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PARTIALLY ORDERED VECTOR
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Abstract

We prove sandwich, Hahn-Banach, Fenchel duality theorems and
a version of the Moreau-Rockafellar formula for invariant partially or-
dered vector space-valued operators. As consequences and applications,
we give some versions of Farkas and Kuhn-Tucker-type optimization re-
sults and separation theorems, we prove the equivalence of these results
and give a further application to Tarski-type theorems and probability
measures defined on suitable product spaces.

1 Introduction.

The Hahn-Banach theorem is one of the most important and studied in Func-
tional Analysis, and is related with results on extensions of measures and
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334 A. Boccuto

operators, sandwich theorems and separation of convex sets by means of hy-
perplanes. It has several applications in various fields of Mathematics, for ex-
ample Optimization, Convex Analysis, Numerical Analysis, Differential Equa-
tions and Calculus of Variations (see also [1, 15, 16, 18, 32, 44, 46]). Among the
consequences, we recall some Fenchel-type duality theorems, which deal with
the problem of minimizing the dual energy, and is in general easier to handle
than the primal energy. These topics have several applications, for instance in
formulating algorithms to reconstruct images (see also [2, 6, 11, 12, 22, 23]).

Other applications of Hahn-Banach-type theorems deal with Farkas and
Kuhn-Tucker-type theorems, related to optimization problems with suitable
constraints (see also [1, 4, 5, 26, 28, 31, 37, 42, 52, 56]).

These topics are very important also in the development of subdifferential
calculus and related subjects (see for instance [14, 27, 38, 39, 50]).

For a survey about different versions and applications of theorems of this
kind for operators taking values in abstract vector spaces, see e.g. [19, 41].

These topics have several applications also in Measure Theory and Prob-
ability, in particular in stochastic processes (see also [20, 33, 47]). In [33] it
is dealt with different kinds of probabilistic symmetries, exchangeability and
coding results, for random elements invariant under finite or compact groups
(see also the reference therein). In many cases it is advisable to deal with or-
dered vector spaces, since we often consider operators or probability measures
which can depend not only on the considered event, but also on the time and
on the state of knowledge (see also [9, 10, 13] and the references therein).

Another related field is the study of invariant or equivariant linear func-
tionals, invariant measures and amenable (semi)groups (see also [8, 17, 21, 45,
48, 49]). Recent studies about invariance and equivariance and applications
to Machine Learning can be found, for instance, in [24, 30, 35].

Observe that sandwich and extension theorems for Dedekind complete par-
tially ordered vector space-valued operators or measures, invariant with re-
spect to a given semigroup G of transformations, are always valid if and only
if G is amenable. Note that every abelian semigroup is amenable, while the
group of all permutations φ : N→ N which keep fixed all but a finite number
of elements is amenable but not abelian. Moreover, we can see that the group
SO(2,R) of all orthogonal matrices of type 2× 2 with real entries and whose
determinant is equal to one (that is, the group of all rotations of R2) is abelian,
while SO(n,R) is not amenable for every n ≥ 3 (see also [45]).

In the literature, many studies about these topics have been extended to
the context of partially ordered space-valued operators and measures (see also
[9, 13, 19, 41] and the references therein).

Some theorems of this kind for invariant partially order vector space-



Hahn-Banach-Type Theorems and Applications 335

operators were given, for instance, in [7, 8, 21, 29, 48, 49]. In particular,
in [7] and [8] some characterizations of amenable (semi)groups were given,
in terms of these kinds of theorems, in the context of vector lattice-valued
invariant operators and set functions.

In this paper we extend to invariant operators with values in a partially
ordered vector space R earlier results proved in [27, 43, 55, 56, 57] in the
linear case. We use a Hahn-Banach-type theorem given in [21] for invariant
partially ordered vector space-valued operators with respect to amenable semi-
groups of transformations (here, the role of amenability is essential) and we
prove a sandwich theorem in the linear and invariant case. Successively, as
consequences, we give a Hahn-Banach-type theorem, a Fenchel-type duality
theorem and a version of the Moreau-Rockafellar formula in subdifferential cal-
culus. Moreover, as applications, we present Farkas-type results and a saddle
point Kuhn-Tucker-type theorem on convex optimization under suitable given
constraints. Furthermore, we prove that our given theorems are equivalent.
Note that our results can be viewed as characterizations of the amenability of
semigroups, extending previous results proved in [7] and [8], and also as char-
acterizations of the Dedekind completeness of partially ordered vector spaces,
extending earlier results given in [27] and [51]. Finally, as a further appli-
cation, we give a Tarski-type theorem for finitely additive and invariant set
functions, and an example of extensions of vector lattice-valued probability
measures on suitable product spaces. Note that, in our setting, no topological
assumptions are required on the involved space R.

2 Preliminaries.

Let X be a real vector space. An affine combination of elements x1, x2, . . . , xn

of X is any linear combination of the form

n∑
i=1

λixi with λ1, λ2, . . . , λn ∈ R

and

n∑
i=1

λi = 1. An affine manifold of X is a nonempty subset of X, closed

under affine combinations.

If ∅ 6= Z ⊂ X, then the affine hull of Z is the smallest affine manifold of
X which contains Z, and we denote it by spanaff(Z).

A point x0 ∈ Z is an algebraic relative interior point of Z iff for each x ∈
spanaff(Z) there exists λ0 > 0 with (1−λ)x0 +λx ∈ Z for each λ ∈ [−λ0, λ0].
The sets of all algebraic relative interior points of Z is denoted by int(Z).

A nonempty set Z ⊂ X is said to be algebraically expanded iff there exists
at least an element a ∈ int(Z) with a+ λ(b− a) ∈ int(Z) for each b ∈ Z and
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λ ∈]0, 1[.

Given Z ⊂ X, Z 6= ∅, the algebraic hull Za of Z is the set of all points
y ∈ Z such that there exists an element x ∈ Z with x+λ(y−x) ∈ Z for every
λ ∈]0, 1[. We say that Z is algebraically closed iff Z = Za.

A nonempty subset D of any real vector space X is said to be convex iff
λx1 + (1− λ)x2 ∈ D for every x1, x2 ∈ D and λ ∈ [0, 1].

Given any two real vector spaces X, Y , where Y is partially ordered, and
a convex set D ⊂ X, we say that a function U : X → Y is convex on D
iff U(λx1 + (1 − λ)x2) ≤ λU(x1) + (1 − λ)U(x2) for every x1, x2 ∈ D and
λ ∈ [0, 1]. A function U : D → Y is said to be concave iff −U is convex. We
set D(U) = D.

Let G be a semigroup, and let P(G) be the family of all subsets of G. We
say that G is left (resp. right) amenable) iff there exists a finitely additive set
function µ : P(G) → [0, 1] with µ(G) = 1 and µ(h−1(E)) = µ({hg : g ∈ E})
(resp. µ((E)h−1) = µ({gh : g ∈ E}) = µ(E) for every E ⊂ G and g ∈ G.
Such a function µ is called a left (resp. right) G-invariant mean. We say that
G is amenable iff it is both left and right amenable. In general, left and right
amenability are not equivalent, but, if G a group, then they coincide (see also
[25]).

Let G ⊂ XX be a semigroup of (linear) homomorphisms with (gh)(x) =
g(hx) for any g, h ∈ G and x ∈ X, let R be a Dedekind complete partially
ordered vector space, let R+ = {y ∈ R : y ≥ 0} and let lb(G,R) be the space of
all bounded R-valued functions defined on G. Given f ∈ lb(G,R) and h ∈ G,
defined by hf(g) = f(hg) (resp. fh(g) = f(gh)), g ∈ G. A left (resp. right)-
G-invariant R-functional is a linear positive function m : L∞(G) → R such
that m(hf) = m(f) (resp. m(fh) = m(f)) for all f ∈ lb(G,R) and h ∈ G, and
m(y) = y for each y ∈ R, where y is the constant function which associates
the value y to every element g ∈ G.

A set ∅ 6= Z ⊂ X is G-invariant iff gz ∈ Z whenever z ∈ Z. A function L :
X → R is G-subinvariant (resp. G-superinvariant, G-invariant) iff L(gx) ≤
L(x) (resp. L(gx) ≥ L(x), L(gx) = L(x)) for every g ∈ G and x ∈ X.

We denote by L(X,R) and L(R,R) the sets of all linear functions from X
to R and from R to R, respectively. We indicate with Linv(X,R) the set of
all linear G-invariant functions L ∈ L(X,R).

