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APPROXIMATIONS BY DIFFERENCES OF
LOWER SEMICONTINUOUS AND FINELY

CONTINUOUS FUNCTIONS

Abstract

A classical theorem of W.Sierpiński, S. Mazurkiewicz and S.Kem-
pisty says that the class of all differences of lower semicontinuous func-
tions is uniformly dense in the space of all Baire–one functions. We
show a generalization of this result to the case when finely continuous
functions of either density topologies or both linear and nonlinear po-
tential theory are involved. Moreover, we examine which topological
properties play a crucial role when deriving approximation theorems in
more general situations.

1 Introduction

Let K be a convex cone of functions. In many situations, it is important to
approximate a given function by differences of two functions from K. The
typical situation arises in potential theory: an easy consequence of the Stone-
Weierstrass theorem is that any continuous function on the boundary of any
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bounded domain in Rn can be uniformly approximated by differences of con-
tinuous potentials. Notice also approximation theorems involving differences
of functions from cones of convex or superharmonic functions. Another result
says that Baire–one functions on the real line can be uniformly approximated
by differences of lower semicontinuous functions.

In this paper we concetrate mainly on topological methods allowing an ap-
proximation of functions from certain classes of functions.

2 Approximation theorem

In J. Lukeš et al. [17, Corollary 3.36], the following result on approximation
was presented (for the convenience of the reader we will give another complete
proof of this assertion in the Appendix):

Theorem 1. Let τ be a fine topology on a metric space (P, ρ) having the
Luzin–Menshov property. Then any real ρ–Baire–one and τ–continuous func-
tion on P can be uniformly approximated by the differences of two positive
τ–continuous and lower ρ–semicontinuous functions.

In what follows, we assume always that the topology τ is finer than the
metric topology ρ and the prefices are related to these topologies. When there
is no prefix denoting topological properties we always have in mind the original
topology of the space. A function f is positive if f ≥ 0.

Remind that Baire–one functions are defined as pointwise limits of se-
quences of continuous functions.

The topology τ on P is said to have the Luzin–Menshov property (with
respect to ρ) if for any τ–open set Gτ ⊂ P and for any set A ⊂ P which
is of type Fσ in ρ, A ⊂ Gτ , there exists a positive τ–continuous and upper
ρ–semicontinuous function f such that A ⊂ {x ∈ P : f(x) > 0} ⊂ Gτ . Note
that by passing to max{f, 1} we may require f to be bounded.

Observe that the Luzin–Menshov property is a special case of binormality.
A set X on which two topologies τ and ρ are given is said to be a binormal
topological space if it satisfies the following binormality condition: Whenever
A and B are disjoint subsets of X, A τ–closed, B ρ–closed, there exist disjoint
sets GA and GB , GA ρ–open, GB τ–open such that A ⊂ GA and B ⊂ GB .

In [17, Theorem 3.11] it is shown that our definition of the Luzin–Menshov
property expresses nothing else than the metric space P equipped with topolo-
gies τ and ρ is binormal.
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3 Approximation in Euclidean spaces

It is not difficult to show that the discrete topology on Rn has the Luzin–
Menshov property (with respect to the Euclidean one). Hence Theorem 1
leads to the following proposition which goes back to S. Mazurkiewicz [18]
and W. Sierpiński [21] (they proved the result for bounded functions) and to
S. Kempisty [13] (who dropped the condition of boundedness).

Proposition 2. Any Baire–one function on Rn can be uniformly approxi-
mated by differences of two positive lower semicontinuous functions.

The assertion that there exist bounded Baire–one functions which cannot
be uniformly approximated by differences of bounded lower semicontinuous
functions belongs to mathematical folklore (see, for example, a paper [22]
where C. T. Tucker presents a construction of such a bounded Baire–one func-
tion).

An another example appeared in a recent paper by E. Omasta [19]. He
constructed a bounded Baire–one function which is even a difference of two
lower semicontinuous functions though it cannot be uniformly approximated
by differences of two bounded lower semicontinuous functions. So, we have
the following assertion (in the following, ‖·‖ stands for the supremum norm).

