zero solutions. After finding those ad-
equate eigenvalues λ and corrresponding eigenfunctions (non–zero solutions),
one gets a formal series solution

u(x, t) =

∞∑
n=1

ane−an
2π2 t/L2

sin
nπx

L
. (5)

The coefficients an must be chosen so that (2) holds, i.e.

f(x) = u(x, 0) =

∞∑
n=1

an sin
nπx

L
,

so the an’s must be the coefficients of the sine Fourier series of f (which
coincides with f under suitable assumptions).

Once the formal solution (5) is computed, one has to prove that it makes
sense, i.e., the series converges, the series can be differentiated term by term
and the series really solves the problem.

However, this procedure does not imply uniqueness, and we have to prove
that (5) is the unique solution (1)–(2)–(3) by means of other techniques, usu-
ally energy methods or as a consequence of maximum principles. Readers are
referred to [1, 2] for details.

Here we present a kind of inverse Fourier method, starting with the sine
Fourier series of an arbitrary solution and ending up with (5), thus computing
the solution and proving its uniqueness at once. This method is valid for many
other equations or boundary conditions.

2 A fast Fourier method implying uniqueness

Assume that
f ∈ PC1([0, L]), f(0) = f(L) = 0,
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where PC1([a, b]) denotes the set of all functions which are continuous on [a, b]
and have a bounded continuous derivative on [a, b]\A, for some empty or finite
set A. This condition shall be used to prove convergence of a certain Fourier
series and it can be relaxed.

Let u = u(x, t) ∈ C([0, L] × [0,∞)) ∩ C2,1x,t ([0, L] × (0,∞)) be a solution of
(1)–(2)–(3). Here, the notation means that u is continuous on [0, L] × [0,∞)
and its derivatives uxx and ut exist and are continuous on [0, L] × (0,∞).
Derivatives with respect to x at the endpoints x = 0 and x = L are just the
corresponding side derivatives.

We shall prove that u is necessarily given by (5), obtaining in this way the
solution formula and its uniqueness.

For each fixed t ≥ 0 we expand the one–variable function x 7→ u(x, t) as a
sine Fourier series

u(x, t) =

∞∑
n=1

Tn(t) sin
nπx

L
, 0 ≤ x ≤ L, (6)

where, by definition of the n–th sine Fourier coefficient,

Tn(t) =
2

L

∫ L

0

u(x, t) sin
nπx

L
dx, n = 1, 2, . . . (7)

The identity in (6) is guaranteed by standard results on uniform convergence
of Fourier series: note that the odd extension of u(·, t) to the interval [−L,L]
belongs to PC1([−L,L]) and assumes the same value at the endpoints thanks
to (3) and thanks to the assumptions on f for the case t = 0.

Computing Tn(t) explicitly is all that remains to do.
First, we deduce from (7) and the assumptions on u that Tn ∈ C([0,∞))∩

C1(0,∞) and

Tn(0) =
2

L

∫ L

0

f(x) sin
nπx

L
dx, n = 1, 2, . . . (8)

Second, we differentiate with respect to t in (7) and, since ut = auxx for
t > 0, we get

T ′n(t) = a
2

L

∫ L

0

uxx(x, t) sin
nπx

L
dx, t > 0.

Now we integrate by parts twice to obtain

T ′n(t) = −an
2π2

L2
Tn(t), t > 0, (9)
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which, along with (8), implies that

Tn(t) = ane−an
2π2t/L2

where an =
2

L

∫ L

0

f(x) sin
nπx

L
dx. (10)

The computation of the solution, and the proof of its uniqueness in the set
C([0, L]× [0,∞)) ∩ C2,1([0, L]× (0,∞)), are finished.

Remark. Standard arguments show that the assumptions on f ensure that (5)
belongs to C([0, L]× [0,∞))∩C∞([0, L]× (0,∞)) and solves (1)–(2)–(3). One
also has to check this when employing the usual version of Fourier method.