A nonempty set A ⊂ X is called a cone with vertex x0 ∈ X iff λ(A−x0) ⊂
A − x0 for every positive real number λ. Sometimes we associate with X a
G-invariant cone X+ ⊂ X with vertex 0, and the corresponding order on X
defined by x1 ≥ x2 if and only if x1 − x2 ∈ X+. In this context we always
require that gx1 ≥ gx2 whenever g ∈ G and x1 ≥ x2, without saying it
explicitly. If X has such a cone X+, then we say that X+ has property K).
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A linear function L : X → R is said to be positive iff L(x) ≥ 0 whenever
x ≥ 0. We denote by L+,inv(X,R) the set of all positive functions belonging
to Linv(X,R).

Given 0 6≡ L ∈ L(X,R), 0 6≡ L′ ∈ L(X,R) and u0 in R, set

H = {(x, y) ∈ X ×R : L(x) + L′(y) = u0}. (1)

It is not difficult to check that the set H defined in (1) is empty or an affine
manifold of X ×R (see also [43, §1]).

If A, B are two nonempty subsets of X × R and H 6= ∅ is as in (1), then
we say that H separates A and B iff A ⊂ H− and B ⊂ H+, where

H+ = {(x, y) ∈ X ×R : L(x) + L′(y) ≤ u0}, and

H− = {(x, y) ∈ X ×R : L(x) + L′(y) ≥ u0}.

The projection of X ×R onto X is the function PX : X ×R→ X defined by
PX(x, y) = x for every (x, y) ∈ X ×R→ X. Moreover, for any nonempty set
A ⊂ X ×R, put

PX(A) = {x ∈ X : there exists y ∈ R with (x, y) ∈ A}.

We always suppose that G is a right amenable semigroup. Moreover, we often
make the following assumption.

H) Suppose that D(U) and D(V ) are nonempty convex and G-invariant sub-
sets of X such that

0 ∈ int(D(U)−D(V )) (2)

for any two convex and G-subinvariant functions U : D(U) → R and
V : D(V )→ R.

Put PU,V = D(U) ∩D(V ). Note that PU,V 6= ∅, thanks to (2).
The G-invariant conjugate (or conjugate) of U is the R-valued function U c

defined as

U c(L) =
∨
{L(x)− U(x) : x ∈ D(U)}, L ∈ D(U c), (3)

where

D(U c) = {L ∈ Linv(X,R) :
∨
{L(x)− U(x) : x ∈ D(U)} exists in R}, (4)

provided that D(U c) 6= ∅. If x0 ∈ D(U), then we call G-invariant subdifferen-
tial (or subdifferential) at x0 the set ∂invU(x0) defined as

∂invU(x0) = {L ∈ Linv(X,R) : L(x)−L(x0) ≤ U(x)−U(x0) for any x ∈ D(U)}.
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Any element L ∈ ∂invU(x0) will be called (G-invariant) subgradient of U at
x0.

Given a nonempty set A ⊂ X and x0 ∈ X, we call G-invariant polar (or
polar) of A at x0 the set

A∗inv(x0) := {L ∈ Linv(X,R) : L(x)− L(x0) ≤ 0 for all x ∈ A}.

In formulating our version of the duality theorem, we study the following
problems (see also [55]).

Problem I) Find r =
∧
{U(x) + V (x) : x ∈ PU,V } in R.

Problem II) Find s =
∨
{−U c(L)− V c(−L) : L ∈ D(U c) ∩D(V c)} inR, pro-

vided that D(U c) ∩D(V c) 6= ∅.

3 The main results.

We begin with the following sandwich theorem in the setting of invariance
with respect to amenable semigroups of transformations and partially ordered
vector spaces, extending [57, Sandwich Theorem 3.1]. Our technique is based
on the existence of linear operators, not necessarily invariant, due to the cor-
responding classical results, and of suitable invariant partially ordered vector
space-valued means, from which it is possible to construct invariant linear
functionals.

Theorem 1. Let U : D(U) → R and V : D(V ) → R satisfy assumption
H). Suppose that U(x) + V (x) ≥ 0 for all x ∈ PU,V . Then, there exist
L ∈ Linv(X,R) and u0 ∈ R with L(x) − u0 ≤ U(x) for every x ∈ D(U) and
L(x)− u0 ≥ −V (x) for each x ∈ D(V ).

Proof. By [57, Sandwich Theorem 3.1], there exist an element u0 ∈ R and a
function L∗ ∈ L(X,R) (not necessarily G-invariant) with L∗(x) − u0 ≤ U(x)
for every x ∈ D(U) and L∗(x) − u0 ≥ −V (x) for each x ∈ D(V ). Pick
arbitrarily x ∈ X, and define fx ∈ lb(G,R) by fx(g) = L∗(gx), g ∈ G. As
R is Dedekind complete and G is right amenable, by [21, Théorème 2] there
exists a right G-invariant R-functional m : lb(G,R) → R. Set L(x) = m(fx),
x ∈ X. Since fhx(g) = L∗(ghx) = fx(gh) = (fx)h(g) for any g ∈ G, then
L(hx) = m(fhx) = m((fx)h) = m(fx) = L(x) for every h ∈ G, and hence, L is
G-invariant. As D(U) and D(V ) are G-invariant, U and V are G-subinvariant,
L∗(x) ≤ u0 + U(x) for every x ∈ D(U) and L∗(x) ≥ u0 − V (x) for each
x ∈ D(V ), then we obtain

fx(g) = L∗(gx) ≤ u0 + U(gx) ≤ u0 + U(x)
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for every x ∈ D(U) and g ∈ G, and hence,

L(x) = m(fx) ≤ m(u0 + U(x)) = m(u0) +m(U(x)) = u0 + U(x)

for any x ∈ D(U). Analogously it is possible to prove that L(x) ≥ u0 − V (x)
for all x ∈ D(V ). Moreover, if λ1, λ2 ∈ R, x1, x2 ∈ X and g ∈ G, then

fλ1x1+λ2x2
(g) = L∗(g(λ1x1 + λ2x2))

= L∗(λ1gx1 + λ2gx2)

= λ1L
∗(gx1) + λ2L

∗(gx2)

= λ1fx1
(g) + λ2fx2

(g),

and therefore

L(λ1x1 + λ2x2) = m(fλ1x1+λ2x2
)

= λ1m(fx1) + λ2m(fx2)

= λ1L(x1) + λ2L(x2).

Thus, L ∈ Linv(X,R). This completes the proof.

Now we present the following Fenchel-type duality theorem, which extends
[55, Theorem 2] to invariance.

Theorem 2. Under the assumption H), suppose that

r =
∧
{U(x) + V (x) : x ∈ PU,V } (5)

exists in R. Then, Problem II has a solution L0, and −U c(L0)−V c(−L0) = r.

Proof. Let Ũ(x) = U(x)−r, where r is as in (5). The convexity of Ũ follows

from the convexity of U . Moreover, PŨ,V = D(Ũ) ∩D(V ) = D(U) ∩D(V ) =

PU,V . For any x ∈ PU,V it is r ≤ U(x) + V (x), and hence, Ũ(x) + V (x) ≥ 0.

Thus, Ũ and V satisfy the hypotheses of Theorem 1. So, there exist L0 ∈
Linv(X,R) and u0 ∈ R with L0(x) − u0 ≤ Ũ(x) = U(x) − r for all x ∈ D(U)
and L0(x′)− u0 ≥ −V (x′) for all x′ ∈ D(V ). From this we deduce

L0(x− x′) = L0(x)− L0(x′) ≤ u0 + U(x)− r − u0 + V (x′) (6)

and hence,

r + L0(x)− U(x) ≤ L0(x′) + V (x′) (7)
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for each x ∈ D(U) and x′ ∈ D(V ). Thus,

r +
∨
{L0(x)− U(x) : x ∈ D(U)} ≤

∧
{L0(x) + V (x) : x ∈ D(V )}

= −
∨
{−L0(x)− V (x) : x ∈ D(V )},

and hence, L0 ∈ D(U c) ∩D(V c) and r ≤ −U c(L0)− V c(−L0). Furthermore,
observe that

−U c(L)− V c(−L) ≤ −L(x) + U(x) + L(x) + V (x) = U(x) + V (x)

for every x ∈ PU,V and L ∈ D(U c) ∩D(V c). Taking the infimum as x ∈ PU,V
and the supremum as L ∈ D(U c) ∩D(V c), we obtain

r ≤ −U c(L0)−V c(−L0) ≤ s =
∨
{−U c(L)−V c(−L) : L ∈ D(U c)∩D(V c)} ≤ r.