Proposition 3. There exists a bounded Baire–one function h on R which is
a difference of two lower semicontinuous functions such that if f and g are
positive lower semicontinuous functions and ‖h− (f − g)‖ < 1, then f and g
are unbounded.

In [19], E. Omasta presented also a proof of the following generalization of
Proposition 3.

Proposition 4. Let τ be a fine topology on R with respect to a metric topology
ρ on R having the Luzin–Menshov property. If any countable subset of R is
τ–closed, then there exists a bounded ρ–Baire–one and τ–continuous function
h on R such that if f and g are lower ρ–semicontinuous functions and ‖h −
(f − g)‖ < 1, then f and g are unbounded.

Remark 5. According to Proposition 3, the class of bounded functions which
can be uniformly approximated by two bounded lower semicontinuous functions
is a proper subset of a class of bounded Baire–one functions. This class of
functions is of self interest and has been studied by R. Haydon et al. [7] (as
the class of B1/2–functions) on compact metric spaces with applications to the
theory of Banach spaces.
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Another applications of B1/2–theory appeared recently in a paper [19] by
E. Omasta and in a forthcoming paper [20] by P. Pošta. It concerns the Dirich-
let solution of the classical Dirichlet problem for a continuous boundary con-
dition on a bounded open subset U of Rn. It is known that this solution need
not be continuous on U (the closure of U) but it is always Baire–one. It can
be proved that the Dirichlet solution can be uniformly approximated by diffe-
rences of two functions which are sums of potentials continuous on a bounded
open ball containing U and harmonic on U , thus it is even a B1/2–function.

The B1/2–class (as B1
1) also appeared in the study of A. S. Kechris and

A. Louveau [8].

4 Density topologies

The ordinary density topology on Rn is defined as the coarsest topology making
all approximately continuous functions continuous or, equivalently, it is formed
by a collection of all Lebesgue measurable sets on Rn having any of its points
as a point of ordinary density. The ordinary density topology has the Luzin–
Menshov property (the proof can be found in C. Goffman et al. [6]; cf. also
J. Lukeš et al. [17, Section 6.D]). Since any approximately continuous function
on Rn is a Baire–one function we get the following proposition immediately
from Theorem 1 (see also S. Vaněček [23] for bounded functions).

Proposition 6. Any approximately continuous function on Rn can be uni-
formly approximated by differences of two positive approximately continuous
and lower semicontinuous functions.

Remarks 7. (a) In [23], S. Vaněček showed that there exists a bounded
approximately continuous function h on R such that if f , g are positive lower
semicontinuous functions and ‖h− (f − g)‖ < 1 then f , g are unbounded. It
is easy to see that Vaněček’s result follows from Proposition 4.

(b) The density topology is an important example of a more general concept
of abstract density topologies. Given a measure space (X,S, µ) where µ is
a σ–finite and complete measure on a σ–algebra S, a topology τ is said to be
an abstract density topology on (X,S, µ) if the class of µ–null sets coincides
with the class of τ–closed and τ–nowhere dense sets and, moreover, a set M
belongs to S if and only M has the τ–Baire property.

5 Porous and I–density topologies

Replacing a measure space (X,S, µ) in the definition of an abstract density
topology by its topological counterpart we are led to the next topological
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definition. A topology τ is a categorial density topology on a topological space
(X, ρ) if ρ–first category subsets of X coincide with τ–closed and τ–nowhere
dense sets and, moreover, a set A has the ρ–Baire property if and only if A has
the τ–Baire property. We remark that the usual definition of abstract density
topologies is different from ours. Moreover, it is a particular case of the general
definition using a notion of lower density operators.

For this reason, consider now a more general approach to abstract density
topologies. Let S be a σ–algebra on a set X and J a proper σ–ideal J ⊂ S.
A mapping L : S → S is a lower density operator if

(a) L(∅) = ∅ and L(X) = X,

(b) L(A ∩B) = L(A) ∩ L(B),

(c) A ∼ B implies L(A) = L(B),

(d) L(A) ∼ A
for any A,B ∈ S. Here A ∼ B means that the symmetric difference A∆B ∈ J .

A topology τ on X is an abstract density topology on (X,S,J ) if there
exists a lower density operator L : S → S such that

τ = {A ∈ S : A ⊂ L(A)} .