The previous arguments can be simplified a little if we are only interested
on proving uniqueness of solution to (1)–(2)–(3). Indeed, to do so assume
that u1 and u2 are two solutions of (1)–(2)–(3) in the class C([0, L]× [0,∞))∩
C2,1x,t ([0, L]× (0,∞)), then

u = u1 − u2 ∈ C([0, L]× [0,∞)) ∩ C2,1x,t ([0, L]× (0,∞)),

and u solves (1), (3) and (2) with f(x) = 0 for all x ∈ [0, L]. Then u can be
expressed as in (6) and the Tn’s are solutions of

T ′n(t) = −an
2π2

L2
Tn(t), t > 0, Tn(0) = 0,

hence Tn(t) = 0 for all n and t. Therefore, u = 0 or, equivalently, u1 = u2.

Remark. Other boundary conditions can be considered and the method still
works with some modifications. See next section.

3 A big family of problems suitable for the fast Fourier
method

Let α1, α, β ∈ C([0, L]), F = F (x, t) ∈ C([0, L] × (0,∞)) and consider the
Neumann problem

utt + α1(t)ut + α(t)u− β(t)uxx = F (x, t), 0 ≤ x ≤ L, t > 0, (11)

u(x, 0) = f(x), 0 ≤ x ≤ L, (12)

ut(x, 0) = g(x), 0 ≤ x ≤ L, (13)

ux(0, t) = ux(L, t) = 0, t ≥ 0. (14)
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Two conditions at t = 0 must be imposed in this case because (11) is a second
order equation also in the t variable. Observe that the PDE includes many
important ones, such as the wave or the Laplace equations. We assume that

f, g ∈ PC1([0, L]), f ′(0) = f ′(L) = 0.

We want to compute the solution and prove its uniqueness in the set of
functions

X = C0,1x,t ([0, L]× [0,∞)) ∩ C2([0, L]× (0,∞)).

Let u ∈ X be a solution of (11)–(12)–(13)–(14). For each t ≥ 0 we ex-
pand u(·, t) as a cosine Fourier series (this is the proper type of series for the
Neumann problem because every term satisfies the Neumann conditions):

u(x, t) =
T0(t)

2
+

∞∑
n=1

Tn(t) cos
nπx

L
, 0 ≤ x ≤ L, (15)

where

Tn(t) =
2

L

∫ L

0

u(x, t) cos
nπx

L
dx, n = 0, 1, 2, . . . (16)

For each n = 0, 1, 2, . . . the function Tn is continuously differentiable on
[0,∞), twice continuously differentiable on (0,∞), and satisfies the initial
conditions

Tn(0) =
2

L

∫ L

0

f(x) cos
nπx

L
dx, T ′n(0) =

2

L

∫ L

0

g(x) cos
nπx

L
dx. (17)

Differentiating with respect to t and using (11) we get

T ′′n (t) + α1(t)T ′n(t) + α(t)Tn(t) = β(t)
2

L

∫ L

0

uxx(x, t) cos
nπx

L
dx

+
2

L

∫ L

0

F (x, t) cos
nπx

L
dx,

and integrating by parts twice we deduce that Tn solves

T ′′n + α1(t)T ′n +

(
α(t) + β(t)

n2π2

L2

)
Tn = γn(t), t > 0, (18)

where

γn(t) =
2

L

∫ L

0

F (x, t) cos
nπx

L
dx.

Equation (18) is linear with continuous coefficients, so the initial value problem
(18)–(17) has a unique solution. This proves that there is only one possible
choice for Tn, thus proving that (11)–(12)–(13)–(14) has at most one solution
u ∈ X given by (15) with the Tn’s as the unique solutions of (17)–(18).
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4 Other boundary conditions

Mixed or periodic problems can be treated in a similar way.

Consider equation (11) along with the initial conditions (12)–(13) and
mixed boundary data

u(0, t) = ux(L, t) = 0, t > 0. (19)

This problem can be reduced to a Dirichlet problem on the double interval
[0, 2L] by means of the following idea: extend the definitions of F (·, t), f and g
to the interval [0, 2L] as even functions with respect to the line x = L, namely,

F (x, t) = F (2L− x, t), f(x) = f(2L− x), g(x) = g(2L− x) for x ∈ (L, 2L].

Now, use the method described in section 1 to solve the Dirichlet problem

utt + α1(t)ut + α(t)u− β(t)uxx = F (x, t), 0 ≤ x ≤ 2L, t > 0, (20)

u(x, 0) = f(x), 0 ≤ x ≤ 2L, (21)

ut(x, 0) = g(x), 0 ≤ x ≤ 2L, (22)

u(0, t) = u(2L, t) = 0, t ≥ 0. (23)

The obtained solution can be proven to be a solution to (11)–(12)–(13)–(19).