Thus, r = −U c(L0)− V c(−L0) = s, and the supremum in Problem II is a
maximum, assumed by L0. This concludes the proof.

Remark 3. In general, the converse of Theorem 2 is not true (see also [55,
§2]).

Now we characterize the solutions of Problem I in terms of G-invariant
subgradients, and extend [55, Theorem 3] to invariance.

Theorem 4. Under the assumption H), let x0 ∈ PU,V be a solution of Problem
I. Then,

∂invU(x0) ∩ (−∂invV (x0)) 6= ∅.

Proof. Let x0 be as in the hypothesis. By Theorem 2, Problem II has a
solution L0. Thus, we find an L0 ∈ Linv(X,R) with

U(x0) + V (x0) = −U c(L0)− V c(−L0). (8)

By definition of the conjugate function, from (8) we get

U(x0) + V (x0) ≤ U(x) + V (x′)− L0(x) + L0(x′) (9)

for every x ∈ D(U) and x′ ∈ D(V ). From (9) used with x = x0 and x′ = x0

we obtain −L0 ∈ ∂invV (x0) and L0 ∈ ∂invU(x0), respectively.
Conversely, let L ∈ ∂invU(x0)∩ (−∂invV (x0)). Then, for every x ∈ PU,V it

is
U(x)− U(x0) ≥ L(x)− L(x0) ≥ V (x0)− V (x)

and hence, U(x) + V (x) ≥ U(x0) + V (x0). Thus, x0 is a solution of Problem
I.
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We now turn to the following versions of the Hahn-Banach theorem, ex-
tending [57, Theorem 2.1] to invariance.

Theorem 5. Let U : D(U) → R be convex and G-subinvariant, let D(U) be
G-invariant, assume that U(0) = 0 and let Z ⊂ X be a G-invariant subspace.
Suppose that 0 ∈ int(D(U)−Z). Let T0 ∈ Linv(Z,R) be such that T0(z) ≤ U(z)
for every z ∈ D(U) ∩ Z.

Then, T0 has an extension T ∈ Linv(X,R) such that T (x) ≤ U(x) for each
x ∈ D(U).

Proof. Let Z, T0, U be as in the hypotheses of Theorem 5. Put V = −T0.
Then, D(V ) = D(T0) = Z. Since T0(z) ≤ U(z) for each z ∈ D(U) ∩ Z and
T0(0) = U(0) = 0, we have

0 = U(0) + V (0) = min{U(x) + V (x) : x ∈ D(U) ∩ Z}.

By Theorem 4 there exists T ∈ ∂invU(x0) ∩ (−∂invV (x0)). It is

T (x) = T (x)− T (0) ≤ U(x)− U(0) = U(x)

for all x ∈ D(U) and

−T (z) = −T (z) + T (0) ≤ −T0(z) + T0(0) = −T0(z), (10)

namely

T (z) ≥ T0(z) (11)

for all z ∈ Z. Taking in (10) −z instead of z, we obtain

T (z) = −T (−z) ≤ −T0(−z) = T0(z) (12)

for any z ∈ Z. From (11) and (12) it follows that T (z) = T0(z) for all z ∈ Z.
Thus, we get the assertion.

Theorem 6. Let U and D(U) be as in Theorem 5. If 0 ∈ int(D(U)) and
U(0) = 0, then there exists T ∈ Linv(X,R) with T (x) ≤ U(x) for each x ∈
D(U).

Proof. It is an immediate consequence of Theorem 5, taking Z = {0}.

Now we extend to invariance [57, Corollary 2.6].

Theorem 7. Let U and D(U) be as in Theorem 5. If 0 ∈ int(D(U)) and
U(0) ≥ 0, then there exists T ∈ Linv(X,R) such that T (x) ≤ U(x) for all
x ∈ D(U).
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Proof. Set Ũ(x) = U(x)− U(0). Since Ũ(0) = 0, Ũ satisfies the hypotheses

of Theorem 6. So, there exists T ∈ Linv(X,R) with T (x) ≤ Ũ(x) ≤ U(x) for
every x ∈ D(U), since U(0) ≥ 0. This ends the proof.

Now we give the following version of the Moreau-Rockafellar formula, ex-
tending [55, Theorem 4] to G-invariant subdifferentials (see also [27, 38, 39]).

Theorem 8. Under the assumption H), let x0 ∈ PU,V and assume that
∂invU(x0) 6= ∅ and ∂invV (x0) 6= ∅. Then,

∂inv(U + V )(x0) = ∂inv(U)(x0) + ∂inv(V )(x0). (13)

Proof. Pick arbitrarily L′ ∈ ∂inv(U + V )(x0), and set V ′(x) = V (x)−L′(x),
x ∈ D(V ). It is not difficult to check that V ′ is convex. Moreover, by definition
of subdifferential, it is

L′(x)− L′(x0) ≤ (U + V )(x)− (U + V )(x0),

and hence,

U(x0) + V (x0)− L′(x0) ≤ U(x) + V (x)− L′(x) = U(x) + V ′(x) (14)

for every x ∈ D(U) ∩D(V ).
Furthermore, it is

(V ′)
c
(−L) =

∨
{L′(x)− L(x)− V (x) : x ∈ D(V )} = V c(L′ − L)

for every L ∈ D((V ′)
c
) = D(V c)− L′.

Thanks to (14) and Theorem 2, there exists L0 ∈ Linv(X,R) with

U(x0) + V (x0)− L′(x0) = −U c(L0)− (V ′)
c
(−L0) = −U c(L0)− V c(L′ − L0),

namely

U c(L0) + V c(L′ − L0) = L0(x0)− U(x0) + (L′ − L0)(x0)− V (x0). (15)

By definition of the conjugate function, we have

U c(L0) ≥ L0(x0)− U(x0), V c(L′ − L0) ≥ L′(x0)− L0(x0)− V (x0). (16)

From (15) and (16) it follows that

U c(L0) = L0(x0)− U(x0), V c(L′ − L0) = L′(x0)− L0(x0)− V (x0),
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and hence,

L0(x)− U(x) ≤ L0(x0)− U(x0) for all x ∈ D(U),

L′(x)− L0(x)− V (x) ≤ L′(x0)− L0(x0)− V (x0) for all x ∈ D(V ).

Thus, L0 ∈ ∂inv(U)(x0), L′−L0 ∈ ∂inv(V )(x0), and hence, L′ ∈ ∂inv(U)(x0) +
∂inv(V )(x0). By arbitrariness of L′, we deduce

∂inv(U + V )(x0) ⊂ ∂inv(U)(x0) + ∂inv(V )(x0).

The proof of the converse inclusion is straightforward.

A consequence of Theorem 8 is the following:

Theorem 9. Let A1, A2 ⊂ X be convex G-invariant sets with 0 ∈ int(A1 −
A2). Then,

(A1)
∗
inv(x0) + (A2)

∗
inv(x0) = (A1 ∩A2)

∗
inv(x0)

for every x0 ∈ A1 ∩A2.

Proof. Let A1, A2 be as in the hypothesis, let A0 = A1 ∩ A2, and let
NAj

(x) = 0 for each x ∈ Aj , j = 0, 1, 2. It is not difficult to see that

∂invNAj
(x) = (Aj)

∗
inv(x) for each x ∈ Aj , j = 0, 1, 2, (17)

and

NA0
(x) = NA1

(x) +NA2
(x) for all x ∈ A0. (18)

From Theorem 8, (17) and (18) we get

(A1)
∗
inv(x0) + (A2)

∗
inv(x0) = ∂invNA1

(x0) + ∂invNA2
(x0)

= ∂inv(NA1
+NA2

)(x0)

= ∂invNA0
(x0)

= (A0)
∗
inv(x0).

So, the assertion follows.

Now we extend [57, Corollary 3.11] to invariance, proving the following
Krein-type monotone extension theorem.

Theorem 10. Let X+ ⊂ X be a G-invariant cone satisfying property K),
let Z ⊂ X be a subspace with the order generated by Z ∩ X+ such that 0 ∈
int(X+ − Z), and let L0 ∈ L+,inv(Z,R). Then, there exists L ∈ L+,inv(Z,R)
with L(z) = L0(z) for all z ∈ Z.
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Proof. Let X+, Z and L0 be as in the hypotheses of Theorem 10. By [36,
Theorem 7.3.3], there exists a subspace Z ′ of X such that every x ∈ X can be
uniquely expressed as x = z+ z′, where z ∈ Z, z′ ∈ Z ′. The space Z ′ is called
algebraic complement of Z.