We obtain an interesting particular case when (X, ρ) is a topological space,
S is the family of all sets with the Baire property on X and J is the σ–ideal
of all meager subsets of X. The corresponding abstract density topology τ on
(X,S,J ) can be characterized by topological conditions as a definition (cf. the
beginning of this section) which yields an intrinsic characterization of these
abstract density topologies (see J. Lukeš et al. [17, Section 6.E]).

An important example of a categorial density topology (labelled as the
I–density topology) starting a study of these topologies was investigated by
W. Wilczyński in [24]. A lot of interesting papers appeared since that time. Let
us mention, for example, recent papers of J. Hejduk [11] or W. Wojdowski [25].

Wilczyński’s definition of the I–density topology uses the algebraic struc-
ture of the real line. We briefly describe his topology on the real line. We
denote by S the σ–algebra of all subsets of R having the Baire property and
by I the σ–ideal of meager subsets of R. We say that x ∈ R is a I–density
point of a set A ⊂ R if

lim
n→∞

χn(A−x)∩[−1,1] = χ[−1,1]

with respect to I. (Here χM denotes the characteristic function of M and
the convergence means that every subsequence of the sequence χn(A−x)∩[−1,1]
contains a subsequence converging to χ[−1,1] except for a meager set.)
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A set M ∈ S is said to be I–density open if every point of M is a I–density
point of M . The collection of all I–density open sets forms a topology on R.
It is labelled as the I–density topology.

Another approach to the I–density topology (even in a metric case) is due
to L. Zaj́ıček [26]. Sometimes fine topologies can be defined also using the
so–called the notion of thinness. Let us illustrate this on the case of Zaj́ıček’s
porous topologies.

Let (P, ρ) be a metric space and let U(x, r) stand for the open ball centered
at x and radius of r. Given M ⊂ P , x ∈ P and R > 0 define

γ(x,M,R) :=sup{r > 0 : there exists y ∈ P such that U(y, r) ⊂ U(x,R)\M}.

A set M is porous at x if lim sup
R→0+

1
R γ(x,M,R) > 0. A set G is said to be

porously thin at x if G ∪M is porous at x whenever M is porous at x. The
collection of all sets which are porously thin at a point forms an ideal. Hence,
the family

{G ⊂ P : P \G is porously thin at any point of G}

forms a new topology on P which is finer than the original one. It is called
the porous topology on P and labelled as the p–topology.

Asume now that (P, ρ) is a metric Baire space. Then we can introduce
a ∗–modification p∗ of a porous topology p on P defining

p∗ := {G \N : G ∈ p and N is ρ–meager} .

It can be shown that p∗ is a categorial density topology on P (cf., for example,
Zaj́ıček’s paper [26]).

It was proved by V. Kelar in [12, Theorem 1a] that the porous topology p
has the Luzin–Menshov property (with respect to ρ). Since any fine topology
with the Luzin–Menchoff property is completely regular (see J. Lukeš et al.
[17, Corollary 3.13]), any porous topology p is completely regular. In contrast,
the p∗–topology is not even regular (cf. K. Ciesielski et al. [4, Theorem 2.6.2]).

Nevertheless, due to Theorem 4 and Proposition 9 in Zaj́ıček’s paper [26]
we have the following proposition.

Proposition 8. Let (P, ρ) be a metric Baire space. Then p∗–continuous and
p–continuous functions on P coincide and any p–continuous function (hence
any p∗–continuous function) on P is Baire–one.

Using Proposition 8 and Theorem 1 we can state the following approxima-
tion statement.
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Proposition 9. Let (P, ρ) be a metric Baire space. Any p–continuous func-
tion on (P, ρ) can be uniformly approximated by differences of two positive
p–continuous and lower ρ–semicontinuous functions.

Any p∗–continuous function on (P, ρ) can be uniformly approximated by
differences of two positive p∗–continuous and lower ρ–semicontinuous func-
tions.

For the proof of the next theorem see papers [26] and [27] of L. Zaj́ıček.

Theorem 10. Zaj́ıček’s p∗–topology on R coincides with Wilczyński’s I–den-
sity topology.

