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DERIVATIVES OF REAL FUNCTIONS

Abstract

A relation between Riemann summability and Riemann derivative is
established and necessary and sufficient conditions for Riemann summa-
bility of trigonometric series are obtained

1 Introduction

If ar, br → 0 as r → ∞ then the term by term twice integrated series of the
trigonometric series

1

2
a0 +

∞∑
r=1

(ar cos rx+ br sin rx) (1)

converges to a continuous function F where

F (x) =
1

2
a0
x2

2
−
∞∑
r=1

1

r2
(ar cos rx+ br sin rx)
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and it is easy to verify that for h 6= 0

F (x+ h)− 2F (x) + F (x− h)

4h2
=

1

2
a0 +

∞∑
r=1

(ar cos rx+ br sin rx)

(
sin rh

rh

)2

.

Letting h→ 0, if the limit exists finitely,

lim
h→0

F (x+ h)− 2F (x) + F (x− h)

4h2
=

lim
h→0

[
1

2
a0 +

∞∑
r=1

(ar cos rx+ br sin rx)

(
sin rh

rh

)2
]
. (2)

In this case the series (1) is called Riemann summable of order 2 at x and the
right hand side of (2) is called its (R, 2) sum at x while the left hand side of (2)
is called the symmetric Riemann derivative of F at x of order 2. This is the
method of Riemann for studying the behaviour of trigonometric series. Hardy
in his book ([6] p-53), remarked that Riemann’s methods are fundamental in
the theory of trigonometric series. He pointed out two results of Riemann, one
on (R, 2)-summability and the other on (R2)-summability which played an im-
portant role to study the behaviour of trigonometric series ((R2)-summability
is defined in Section 2 below). Zygmund [33] devoted an entire chapter of
his book on Riemann theory of trigonometric series calling these two results
as “Riemann’s first theorem” and “Riemann’s second theorem” respectively
(see [33]; Vol I, pp 319-320). Lots of research papers are published thereafter
investigating the nature of convergence and various types of summability of
the series (1) of which Cesaro summability had played a major role. Higher
order Riemann derivatives and their generalizations are introduced. To study
Cesaro summabilty de la Vallée-Poussin (d.I.V.P.) derivative (also called gen-
eralized symmetric derivative) are introduced. The problem of convergence of
the series (1) is old and consequently many papers appeared on Cesaro summa-
bilty (for example see [11, 20, 32, 33]) and also on Riemann summability (for
example see [7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 25, 26, 27, 31]). Also many
papers appeared on Riemann derivative (see [1, 2, 3, 4, 5, 17, 18, 22, 23, 24];
see also [21] for other references). The present authors have not seen in the
literature the relation between Riemann summability and Riemann derivative
of order k > 2.

In the present paper, we established a connection between Riemann deriva-
tive and Riemann summability of any order and generalized the two classical
results of Riemann summability cited in the begining.
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2 Definitions and notations

Consider a function f : R → R and a positive integer k. The symmetric
difference of f at a point x of order k is defined by

∆s
k(f ;x, 2h) =

k∑
j=0

(−1)k−j
(
k
j

)
f(x+ 2jh− kh). (3)

It can be verified that the difference operator (3) satisfies the relation

∆s
1(f ;x, 2h) = f(x+ h)− f(x− h)

∆s
k+1(f ;x, 2h) = ∆s

1[∆s
k(f ;x, 2h)] = ∆s

k(f ;x+ h, 2h)−∆s
k(f ;x− h, 2h). (4)

(see [4] and [17]).

Definition 2.1. (Riemann derivative) The symmetric Riemann derivative of
f at x of order k, denoted by RDs

kf(x) , is defined by

RDs
kf(x) = lim

h→0+

∆s
k(f ;x, 2h)

(2h)k
, (5)

provided the limit exists.
If RDs

kf(x) exists then it does not imply that the previous derivative
RDs

i f(x) exists for i = 1, 2, ....., k − 1.
However, if the ordinary k-th derivative f (k) exists then RDs

kf(x) exists
and they are equal.