Let us define L1 : X → R by L1(x) = −L0(z), x ∈ X. Since L0 ∈
L+,inv(Z,R), then L1 ∈ (X+ ∩ Z)∗(0). By applying Theorem 9 with A1 =+,
A2 = Z, x0 = 0, we find L, L′ ∈ Linv(X,R) with L1(x) = L(x) + L′(x) for all
x ∈ X, L′(x) ≤ 0 for each x ∈ X+ and L(z) ≤ 0 for any z ∈ Z. In particular,
we get −L(z) = L(−z) ≤ 0, and hence, L(z) = 0, for all z ∈ Z. If L∗ = −L′,
then L∗ ∈ L+,inv(X,R) and L∗(z) = L0(z) for every z ∈ Z.

4 Applications.

In this section, as consequences and applications of the results previously
given, we present some Farkas and Kuhn-Tucker-type theorems for problems
of convex optimization for functions, taking values in partially ordered vector
spaces. Successively, we show the equivalence of the given theorems. Finally,
we give a further application, proving a Tarski-type extension theorem and
considering probability measures defined on suitable product spaces.

With the same notations as above, let X+ have property K), let D0, D1,
D2, . . . , Dn be nonempty convex and G-invariant subsets of X, and let U :
D(U) = D0 → R be convex. For i = 1, 2, . . . , n, consider convex functions

Ui : D(Ui) = Di → X. Suppose that D =

n⋂
i=0

Di 6= ∅. Moreover, assume that

U is G-subinvariant and Ui is G-equivariant, that is Ui(gx) = g(Ui(x)) for all
g ∈ G and x ∈ D.

Put W = Xn, K = (X+)n. The set K induces on W the “componentwise”
order, defined by y = (y1, y2, . . . , yn) ≥ y′ = (y′1, y

′
2, . . . , y

′
n) iff yi ≥ y′i for all

i = 1, 2, . . . , n. For every g ∈ G and w ∈ W , w = (y1, y2, . . . , yn), put
gw = (gy1, gy2, . . . , gyn). Set

h(x) = (U1(x), U2(x), . . . , Un(x)), x ∈ D.

We say that h is G-equivariant iff h(gx) = g(hx) whenever g ∈ G and x ∈ D.
Note that this property is equivalent to the G-equivariance of the Ui’s, i =
1, 2, . . . , n.

Now we consider the following minimization problem.

Problem III) Find x0 ∈ D such that U(x0) = min{U(x) : x ∈ D, Ui(x) ≤ 0,
i = 1, 2, . . . , n}.
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The next Farkas-type theorems extend [40, Theorem 1.1] and [56, Theorem
3] to invariance.

Theorem 11. Assume that 0 ∈ int(h(D) + K), and suppose that, for each
x ∈ D,

U(x) ≥ 0 if, for all i = 1, 2, . . . , n, it is Ui(x) ≤ 0. (19)

Then, there exist Ti ∈ L+,inv(X,R), i = 1, 2, . . . , n with

U(x) +

n∑
i=1

Ti(Ui(x)) ≥ 0 for each x ∈ D. (20)

Proof. Let Y = h(D) +K. We claim that

11.1) the set Y is convex.

For i = 1, 2, let x(i) ∈ D, y(i) ∈ R, be with y(i) − h(x(i)) ≥ 0. Choose
arbitrarily λ ∈ [0, 1], and set xλ = λx(1) +(1−λ)x(2), yλ = λ y(1) +(1−
λ) y(2). Then, xλ ∈ D (since D is convex), yλ ∈ R. Moreover, taking
into account the convexity of h (which follows from the convexity of the
Ui’s), we have

yλ ≥ λh(x(1)) + (1− λ)h(x(2)) ≥ h(xλ),

getting the claim.

Now we prove that

11.2) the set Y is G-invariant.

Pick arbitrarily w ∈ Y and g ∈ G. We claim that gw ∈ Y. Indeed, if w =
h(x) + k, where x and k are suitable elements of D and K, respectively,
then gw = g(h(x)) + gk = h(gx) + gk, since h is G-equivariant. As D
and K are G-invariant, then gx ∈ D and gk ∈ K (indeed, the elements
of G are increasing homomorphisms). This yields 11.2).

Now, put

A = {(w, y) ∈W ×R : there exists x0 ∈ D with w ≥ h(x0) and y ≥ U(x0)};

B =
⋃
λ≥0

λA. (21)

We prove that
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11.3) The sets A and B defined in (21) are convex, and

(w1 + w2, y1 + y2) ∈ B whenever (w1, y1) ∈ B and (w2, y2) ∈ B. (22)

Choose arbitrarily (w1, y1), (w2, y2) ∈ A and λ ∈ [0, 1], and let xi ∈ D
satisfy wi ≥ h(xi) and y ≥ U(xi), i = 1, 2. Since h is convex, we have

h(λx1 + (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2) ≤ λw1 + (1− λ)w2,

and similarly

U(λx1 + (1− λ)x2) ≤ λ y1 + (1− λ) y2.

Thus, A is convex. From this, since B is a cone with vertex 0, it is not
difficult to deduce the convexity of B and formula (22).

Now we construct a convex and G-subinvariant function p : Y → R, and
prove that p satisfies the hypotheses of Theorem 6.

For every w ∈ Y, set

Sw = {y ∈ R : (w, y) ∈ B}.

We claim that

11.4)

Sw 6= ∅ for every w ∈ Y. (23)

Fix arbitrarily w ∈ Y. Since 0 ∈ int(Y), there exists a positive real
number λ0 with λw ∈ Y whenever |λ| ≤ λ0. In particular, λ0 w ∈ Y,
and hence, there exists x0 ∈ D with

0 ≤ λ0w − h(x0) = λ0

(
w − 1

λ0
h(x0)

)
.

As (λ0 w,U(x0)) ∈ A, then(
w,

1

λ0
U(x0)

)
=

1

λ0
(λ0 w,U(x0)) ∈ B.

Thus, taking y =
1

λ0
h(x0), we get (23).

Now we claim that
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11.5)
Sw1 + Sw2 ⊂ Sw1+w2 whenever w1, w2 ∈ Y. (24)

Choose arbitrarily y1 ∈ Sw1 , y2 ∈ Sw2 . Then, (w1, y1) ∈ B, (w2, y2) ∈ B,
and hence, (w1 + w2, y1 + y2) ∈ B, thanks to (22). Therefore, y1 + y2 ∈
Sw1+w2

, getting (24).

Now we prove that

11.6) for each w ∈ Y, Sw is (order) bounded from below.

Pick arbitrarily y ∈ Sw. As S−w 6= ∅, then there exists y0 ∈ R such that
−y0 ∈ S−w. Then,

y − y0 ∈ Sw + S−w ⊂ S0 = {z ∈ R : (0, z) ∈ B}, (25)

thanks to (24). Hence, there exists x0 ∈ D such that h(x0) ≤ 0, z ≥
U(x0). From this, (19) and (25) we deduce U(x0) = 0, and a fortiori
y − y0 ≥ 0. So, the element y0 is a lower (order) bound for the set Sw,
getting 11.6).

Note that a similar argument shows that

S0 ⊂ R+. (26)

Indeed, if (0, z) ∈ B, then either z = 0 or there exists λ > 0 with
(0, λ z) ∈ A. Hence, λ z ≥ U(x0) = 0. This yields (26).

Thus, it makes sense to define a function p : Y → R, by

p(w) =
∧
Sw, w ∈ Y. (27)

Now, we claim that

11.7)
p(0) = 0. (28)

If S0 = {0}, this is straightforward. Otherwise, there exists y0 ∈ S0,
y0 6= 0. By (26), y0 is (strictly) positive. So, (0, y0) ∈ B, and hence,
(0, λ y0) ∈ B for each λ > 0. Thus, taking into account (26), it is

0 ≤ p(0) =
∧
S0 =

∧
{y ∈ R : (0, y) ∈ B} ≤

≤
∧
{λ y0 : λ > 0} = 0, (29)

getting (28).

Now we prove that
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11.8)
p(w1 + w2) ≤ p(w1) + p(w2) for every w1, w2 ∈ Y. (30)

Fix arbitrarily w1, w2 ∈ Y. From (27) we get p(w1 + w2) ≤ y1 + y2

whenever y1 ∈ Sw1
and y2 ∈ Sw2

, and thus, by arbitrariness of y1 ∈ Sw1
,

p(w1+w2) ≤ p(w1)+y2 for every y2 ∈ Sw2 . By arbitrariness of y2 ∈ Sw2 ,
we deduce (30).