6 Fine topology in linear potential theory

There is another example of an interesting topology on Rn, n ≥ 2, defined
in classical potential theory of harmonic functions. Recall that the classical
fine topology on Rn is the coarsest topology making all Newtonian (n ≥ 3)
or logarithmic (n = 2) potentials continuous. Equivalently, the classical fine
topology is generated by the family of all positive superharmonic functions
on Rn. Since any Newtonian (n ≥ 3) or logarithmic (n = 2) potential on Rn
is approximately continuous (cf. J. Lukeš et al. [17, Theorem 10.5 and Exer-
cise 10.A.3]), the classical fine topology is coarser than the ordinary density
topology on Rn.

In what follows, we will present proofs in a more general setting. Namely,
we consider from now a P–harmonic space (X,H) in the sense of C. Constan-
tinescu and A. Cornea or, even more generally, a balayage space (X,W) of
J. Bliedtner and W. Hansen. Here, X is supposed to be a locally compact
space with a countable base.

We define the fine topology on X as the topology generated by the class of
all superharmonic functions. This topology has the Luzin–Menshov property
(with respect to the original topology of X). The first proof of this assertions
appeared in J. Lukeš [15] under an additional assumption on a harmonic space.
The crucial point was to have for a given polar set a superharmonic function
(even a potential) having a value +∞ exactly at this polar set. This assertion
was proved in the classical case of harmonic functions by G. C. Evans [5]
provided the polar set is closed, and by G. Choquet in [3] for the Gδ-case.
This theorem still holds in our general setting of harmonic or balayage spaces
and for the completeness we sketch its proof.

Theorem 11 (Evans-Choquet theorem). If P is a polar Gδ–subset of X, there
exists a superharmonic function s on X such that

P = {x ∈ X : s(x) = +∞}.
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Proof. The proof of the Evans-Choquet theorem can run as follows. If K is
a compact subset of X which is disjoint with P we construct a positive hy-
perharmonic function u such that u ≤ 1 on K and u = ∞ on P . To this
end let X \ K =

⋃
n
Hn where {Hn} is a sequence of compact subsets of X,

Hn ⊂ intHn+1. Then

F := {u : u is a positive hyperharmonic function on X,u ≥ 1 on Hn ∩ P}

is a Perron family on X \Hn+1. An appeal on Dini’s theorem yields a function
un ∈ F such that un ≤ 2−n on K. With {un} chosen in this manner we set
u =

∑
n un.

Now let X \P =
⋃
n
Kn where Kn are compact. There exists a sequence of

positive hyperharmonic functions {vn} such that vn =∞ on P and vn ≤ 2−n

on Kn. The function s :=
∑
n min(1, vn) has all properties desired.

The complete proof of the Luzin–Menshov property of the fine topology in
abstract harmonic spaces appeared in J. Lukeš et al. [17]. Here we present
a simplified proof of a similar result even for the case of balayage spaces of
W. Hansen and J. Bliedtner.

Theorem 12 (Luzin–Menshov property — a linear case). Let (X,W) be a ba-
layage space where X is locally compact with a countable base. Let F be a finely
closed subset of X and K a closed subset of X disjoint from F . Then there
exists a positive finely continuous and upper semicontinuous function ϕ on X
such that ϕ = 0 on F and ϕ > 0 on K.

Proof. Since every closed subset of X is σ–compact, there exists an in-
creasing sequence {Kn} of compact subsets of X such that

⋃
Kn = K. Let

p be a strict potential on X. Then R̂Fp = RFp < p on X \ F . According to
J. Bliedtner and W. Hansen [2, Lemma VI.2.5], there exists a sequence {Un}
of open sets such that F ⊂ Un ⊂ X and R̂Un

p ≤ RUn
p ≤ RFp + 1

n on Kn. Set

ϕ :=

∞∑
n=1

1

2n
(p− R̂Un

p ) .

Then ϕ ≥ 0 is a finely continuous and upper semicontinuous function on X,
ϕ = 0 on F . Fix x ∈ K. There exists an integer n such that x ∈ Kn and
RFp (x) + 1

n < p(x). Hence RUn
p (x) < p(x) which yields ϕ(x) > 0.