Definition 2.2. (Riemann smoothness) If

lim
h→0+

∆s
k(f ;x, 2h)

(2h)k
h = 0 (6)

then f is said to be Riemann smooth at x of order k.
Clearly, if RDs

kf(x) exists finitely then f is Riemann smooth at x of order k.
For k = 2 this is the definition of usual smoothness.

Definition 2.3. (de la Vallée-Poussin derivative) If there is a polynomial
P (t) = Px(t) of degree at most k such that

1

2
[f(x+ t) + (−1)kf(x− t)] = P (t) + o(tk) as t→ 0+, (7)

then f is said to have symmetric d.I.V.P. derivative at x of order k and if
ak
k!

is

the coefficient of tk in P (t) then ak is called the symmetric d.l.V.P. derivative
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of f at x of order k and is denoted by f
(s)
(k)(x) .

It can be shown that if f
(s)
(k)(x) exists then f

(s)
(i) (x) exists for i = k−2, k−4, . . . , 2

or 1 according as k is even or odd, but not necessarily for i = k − 1, k − 3,. . ..

Also it can be shown that if f
(s)
(k)(x) exists then RDs

kf(x) also exists and

they are equal (see [21]; p 178). The converse is not true. So the Riemann
derivative is more general than the d.l.V.P. derivative. It may be noted that

RDs
kf(x) = f

(s)
(k)(x) for k = 1 and 2.

Definition 2.4. (Riemann summability) A series

∞∑
r=0

Cr of constant terms is

said to be Riemann summable of order k, or (R, k) summable to s if

lim
h→0

∞∑
r=0

Cr

(
sin rh

rh

)k

= s. (8)

A sequence {sr} of constant terms is said to be (R, k) summable to s if

lim
h→0

∞∑
r=0

sr

[(
sin rh

rh

)k

−
(

sin(r + 1)h

(r + 1)h

)k
]

= s. (9)

Clearly (9) agrees with (8). In fact, if sr is the r-th partial sum of

∞∑
i=0

Ci then

by summing by parts the left hand side of (8) we get the left hand side of (9).
It may be noted that if a series is (R, k) summable then it may not be (R, k′)
summable for k′ > k. See [14, 15]

Definition 2.5. (Modified Riemann summability) A sequence {sr} of con-
stant terms is said to be modified Riemann summable of order k, or (Rk)
summable to s if

lim
h→0

∞∑
r=0

(sr − s)
(

sin rh

rh

)k

h = 0. (10)

A series

∞∑
r=0

Cr of constant terms is said to be (Rk) summable to s if the

sequence {sr} of its partial sums sr =

r∑
i=0

Ci is (Rk) summable to s.

The methods (R, k) and (Rk) are distinct. Marcinkiewicz [16] proved that
the methods (R, 2) and (R2) are incomparable.
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3 Preliminaries

Since a summability method is a generalization of convergence, it is desirable
that whenever a series converges to s, it should be summable to s by that
summability method. If this is so then that summability method is called
regular. Let

M = (αnr) =


α00 α01 · · · α0r · · ·
α10 α11 · · · α1r · · ·
· · · · · · · · · · · · · · ·
αn0 αn1 · · · αnr

· · · · · · · · · · · · · · ·


be a doubly infinite matrix. Then the matrix M is called regular if the

following conditions hold:

(i) lim
n→∞

αnr = 0 for r = 0, 1, 2, ....

(ii) The sequence {Qn} is bounded where Qn =

∞∑
r=0

|αnr|

(iii) lim
n→∞

∞∑
r=0

αnr = 1.

The matrix M induces a summability method. For, given a sequence {sr},
or a series whose partial sums are sr, we can find another sequence {σn} such

that σn =

∞∑
r=0

αnrsr and if {σn} converges to σ then {sr} is called summable

to σ by the method M.

Theorem 3.1. If a matrix M = (αnr) is regular then the summability method
induced by M is regular.

This is proved in ([33], Vol I, p74).

Theorem 3.2. Let k > 1 and let u(h) =

(
sinh

h

)k

. For every r, r = 0, 1, 2, ...

and any sequence {hn} such that hn → 0 as n→∞, let αnr = u(rhn)−u((r+
1)hn) . Then the matrix (αnr) is regular.