Now we claim that

11.9)
p(λw) = λ p(w) for all w ∈ Y and λ > 0. (31)

Indeed, since B is a cone with vertex 0, it is

p(λw) =
∧
Sλw

=
∧
{y ∈ R : (λw, y) ∈ B}

= λ
∧{

z ∈ R :
(
w,

z

λ

)
∈ B

}
(32)

= λ
∧{

v ∈ R : (w, v) ∈ B
}

= λ
∧
Sw = λ p(w)

for every w ∈ Y and λ > 0.

Thus, from (30) and (31) we deduce that p is convex.

Now we claim that

11.10)
11.10) Sw ⊂ Sgw for all w ∈ Y. (33)

Indeed, if y ∈ Sw, then (w, y) ∈ B, and hence, there exist a positive real
number λ0 and an element x0 ∈ D with

1

λ0
w ≥ h(x0) and

1

λ0
y ≥ U(x0). (34)

Choose arbitrarily g ∈ G. By applying g in (34), since the elements of
G are increasing homomorphisms, D is G-invariant, U is G-subinvariant
and h is G-equivariant, we obtain

1

λ0
gw ≥ h(gx0) and

1

λ0
y ≥ U(gx0). (35)

Thus, (gw, y) ∈ B, and hence, y ∈ Sgw, getting (33).
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From (33) we deduce that p(gw) =
∧
Sgw ≤

∧
Sw = p(w) for each

w ∈ Y. Hence, p is G-subinvariant.

By Theorem 6 used with U = p, D(U) = Y, X = W , there exists a
function T ∈ Linv(W,R) with

−T (w) ≤ p(w) for every w ∈ Y. (36)

Now we prove (20). Pick arbitrarily x ∈ D and k ∈ K, namely k =
(c1, c2, . . . , cn) with ci ≥ 0 for each i = 1, . . . , n. By definition of A, we
get (h(x) + k, U(x)) ∈ A ⊂ B, and hence, U(x) ∈ Sh(x)+k. By definition
of Sh(x)+k, it is f(x)− p(h(x) + k) ≥ 0, and a fortiori

U(x) + T (h(x) + k) ≥ 0, (37)

thanks to (36). For every i = 1, 2, . . . , n and w = (w1, w2, . . . , wn), let
Ti(wi) = T (0, 0, . . . , wi, 0, . . . , 0), where wi is at the i-th place. Note that
G-invariance of the Ti’s follows from G-invariance of T . By linearity of
T , it is

T (h(x) + k) =

n∑
i=1

Ti(Ui(x) + ci) =

n∑
i=1

(Ti(Ui(x)) + Ti(ci)). (38)

From (37) and (38) we deduce

U(x) +

n∑
i=1

(Ti(Ui(x)) + Ti(ci)) ≥ 0 for every x ∈ D. (39)

From (39), taking ci = 0 for every i = 1, 2, . . . , n, we obtain (20).

Finally, we prove that

11.11) Ti is positive, that is Ti(ai) ≥ 0 whenever ai ∈ X, ai ≥ 0, for every
i = 1, . . . , n.

Pick arbitrarily x ∈ X, i ∈ {1, . . . , n} and ν ∈ N. If in (39) we take
ci = ν ai and cj = 0 whenever j 6= i, then we get

ν(Ti(ai)) = Ti(ν ai) ≥ −
n∑
i=1

Ti(Ui(x))− U(x), (40)

that is

Ti(ai) ≥
1

ν

(
−

n∑
i=1

Ti(Ui(x))− U(x)
)
. (41)
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By arbitrariness of ν, taking into account Dedekind completeness of R,
from (41) we get

Ti(ai) ≥
∨
ν∈N

[1

ν

(
−

n∑
i=1

Ti(Ui(x))− U(x)
)]

= 0,

since, thanks to (20), it is

n∑
i=1

Ti(Ui(x)) + U(x) ≥ 0.

Thus, we get 11.11). This ends the proof.

The next result is a consequence of Theorem 11, and extends [40, Theorem
3.1] and [56, Corollary of Theorem 3] to invariance.

Theorem 12. Let Z ⊂ X be a G-invariant subspace, let L ∈ Linv(Z,R), let
Fi ∈ L(Z,X), i = 1, 2, . . . , n be G-equivariant linear functions, let b ∈ R, and
let a = (a1, a2, . . . , an) be with ai ∈ X, i = 1, 2, . . . , n. Assume that

12.1) 0 ∈ int(a− F (Z) +K).

Moreover, suppose that, for each x ∈ Z, it is

12.2)
L(x) ≥ b whenever Fi(x) ≥ ai for all i = 1, 2, . . . , n. (42)

Then, there exist Ti ∈ L+,inv(X,R), i = 1, 2, . . . , n with

L(x) =

n∑
i=1

Ti(Fi(x)) for each x ∈ Z and

n∑
i=1

Ti(ai) ≥ b. (43)

Proof. For every x ∈ Z, let

U(x) = L(x)− b, Ui(x) = ai − Fi(x), i = 1, . . . , n, a = (a1, a2, . . . , an),

F (x) = (F1(x), F2(x), . . . , Fn(x)),

h(x) = (U1(x), U2(x), . . . , Un(x)) = a− F (x).

By 12.1), 0 ∈ int(h(Z) + K). Moreover, by 12.2), we get U(x) ≥ 0, for each
x ∈ Z such that Ui(x) ≤ 0 for all i = 1, 2, . . . , n. By Theorem 11, there exist
Ti ∈ L+,inv(X,R), i = 1, 2, . . . , n with

U(x) +

n∑
i=1

Ti(Ui(x)) ≥ 0 for each x ∈ Z,
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namely

L(x) +

n∑
i=1

Ti(−Fi(x)) ≥ b−
n∑
i=1

Ti(ai) for any x ∈ Z. (44)

If we choose x = 0 in (44), then we have

b−
n∑
i=1

Ti(ai) ≤ 0. (45)

Pick arbitrarily x ∈ Z and ν ∈ N. It is

ν
(
L(x) +

n∑
i=1

Ti(−Fi(x))
)

= (L(νx) +
n∑
i=1

Ti(−Fi(νx)) ≥ b−
n∑
i=1

Ti(ai).

From this we deduce

L(x) +

n∑
i=1

Ti(−Fi(x)) ≥ 1

ν

(
b−

n∑
i=1

Ti(ai)
)

for any x ∈ Z. (46)

By arbitrariness of ν and taking into account (45), from (46) we obtain

L(x) +

n∑
i=1

Ti(−Fi(x)) ≥
∨
ν∈N

[1

ν

(
b−

n∑
i=1

Ti(ai)
)]

= 0 for every x ∈ Z,

that is (43). This completes the proof.

Another consequence of Theorem 11 is the following Kuhn-Tucker-type
condition for the existence of saddle points for Problem III, which extends
[56, Theorem 5] to invariance.

Theorem 13. Under the same hypotheses as in Theorem 11 , if x0 is a
solution of Problem III, then there exist T 0

i ∈ L+,inv(X,R), i = 1, 2, . . . , n
with

U(x0) +

n∑
i=1

Ti(Ui(x0)) ≤ U(x0) +

n∑
i=1

T 0
i (Ui(x0)) ≤ U(x) +

n∑
i=1

T 0
i (Ui(x))

for every x ∈ D and Ti ∈ L+,inv(X,R).

Proof. Let x0 be a solution of Problem III. Set U ′(x) = U(x) − U(x0),
x ∈ D. It is not difficult to see that U ′ and Ui, i = 1, 2, . . . , n, satisfy (19),
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and thus also (20), thanks to Theorem 11. Hence there exist T 0
1 , T

0
2 , . . . T

0
n ∈

L+,inv(X,R) with

n∑
i=1

T 0
i (Ui(x)) + U ′(x) ≥ 0 (47)

for every x ∈ D. Taking x = x0 in (47), we obtain

n∑
i=1

T 0
i (Ui(x0)) ≥ 0. (48)

Since Ui(x0) ≤ 0 and T 0
i are positive for every i = 1, 2, . . . , n, from (48) it

follows that
n∑
i=1

T 0
i (Ui(x0)) = 0. (49)

Moreover, for each Ti ∈ L+,inv(X,R), i = 1, 2, . . . , n, we get

U(x0) +

n∑
i=1

Ti(Ui(x0)) ≤ U(x0) = U(x0) +

n∑
i=1

T 0
i (Ui(x0)). (50)

From (47) and (49) it follows that

0 ≤
n∑
i=1

T 0
i (Ui(x))−

n∑
i=1

T 0
i (Ui(x0)) + U(x)− U(x0),

that is

U(x0) +

n∑
i=1

T 0
i (Ui(x0)) ≤ U(x) +

n∑
i=1

T 0
i (Ui(x)). (51)

Thus, the assertion follows from (50) and (51).