Remark 13. An answer to an interesting question concerning situations when
finely continuous functions are Baire–one can be found out in J. Lukeš and
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J. Malý [16] by reading Section 6.1. In particular, in [16] it is shown that
finely continuous functions are Baire–one in the case of porous topologies as
well in the cases of both linear and nonlinear potential theories. Moreover, in
[16] references and historical remarks are presented.

Having this in mind, using our approximation Theorem 1 we get the fol-
lowing assertion.

Proposition 14. Any finely continuous function on X can be uniformly ap-
proximated by differences of two positive finely continuous and lower semicon-
tinuous functions.

7 Nonlinear potential theory and the p–fine topology

Another example of a fine topology on Rn, n ≥ 2, arises from a nonlinear
potential theory. Let p ∈ (1, n]. Consider the following p–Laplace equation

div
(
|∇u|p−2 ∇u

)
= 0 (1)

where solutions must be understood in a weak sense. When p = 2 this equation
reduces to the classical Laplace equation.

Let Ω be an open subset of Rn. A function h : Ω → R is said to be
p–harmonic in Ω if it is a continuous weak solution of (1) in Ω. A function
u : Ω→ (−∞,+∞] is p–superharmonic in Ω if u is lower semicontinuous (with
respect to the Euclidean topology), u 6≡ ∞ in each component of Ω and for
each D relatively compact open subset of Ω and each p–harmonic function h
on D and continuous on D, the inequality u ≥ h on ∂D (the boundary of D)
implies u ≥ h in D.

The p–fine topology is generated by the collection of all p–superharmonic
functions on Rn, it forms with the Euclidean topology a binormal topological
space and it is strictly finer than the Euclidean topology on Rn for p ∈ (1, n]
(cf. J. Heinonen et al. [9, Theorem 3.4] and J. Heinonen et al. [10, Lemma 12.1
and following remarks]).

Here we give a proof of the Luzin–Menshov property of the p–fine topology
(with respect to the Euclidean one). The proof is completely different from
that one given by J. Heinonen et al. [9, Theorem 3.4] and it is based on the
idea used in J. Lukeš [15].

We shall need the following analogy of the Evans-Choquet theorem.

Theorem 15 (Evans-Choquet property). Let p ∈ (1, n] and suppose that P is
a Gδ-subset of Rn of Sobolev p–capacity zero. Then there exists a p–superhar-
monic function s on Rn such that P = {x ∈ Rn : s(x) =∞} .
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Proof. See T. Kilpeläinen [14, Theorem 1.3] (for the case of p–laplacian, put
simply A(x, ξ) = |ξ|p−2ξ).

Theorem 16 (Luzin–Menshov property - nonlinear case). Let p ∈ (1, n].
Then the p–fine topology on Rn has the Luzin–Menshov property.

Proof. Assume first that a closed set F ⊂ Rn and a p–finely closed set
Q ⊂ Rn \ F are given. Denote

bQ := {x ∈ Rn :

∫ 1

0

[r1−nC1,p(Q ∩ U(x, r))]
1

p−1 dr = +∞}

the set of all points where Q is not p–thin (here C1,p(M) is a (1, p)–capacity
of a set M , see D. R. Adams and L. I. Hedberg [1, Definition 2.2.6]). Since
the function

x 7→
∫ 1

0

[r1−nC1,p(Q ∩ U(x, r))]
1

p−1 dr

is p–finely continuous and lower semicontinuous, we see that bQ is a zero set of
a positive p–finely continuous and upper semicontinuous function ϕ. Now, the
p–fine topology has the Kellog property: The set Q \ bQ is of (1, p)–capacity
zero (cf. D. R. Adams and L. I. Hedberg [1, Corollary 6.3.17]). There exists
a Gδ–set P of (1, p)–capacity zero such that Q \ bQ ⊂ P . We may assume
that P ∩ F = ∅. By J. Heinonen et al. [10, Corollary 2.39], P is also of
a Sobolev p–capacity zero. An appeal to Theorem 15 yields the existence of
a p–superharmonic function s such that P = {x ∈ Rn : s(x) = +∞}.