Proof. We may suppose that hn > 0 for all n. We have

lim
n→∞

αnr = lim
n→∞

[u(rhn)− u((r + 1)hn)]

= lim
n→∞

[(
sin rhn
rhn

)k

−
(

sin(r + 1)hn
(r + 1)hn

)k
]

= 0
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for r = 0, 1, 2, . . .(assuming
sin 0

0
= 1). So (αnr) satisfies (i). Also writing Qn

as in (ii).

Qn =

∞∑
r=0

∣∣∣∣∣u(rhn)− u((r + 1)hn)

∣∣∣∣∣ =

∞∑
r=0

∣∣∣∣∣
∫ (r+1)hn

rhn

u′(t)dt

∣∣∣∣∣
≤
∞∑
r=0

∫ (r+1)hn

rhn

|u′(t)|dt =

∫ ∞
0

|u′(t)|dt

=

∫ ∞
0

∣∣∣∣∣k
(

sin t

t

)k−1
t cos t− sin t

t2

∣∣∣∣∣dt
=

∫ π
2

0

∣∣∣∣∣k
(

sin t

t

)k−1
t cos t− sin t

t2

∣∣∣∣∣dt+

∫ ∞
π
2

∣∣∣∣∣k
(

sin t

t

)k−1
t cos t− sin t

t2

∣∣∣∣∣dt.
The first integral is finite. The second integral is∣∣∣∣∣k

∫ ∞
π
2

(sin t)k−1
t cos t− sin t

tk+1

∣∣∣∣∣dt ≤ k
∫ ∞
π
2

∣∣∣∣∣ t cos t− sin t

tk+1

∣∣∣∣∣dt.
Since

∣∣∣∣∣ t cos t− sin t

tk+1

∣∣∣∣∣ is O(t−k) as t→∞ and since k > 1, the second integral

is also finite. These integrals are also independent of n. This being true for
all n, the sequence {Qn} is bounded and hence {αnr} satisfies (ii).

Finally, lim
n→∞

∞∑
r=0

αnr = lim
n→∞

∞∑
r=0

[u(rhn)−u((r+ 1)hn)] = 1. So (αnr) satisfies

(iii). Therefore (αnr) is regular.

4 Series and sequences of constant terms

Theorem 4.1. If

∞∑
r=0

Cr is a series of constant terms which converges to s

then this series is (R, k) summable to s for all k > 1.

Proof. Let Sr =

r∑
i=0

Ci and u(h) =

(
sinh

h

)k

. Applying summation by parts

we have for every sequence {hn} such that hn → 0+ as n→∞,

C0 +

∞∑
r=1

Cr

(
sin rhn
rhn

)k

=

∞∑
r=0

Sr[u(rhn)− u((r + 1)hn)]. (11)
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Writing αnr = [u(rhn) − u((r + 1)hn] and applying Theorem 3.2, (αnr) is

regular. Let σn =

∞∑
r=0

Srαnr. Since Sr → s, by Theorem 3.1, σn → s as

n → ∞. Hence the left hand side of (11) tends to s as hn → 0+. Since {hn}

is an arbitrary sequence lim
h→0+

[
C0 +

∞∑
r=1

Cr

(
sin rh

rh

)k
]

= s. This shows that

this is also true for h→ 0−. Hence

∞∑
r=0

Cr is (R, k) summable to s.

Theorem 4.2. If {sr} is a sequence of constant terms which converges to 0
then this sequence is (Rk) summable to 0 for all k > 1.

Proof. Consider any sequence {hn} such that hn → 0+ as n → ∞. Let

αnr =

(
sin rhn
rhn

)k

hn. Then lim
n→∞

αnr = 0 for r = 0, 1, 2, . . ., showing that

(αnr) satisfies (i). To show that it satisfies (ii) note that

Qn =

∞∑
r=0

|αnr| = hn +

∞∑
r=1

∣∣∣∣∣
(

sin rhn
rhn

)k
∣∣∣∣∣hn.