Remark 14. (a) Observe that, arguing similarly as in the proof of Theorem 11
and [43, Theorem 3 (1)], it is possible to see that, when Y is also algebraically
expanded, Theorem 11 holds even if we require the convexity of B and the
hypothesis that (gx, y) ∈ B whenever (x, y) ∈ B and g ∈ G, instead of the
corresponding properties for the set A. Thus, it is possible to include in our
setting even some cases of non-convex optimization (see also [43, Remark]).

(b) Note that, when X+ is algebraically closed and int(X+) 6= ∅, the
converse of Theorem 13 holds, and follows directly from its corresponding
version without invariance (see also [36, §17.5, (2)], [43, Theorem 3 (2)], [56,
Theorem 1 and following Remark]).
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The next result is a consequence of Theorem 12.

Theorem 15. Let X+ ⊂ X be a G-invariant cone satisfying property K),
let Z ⊂ X be a G-invariant subspace, let T1 ∈ L(Z,X) be a G-equivariant
function and let T2 ∈ Linv(Z,R). Assume that

0 ∈ int(−T1(Z) +X+), (52)

and

T2(x) ≥ 0 whenever x belongs to Z and T1(x) ≤ 0. (53)

Then there exists T0 ∈ L+,inv(X,R) with

T0(T1(x)) + T2(x) = 0 for all x ∈ Z. (54)

Proof. By virtue of (52) and Theorem 12 used with n = 1, F = −T1, L = T2,
a = 0, b = 0, there exists T0 ∈ L+,inv(X,R) such that

T2(x) = T0(−T1(x)) for each x ∈ Z,

that is (54). This ends the proof.

Now, using Theorem 6, we prove the existence of affine manifolds, separat-
ing two nonempty sets of a product space in the setting of partially ordered
vector spaces. We extend [34, Theorem 4.1] and [43, Theorem 1] to invariance.

Theorem 16. Let A, B be two nonempty subsets of X ×R such that A−B
is convex. Assume that

(gx, y) ∈ A−B whenever (x, y) ∈ A−B and g ∈ G. (55)

Suppose that

0 ∈ int(PX(A−B)) (56)

and

y1 ≥ y2 whenever (x, y1) ∈ A and (x, y2) ∈ B. (57)

Then there exist L ∈ Linv(X,R) and u0 ∈ R such that the affine manifold

H = {(x, y) ∈ X ×R : L(x)− y = u0} (58)

separates A and B.
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Proof. We begin with proving that

16.1) the set PX(A−B) is convex.

Let x1, x2 ∈ PX(A − B) and λ ∈ [0, 1]. By definition of PX(A − B),
there exist y1, y2 ∈ R with (x1, y1), (x2, y2) ∈ A − B. Since A − B is
convex, we get

(λx1 + (1− λ)x2, λ y1 + (1− λ) y2) ∈ A−B. (59)

Hence, λx1 + (1− λ)x2 ∈ PX(A−B), getting 16.1).

Now we claim that

16.2) the set PX(A−B) is G-invariant.

Let x ∈ PX(A − B) and g ∈ G. There exists y ∈ R such that (x, y) ∈
A−B. By (55), (gx, gy) ∈ A−B, and hence, gx ∈ PX(A−B). So, we
get the claim.

Now, let

C =
⋃
λ≥0

λ (A−B). (60)

Note that

16.3) the set C defined in (60) is convex, and

(x1 + x2, y1 + y2) ∈ C whenever (x1, y1) ∈ C and (x2, y2) ∈ C. (61)

The proof of 16.3) is analogous to that of 11.3).

Now we define a convex and G-subinvariant function p∗ : PX(A−B)→
R, which fulfils the hypotheses of Theorem 6.

For every x ∈ PX(A−B), set

Ex = {y ∈ R : (x, y) ∈ C}.

We claim that

16.4) Ex 6= ∅ for every x ∈ PX(A−B). (62)

Fix arbitrarily x ∈ PX(A − B). As 0 ∈ int(PX(A − B)), there exists
λ0 > 0 with λx ∈ PX(A − B) whenever |λ| ≤ λ0. In particular, there
exists y ∈ R with (λ0 x, y) ∈ A−B. From this it follows that(

x,
1

λ0
y
)

=
1

λ0
(λ0 x, y) ∈ C,
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getting the claim.

Now, put

p∗(x) =
∧
{y : y ∈ Ex}, x ∈ PX(A−B).

Proceeding analogously as in the proof of Theorem 11, it is possible to
prove that p∗ is convex and G-subinvariant, and p∗(0) = 0.

By Theorem 6, there exists T ∈ Linv(X,R) with T (x) ≤ p∗(x) whenever
x ∈ PX(A−B). From this it follows that

T (x1)− T (x2) = T (x1 − x2) ≤ p∗(x1 − x2) ≤ y1 − y2 (63)

for any (x1, y1) ∈ A and (x2, y2) ∈ B. From (63) we obtain T (x1)−y1 ≤
T (x2)− y2. As R is Dedekind complete, there exists u0 ∈ R with∨
{T (x1)− y1 : (x1, y1) ∈ A} ≤ u0 ≤

∧
{T (x2)− y2 : (x2, y2) ∈ B}.

This ends the proof.

Now we prove the following equivalence results between our given theorems,
extending [27, Theorems 1 and 2] to invariance.

Theorem 17.

17.1) Theorems 1-2,4-7, and 16 are equivalent.

Moreover, the following implications hold:

(2) =⇒ (8) =⇒ (9) =⇒ (10);

(6) =⇒ (11) =⇒ (13) =⇒ (15) =⇒ (10);

(11) =⇒ (12) =⇒ (15).

17.2) If int(R+) 6= ∅, then Theorems 1-2,4-13,15-16 are equivalent.

Proof. (1) =⇒ (2) See Theorem 2.
(2) =⇒ (4) See Theorem 4.
(4) =⇒ (5) See Theorem 5.
(5) =⇒ (6) See Theorem 6.
(6) =⇒ (7) See Theorem 7.
(2) =⇒ (8) See Theorem 8.
(8) =⇒ (9) See Theorem 9.
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(9) =⇒ (10) See Theorem 10.
(6) =⇒ (11) See Theorem 11.
(11) =⇒ (12) See Theorem 12.
(11) =⇒ (13) See Theorem 13.
(12) =⇒ (15) See Theorem 15.
(6) =⇒ (16) See Theorem 16.
(7) =⇒ (1) Set D = D(U)−D(V ), and E = {(x1−x2, U(x1)+V (x2)+z) ∈

X ×R: there exist x1 ∈ D(U), x2 ∈ D(V ) and z ∈ R+ such that x = x1− x2,
y = U(x1) + V (x2) + z}. For each x ∈ D, put Ex = {y ∈ R : (x, y) ∈ E} (see
also [57, Sandwich Theorem 3.1]).

We claim that Ex 6= ∅ for every x ∈ D. Indeed, choose arbitrarily x ∈ D.
There are x1 ∈ D(U), x2 ∈ D(V ) with x = x1−x2. Taking z = 0, we get that
(x1 − x2, U(x1) + V (x2)) ∈ E , getting the claim.

It is not difficult to check that, since U , V are convex and D(U), D(V ) are
convex, then D and E are convex. Furthermore, note that E0 ⊂ R+: indeed, if
y ∈ E0, then there exist x0 ∈ PU,V and z ∈ R+ with y = U(x0)+V (x0)+z ≥ 0,
since U(x) + V (x) ≥ 0 for any x ∈ PU,V .

Now we prove that

(gx, y) ∈ E whenever (x, y) ∈ E and g ∈ G. (64)

Fix arbitrarily (x, y) ∈ E and g ∈ G, and let x1, x2 and z be as in the
definition of E . By G-subinvariance of U and V , there exists ζ ∈ R+ such that
y = U(gx1)+V (gx2)+ζ+z = U(x1)+V (x2)+z. Since g(x1−x2) = gx1−gx2,
we get (gx, y) ∈ E , that is (64).