Hence, P = {x ∈ Rn : π2 −arctg s(x) = 0} is a zero set of a positive p–finely
continuous and upper semicontinuous function. We see that there exists a p–
finely continuous and upper semicontinuous function f such that 0 ≤ f ≤ 1
and F ⊂ {x ∈ Rn : f(x) > 0} ⊂ Rn \Q.

For a general case, let A ⊂ Gp, A be of type Fσ and Gp p–finely open.
Write A =

⋃
k Fk where {Fk} is an increasing sequence of closed sets. For

each k there exists a p–finely continuous and upper semicontinuous function
fk such that 0 ≤ fk ≤ 1 and Fk ⊂ {x ∈ Rn : fk(x) > 0} ⊂ Gp. A function
f :=

∑
k 2−kfk is a positive p–finely continuous and upper semicontinuous

function for which the inclusions A ⊂ {x ∈ Rn : f(x) > 0} ⊂ Gp hold.

We can now formulate the following proposition.

Proposition 17. Any p–finely continuous function on Rn can be uniformly
approximated by differences of two positive p–finely continuous and lower semi-
continuous functions.
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Remark 18. The result presented above can be generalized to the case of the
A-fine topology on unweighted Rn that stems from the second order quasilinear
elliptic equations (see, for example, J. Heinonen et al. [10]).

We note that recently a nonlinear potential theory on metric spaces has
been developed. We do not know whether or under what conditions the Luzin–
Menshov property holds for the corresponding fine and metric topologies.

8 Appendix

Let α, β ∈ R and f : P → R. Throughout the proof, the symbol [f < α]
stands for {x ∈ P : f(x) < α} and the symbols [f > α], [α < f < β] are
defined analogically.

Proof of Theorem 1. Assume f is a real ρ–Baire–one and τ–continuous
function on P , M > 1 and k ∈ Z. Recall that Baire-one functions on metric
spaces are characterized as those functions for which all level sets [f > α],
[f < α] are of type Fσ. By the assumptions on f , the set [a < f(x) < b]
is τ -open and simultaneously of type Fσ in ρ for every pair of real numbers
a < b. Since τ has the Luzin–Menshov property there exists a positive bounded
τ–continuous and upper ρ–semicontinuous function wk such that[

k − 1

M
< f <

k + 1

M

]
⊂ [wk > 0] ⊂

[
k − 2

M
< f <

k + 2

M

]
.

By multiplying wk by an appropriate constant we can assume that

0 ≤ wk ≤
1

4
e−k

2

.

Set
u(x) :=

∑
k∈Z

wk(x) and v(x) :=
∑
k∈Z

e
k
M wk(x) .

The sums are finite for every x ∈ P since wk(x) can be strictly positive only
for Mf(x)− 2 < k < Mf(x) + 2.

Thus u, v are τ–continuous and upper ρ–semicontinuous and 0 < u(x) < 1,
0 < v(x) < 1 for every x ∈ P . Moreover

ef(x)−
2
M

∑
k∈Z

wk(x) <
∑
k∈Z

e
k
M wk(x) < ef(x)+

2
M

∑
k∈Z

wk(x)

and so

ef(x)−
2
M <

v(x)

u(x)
< ef(x)+

2
M
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for any x ∈ P . The functions

s(x) := − log u(x) and t(x) := − log v(x)

are positive τ–continuous and lower ρ–semicontinuous and moreover

|f(x)− (s(x)− t(x))| < 2

M

for every x ∈ P . Since M was arbitrary, the assertion easily follows.
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[10] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory
of Degenerate Elliptic Equations, Oxford University Press, 1993.

[11] J. Hejduk, One more difference between measure and category, Tatra Mt.
Math. Publ., 49 (2011), 9–15.

[12] V. Kelar, Topologies generated by porosity and strong porosity, Real Anal.
Exchange, 16 (1990/1991), 255–267.

[13] S. Kempisty, Sur l’approximation des fonctions de première classe, Fund.
Math., 2 (1921), 131–135.
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[15] J. Lukeš, The Lusin-Menchoff property of fine topologies, Comment.
Math. Univ. Carolin., 17 (1977), 609–616.
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