The case of reversed mixed conditions

ux(0, t) = u(L, t) = 0, t > 0, (24)

can be reduced to (19) by the change of variable v(x, t) = u(L− x, t).
Finally, to solve and prove uniqueness to the problem (11)–(12)–(13) with

periodic conditions

u(0, t) = u(L, t), ux(0, t) = ux(L, t), t > 0, (25)

it suffices to expand any solution u = u(x, t) as a complete Fourier series with
respect to x, i.e.

u(x, t) = T0(t) +

∞∑
n=1

(
Tn(t) cos

nπx

L
+ T̃n(t) sin

nπx

L

)
,

and then repeat the arguments in the previous sections with the obvious mod-
ifications.



Fourier Method and Uniqueness 389

5 Problems in higher dimensions

To show that our method works in higher dimensions we consider the following
problem with the heat equation:

ut − k (uxx + uyy) = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ R, t > 0, (26)

u(x, y, 0) = f(x, y), 0 ≤ x ≤ L, 0 ≤ y ≤ R, (27)

u(0, y, t) = u(L, y, t) = 0, 0 ≤ y ≤ R, t ≥ 0, (28)

u(x, 0, t) = u(x,R, t) = 0, 0 ≤ x ≤ L, t ≥ 0, (29)

where k > 0, L > 0, R > 0 and, for simplicity, f ∈ C1([0, L]× [0, R]) and f = 0
on the boundary of the rectangle [0, L]× [0, R].

We can compute and prove uniqueness of a solution of (26)–(27)–(28)–(29)
in the set

X = C([0, L]× [0, R]× [0,∞)) ∩ C2,2,1x,y,t ([0, L]× [0, R]× (0,∞)),

by applying the previous method twice. Specifically, we assume a solution
u ∈ X and we expand it as a sine Fourier series with respect to y:

u(x, y, t) =

∞∑
n=1

Un(x, t) sin
nπy

R
,

where

Un(x, t) =
2

R

∫ R

0

u(x, y, t) sin
nπy

R
dy, n = 1, 2, . . .

For each fixed n = 1, 2, . . . we have

Un(x, 0) =
2

R

∫ R

0

f(x, y) sin
nπy

R
dy = Fn(x),

and we compute

∂

∂t
Un(x, t)− k ∂

2

∂x2
Un(x, t) = k

2

R

∫ R

0

uyy(x, y, t) sin
nπy

R
dy

= −kn
2π2

R2
Un(x, t).

Hence, for each n = 1, 2, . . . , Un is a solution of

vt − k vxx + k
n2π2

R2
v = 0, 0 ≤ x ≤ L, t > 0,

v(x, 0) = Fn(x), 0 ≤ x ≤ L,
v(0, t) = v(L, t) = 0, t ≥ 0.
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Arguing as in our first section, this problem can be proven to have a unique
solution

Un(x, t) =

∞∑
m=1

Tmn(t) sin
mπx

L
,

where Tmn is the unique solution of the initial value problem

T ′ + k

(
m2π2

L2
+
n2π2

R2

)
T = 0, T (0) = amn,

and

amn =
2

L

∫ L

0

Fn(x) sin
mπx

L
dx

=
4

LR

∫ L

0

∫ R

0

f(x, y) sin
nπy

R
sin

mπx

L
dydx.

We have proven that if u ∈ X solves (26)–(27)–(28)–(29) then it can only be

u(x, y, t) =

∞∑
m=1

∞∑
n=1

Tmn(t) sin
mπx

L
sin

mπy

R

=

∞∑
m=1

∞∑
n=1

amne−kπ
2((m/L)2+(n/R)2)t sin

mπx

L
sin

mπy

R
.

6 Acknowledgments

Partially supported by Ministerio de Economı́a y Competitividad, Spain, and
FEDER, Project MTM2016-75140-P, and Xunta de Galicia ED341D R2016/
022 and GRC2015/004.

References

[1] D. Borhtwick, Introduction to partial differential equations. Springer, 2016.

[2] T. Myint-U and L. Debnath, Partial differential equations for scientists
and engineers. Third edition, North–Holland, New York, 1987.