Now we define p : D → R by p(x) =
∧
Ex, x ∈ D. We show that p is

well-defined. Pick arbitrarily x ∈ D. Since, by hypothesis, 0 ∈ int(D), we find
a λ > 0 with −λx ∈ D. Pick y′ ∈ E−λx. Since E is convex, then for every
y ∈ Ex it is(

0,
1

1 + λ
y′ +

λ

1 + λ
y
)

=
1

1 + λ
(−λx, y′) +

λ

1 + λ
(x, y) ∈ E ,

namely,
1

1 + λ
y′ +

λ

1 + λ
y ∈ E0, and hence,

1

1 + λ
y′ +

λ

1 + λ
y ≥ 0, as E0 ⊂

R+. So, since R is Dedekind complete,
∧
Ex exists in R.

Now we prove that p is convex. If y1 ∈ Ex1 , y2 ∈ Ex2 and λ ∈ [0, 1], then
(x1, y1) ∈ E , (x2, y2) ∈ E , and by convexity of E we get (λx1 + (1−λ)x2, λy1 +
(1− λ)y2) ∈ E . Thus, we obtain

λy1 + (1− λ)y2 ∈ Eλx1+(1−λ)x2
. (65)
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From (65) and arbitrariness of y1 and y2 we obtain

p(λx1 + (1− λ)x2) =
∧
Eλx1+(1−λ)x2

≤ λ
∧
Ex1

+ (1− λ)
∧
Ex2

= λ p(x1) + (1− λ) p(x2),

which means that p is convex.

Furthermore we get p(0) ≥ 0, as E0 ⊂ R+, and p(gx) =
∧
Egx ≤

∧
Ex =

p(x) for all x ∈ D and g ∈ G, thanks to (64). Thus, p is G-subinvariant.
By Theorem 7, there exists L ∈ Linv(X,R) such that

L(x− x′) ≤ p(x− x′) =
∧
Ex−x′ ≤ U(x) + V (x′),

and hence,

L(x)− U(x) ≤ L(x′) + V (x′) (66)

for any x ∈ D(U) and x′ ∈ D(V ). Set

u0 =
∧
{L(x′) + V (x′) : x′ ∈ D(V )}. (67)

Note that u0 ∈ R, since R is Dedekind complete. From (66) we get L(x)−u0 ≤
U(x) for each x ∈ D(U), and from (67) we obtain L(x′)− u0 ≥ −V (x′) for all
x′ ∈ D(V ). Thus, we get 1.

(13) =⇒ (15). Set U = L1, V = L2 and x0 = 0. By Theorem 13 used with
n = 1, U1 = T1, U = T2 and x0 = 0, we find T0 ∈ Linv(X,R) with

T0(T1(x)) + T2(x) ≥ 0 for each x ∈ Z. (68)

Changing x with −x in (68), we obtain

T0(T1(x)) + T2(x) ≤ 0,

and hence,
T0(T1(x)) + T2(x) = 0 for all x ∈ Z.

Thus we get 15.
(15) =⇒ (10). Let L1(z) = −z and L2(z) = L0(z) for all z ∈ Z. From (53)

we obtain L0(z) ≥ 0 for each z ∈ Z ∩X+. By Theorem 13, we find a function
L ∈ L+,inv(X,R) with L(−z) + L0(z) = −L(z) + L0(z) = 0 for each z ∈ Z.
So, 10 follows.
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(16) =⇒ (5). Let Z be any G-invariant subspace of X, let T0 ∈ Linv(Z,R),
let U : D(U) → R be a convex and G-subinvariant function, assume that
U(0) = 0 and suppose that T0(z) ≤ U(z) for every z ∈ Z. Let

A = {(x, y) ∈ X ×R, y ≥ U(x)},

B = {(x, y) ∈ Z ×R, y ≤ T0(x)}.

It is not difficult to see that A−B is a nonempty convex subset of X ×R and
satisfies (55), because U is convex and G-subinvariant, and T0 is linear and
G-invariant. Moreover, we have PX(A) = D(U), PX(B) = Z,

PX(A−B) = PX(A)− PX(B) = D(U)− Z.

Since, by hypothesis, 0 ∈ int(D(U) − Z), then we get 0 ∈ int(PX(A − B)).
Furthermore, if (x, y1) ∈ A, (x, y2) ∈ B, then x ∈ Z, and y1 ≥ U(x) ≥ L0(x) ≥
y2.

By Theorem 16, there exist T ∈ Linv(X,R) and u0 ∈ R with

T (x1)− y1 ≤ u0 ≤ T (x2)− y2 for all (x1, y1) ∈ A and (x2, y2) ∈ B. (69)

Choose arbitrarily z ∈ Z. Since U(0) = 0, from (69) used with x1 = 0, x2 = z,
y1 = 0, y2 = T0(z) and with x1 = 0, x2 = −z, y1 = 0, y2 = T0(z) we obtain

0 ≤ u0 ≤ T (z)− T0(z), (70)

0 ≤ u0 ≤ T (−z)− T0(−z) = T0(z)− T (z),

respectively. From (70) we deduce that u0 = 0 and T (z) = T0(z).
Now, pick arbitrarily x ∈ X. From (69) used with x1 = x, y1 = U(x),

x2 = 0, y2 = 0, we obtain T (x)− U(x) ≤ 0. Thus, we get 5.
Finally, assume that int(R+) 6= ∅ and let us prove (10) =⇒ (5). Let

U : D(U) → R be a convex and G-invariant function such that D(U) is G-
invariant and U(0) = 0. Let

C = {(x, y) ∈ X ×R, y ≥ U(x)}.

As U is convex, G-subinvariant and U(0) = 0, it is not difficult to check that C
is a convex cone with vertex (0, 0), and that (gx, y) ∈ C whenever (x, y) ∈ C
and g ∈ G. In the set X ×R, we consider the order generated by the cone C.
Moreover, since int(R+) 6= ∅ and int(X) = X, it is int(C) 6= ∅ and

(int(C)) ∩ (Z ×R) ⊃ {0} × int(R+) 6= ∅
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(see also [27, Theorem 2]). Since int(Z ×R) = Z ×R and int(C − (Z ×R)) ⊃
int(C))− int(Z×R), it follows that 0 ∈ int(C−(Z×R)) (see also [3, I.8.4.a)],
[43, Corollary, (4)]).

Define the action of G on X × R by g(x, y) = (gx, y), (x, y) ∈ X × R.
Let L0 ∈ Linv(Z,R) be such that L0(z) ≤ U(z) for all z ∈ D(U) ∩ Z. Define
L′ : Z ×R→ R by L′(z, y) = −L0(z) + y, (z, y) ∈ Z ×R. It is not difficult to
check that L′(z, y) ≥ 0 for all (z, y) ∈ (Z × R) ∩ (C). By Theorem 10, there
exists L′′ ∈ Linv(X × R,R) with L′′(z, y) = L′(z, y) = −L0(z) + y for every
(z, y) ∈ Z ×R and L′′(x, y) ≥ 0 for any (x, y) ∈ C. Thus, L′′(0, y) = y for all
y ∈ R. Set L(x) = −L′′(x, 0), x ∈ X. It is easy to see that L ∈ Linv(X,R).
We have L(x) = y−L′′(x, y) for every (x, y) ∈ X ×R. Thus, when y = U(x),
we get L(x) ≤ y = U(x). Moreover, for any z ∈ Z and y ∈ R, it is L(z) =
y − L′′(z, y) = y − L′(z, y) = L0(z). So, we get 5.

Remark 18. Observe that our given results are a characterization of the
amenability of G and of the Dedekind completeness of R (see also [7, 8] and
[27, 51], respectively).

Now we give some applications of the given results to finitely additive
and invariant vector lattice-valued set functions. The classical Vitali example
shows that it is not possible to define a σ-additive measure on the family of all
subsets of the real line, invariant with respect to the group of all translations,
extending the Lebesgue measure (see also [53]). Such a pathology does not
exist in the finitely additive case, thanks to the Tarski theorem, whose we give
an extension to the setting of partially ordered vector spaces and invariance
with respect to any amenable semigroup. The next result is a consequence of
Theorem 1.

Theorem 19. Let Ω 6= ∅ be any set, let P(Ω) be the family of all subsets of
Ω, let A ⊂ P(Ω) be an algebra, let G ⊂ ΩΩ be a left (resp. right) amenable
semigroup of functions such that g−1(A) = {ω ∈ Ω: gω ∈ A} (resp. {ω ∈ Ω:
ωg ∈ A}) ∈ A for all A ∈ A and g ∈ G, and let ψ : A → R+ be a G-invariant
finitely additive set function (that is, ψ(g−1(A)) = ψ(A) for every A ∈ A and

g ∈ G). Then ψ has a G-invariant finitely additive extension ψ̃ : P(Ω)→ R+.

Proof. We prove the theorem only in the setting of left amenability, since
the case of right amenability is analogous.

Let X be the space of all bounded real-valued functions defined on Ω and
let Z be the linear subspace of X generated by all characteristic functions χA,
as A varies in A (that is, χA(ω) = 1 if ω ∈ A and χA(ω) = 0 if ω ∈ Ω \ A).
For each f ∈ X, g ∈ G and ω ∈ Ω, put (gf)(ω) = f(gω). Note that, for
each g ∈ G, g is an increasing linear homomorphism. For every f ∈ Z,
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f =

n∑
i=1

riχAi
with Ai ∈ A, i = 1, 2, . . . , n, set φ(f) =

n∑
i=1

riψ(Ai). It is easy

to check that φ is well-defined (that is, independent of the representation of
f), linear, increasing and G-invariant. Let us define φ+ : X → R, φ− : X → R
by

φ+(x) =
∧{

φ(z) : x ≤ z, z ∈ Z
}
, (71)

φ−(x) =
∨{

φ(z) : x ≥ z′, z′ ∈ Z
}
.

Pick arbitrarily x ∈ X. Thanks to monotonicity of φ, for each z, z′ ∈ Z such
that z′ ≤ x ≤ z it is φ(z′) ≤ φ(z). Taking the supremum and the infimum
in (71), we deduce φ−(x) ≤ φ+(x). Moreover, it is not difficult to see that
φ+(z) = φ−(z) = φ(z) whenever z ∈ Z.

Now we prove that φ+ is convex. Choose arbitrarily x1, x2 ∈ X and
λ ∈ [0, 1], and take z1, z2 ∈ Z with xi ≤ zi, i = 1, 2. Then λx1 + (1− λ)x2 ≤
λz1 + (1− λ)z2. As φ is linear, we obtain

φ+(λx1 + (1− λ)x2) ≤ φ(λz1 + (1− λ)z2) = λφ(z1) + (1− λ)φ(z2).

By arbitrariness of z1 and z2, we get

φ+(λx1 + (1− λ)x2) ≤ λφ+(x1) + (1− λ)φ+(x2).

Thus, φ+ is convex. Analogously, it is possible to prove that −φ− is convex.
Now we claim that φ+ is G-subinvariant. Choose arbitrarily x ∈ X and

g ∈ G. For each z ∈ Z such that x ≤ z, it is gx ≤ gz. Thus, we have
φ+(gx) ≤ φ(gz) = φ(z). Taking the infimum, we deduce φ+(gx) ≤ φ(x),
getting the claim. Similarly, it is possible to check that −φ− is G-subinvariant.

By virtue of Theorem 1, there exist φ̃ ∈ Linv(X,R) and u0 ∈ R such that

φ−(x) ≤ φ̃(x)− u0 ≤ φ+(x) (72)

for all x ∈ X. As φ+(0) = φ−(0) = 0, by (72) used with x = 0 we get

u0 = φ̃(0) = 0. Thus, φ̃(z) = φ(z) for every z ∈ Z. Putting ψ̃(C) = φ̃(χC),

C ⊂ Ω, we obtain that ψ̃ is the requested extension.

Now we apply Theorem 19 to construct finitely additive and invariant
extension of set functions. In the literature, in certain types of problems and
investigations (for instance, in stochastic processes), it would be advisable to
deal with some kinds of “probabilities”, which associate to each event not
necessarily a real number, but a real-valued function. Indeed, it is possible to
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give different values of the knowledge on an event E, depending, for instance,
on the time or on some other events associated to E (for example, in the case
of conditional probability). More generally, it is advisable to associate to each
event an element of a Dedekind complete vector lattice R, because, by virtue
of the Maeda-Ogasawara-Vulikh representation Theorem, R can be viewed as
a suitable space of continuous extended real-valued functions.

On the other hand, in order to take into account the time, it is advisable
also to associate to an event a time value, for example the “current” instant,
in which the involved “probabilities” are formulated, taking into account the
state of knowledge at this instant. Thus, we can consider as “events” some

sets of the type
∏
t∈T

Bt, where T is the “time set” and the Bt’s are subsets of

a fixed abstract nonempty set R̃. Now we present the following

Example 20. Let R be a Dedekind complete vector lattice, let R̃ and T be
any two nonempty sets, let B be an algebra of subsets of R̃, let Ω = R̃T and
let C = {f ∈ Ω: there exist t ∈ T , B ∈ B: f(t) ∈ B}. Observe that C is not
an algebra: indeed, if C1, C2 ∈ C, t1 6= t2 ∈ T , B1 6= ∅ and B2 6= ∅, then
C1 ∪ C2 = {f ∈ G : f(t1) ∈ B1} ∪ {f ∈ G : f(t2) ∈ B2} 6∈ C.

It is not difficult to check that the algebra A(C) generated by C is the
family of all finite (disjoint) unions of sets of the type

E =
⋂
i∈Λ

{f ∈ Ω : f(ti) ∈ Bi}, (73)

where Λ is a finite subset of T .
Let G ⊂ T T be any left or right amenable semigroup of functions (in

this setting a concrete example, when T = Rn, is the group generated by a
given isometry). If f ∈ R̃T , then we define the action of G on R̃T by setting
(τf)(t) = f(τ(t)), t ∈ T . It is not difficult to check that the families C and
A(C) are G-invariant.

Let u ∈ R+ be such that u 6= 0, and for each t ∈ T let Pt : B → R be a
finitely additive set function with Pτ(t)(B) = Pt(B) whenever B ∈ B and τ ∈
G such that Pt(∅) = 0 and with Pt(R̃) = u for any t ∈ T . Note that {Pt(B) :
t ∈ T , B ∈ B} ⊂ V [u] = {x ∈ R: there exists a positive real number c with
−cu ≤ x ≤ cu}. Since V [u] is Dedekind complete, by virtue of the Kakutani
representation theorem, there exist a compact Hausdorff topological space Ξ
and an isomorphism ι from V [u] into C(Ξ) = {f ∈ RΞ: f is continuous},
which maps u into 1Ξ, the function defined on Ξ and which associates to each
element of Ξ the constant value 1 (see also [54]). Since the Pt’s are (order)
equibounded, then they can be considered as V [u]-valued set functions. For
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every set E as in (73), where Λ = {t1, t2, . . . , tq}, define

P (E) = ι−1(ι(Pt1(B1)) · ι(Pt2(B2)) · . . . · ι(Ptq (Bq))).

By construction, 0 ≤ P (E) ≤ u. Moreover, we get

P (τ−1(E)) = ι−1(ι(Pτ(t1)(B1)) · ι(Pτ(t2)(B2)) · . . . · ι(Pτ(tq)(Bq))),

for every τ ∈ G. If Ẽ ∈ A(C), Ẽ =

n⋃
i=1

Bi, where Bi is as in (73), i = 1, 2, . . . , n,

and the Bi’s are pairwise disjoint, then set P̃ (Ẽ) =

n∑
i=1

P (Bi). It is not difficult

to see that P̃ is a finitely additive G-invariant set function, defined on A(C)
and with values in V [u]. By Theorem 19, P̃ has a finitely additive G-invariant

extension P̂ , taking values in V [u] and defined on the family of all subsets of

R̃T , and in particular on the sets of the type
∏
t∈T

Bt, as Bt varies in the whole

of P(R̃) for all t ∈ T and does not belong necessarily to B. �

5 Conclusions.

We have given some sandwich and Hahn-Banach-type theorems for invariant
linear operators with values in a Dedekind complete partially ordered vector
space, using special properties of convex functions. As consequences, we have
proved a duality Fenchel-type theorem and a version of the Moreau-Rockafellar
formula. As applications, we have investigated some convex optimization prob-
lems. We have given some conditions for the existence of an optimal solution
and have proved separation, Farkas and Kuhn-Tucker-type theorems. We have
demonstrated the equivalence of our presented results. Finally, we have given
some further applications to Tarski-type extension problems and probability
measures on suitable product sets.

Several kinds of minimization problems in convex analysis, subdifferential
calculus, probability theory, Calculus of Variations, reconstruction of images,
and other branches of Mathematics, can be investigated according to the given
approach, considering invariance or equivariance with respect to amenable
groups of transformations.

Acknowledgment: Our thanks to the referee for several helpful suggestions.
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