We may suppose that hn ≤ 1 for all n. Let N be the integer such that
1

hn
< N ≤ 1 +

1

hn
for a fixed hn. Then 1 < Nhn ≤ hn + 1. So

Qn = hn +

∞∑
r=1

∣∣∣∣∣
(

sin rhn
rhn

)k
∣∣∣∣∣hn ≤ hn +

N∑
r=1

hn +

∞∑
r=N+1

1

rkhk−1n

= hn(1 +N) +
1

hk−1n

∞∑
r=N+1

1

rk
≤ 3 +

1

hk−1n

∫ ∞
N

1

xk
dx

= 3 +
1

(k − 1)(Nhn)k−1
< 3 +

1

k − 1
.

This being true for all n, we conclude that (αnr) satisfies (ii). Since sr → 0 as
r →∞, taking s = 0 the condition (iii) is not needed in the proof of Theorem

3.1. So by Theorem 3.1, σn =

∞∑
r=0

srαnr =

∞∑
r=0

sr

(
sin rhn
rhn

)k

hn → 0 as

n → ∞. If the sequence {hn} is such that hn → 0− as n → ∞ then putting
tn = −hn and applying the above argument for the sequence {tn} the above
relation is true. This shows that the sequence {sr} is (Rk) summable to 0.
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Corollary 4.3. If {sr} is a sequence of constant terms which converges to s
then this sequence is (Rk) summable to s for all k > 1.

Considering the sequence {sr − s} the result follows from Definition 2.5
and Theorem 4.2.

5 Trigonometric Series

Consider a trigonometric series

1

2
a0 +

∞∑
r=1

(ar cos rx+ br sin rx). (12)

Note that the series (12) may or may not be convergent and that even if
it converges everywhere it may not be a Fourier series of any function. For
convenience we write

A0(x) =
1

2
a0, Ar(x) = ar cos rx+ br sin rx,Br(x) = ar sin rx− br cos rx (13)

and so the series (12) henceforth will be written as

∞∑
r=0

Ar(x) .

Theorem 5.1. If the series

∞∑
r=0

Ar(x) converges to s at a point x0 then the

series

∞∑
r=0

Ar(x0) is (R, k) summable to s for all k > 1.

Proof. Since

∞∑
r=0

Ar(x0) is a series of constant terms the result follows from

Theorem 4.1.

Putting k = 2 Theorem 5.1 is Riemann’s first theorem (see [33], Vol I, p
319).

Theorem 5.2. If the sequence {Ar(x)} converges to 0 at a point x0 then
{Ar(x0)} is (Rk) summable to 0 for all k > 1.

The result follows from Theorem 4.2.

Theorem 5.3. If ar → 0, br → 0 as r → ∞ then the sequence {Ar(x)} is
(Rk) summable to 0 uniformly for all x and all k > 1.
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Proof. Since |Ar(x)| ≤ |ar|+ |br|, {Ar(x)} converges to 0 uniformly for all x
and so the result follows from Theorem 5.2.

For k = 2 Theorem 5.3 is Riemann’s second theorem (see [33], Vol I, p320)

6 Relation between Riemann derivative and Riemann
summability

The following theorem establishes a relation between Riemann derivative and
Riemann summability.

Theorem 6.1. Let k be a positive integer. If the series obtained by k times
term-by-term integration of (12) converges uniformly and absolutely to a func-
tion F then for h 6= 0

∆s
k(F ;x, 2h)

(2h)k
= A0 +

∞∑
r=1

Ar(x)

(
sin rh

rh

)k

. (14)

Proof. Since the k times integrated series of (12) converges uniformly and ab-

solutely to F , the k times term-by-term integrated series of

∞∑
r=1

Ar(x) converges

uniformly and absolutely to a function G such that G(x) = F (x) − A0
xk

k!
.

Writing H(x) = A0
xk

k!
we have F = G+H. So we have

∆s
k(F ;x, 2h)

(2h)k
=

∆s
k(H;x, 2h)

(2h)k
+

∆s
k(G;x, 2h)

(2h)k
. (15)

To calculate ∆s
k(H;x, 2h) =

A0

k!
∆s

k(xk;x, 2h) we use the relation (see [21], p

177)
k∑

j=0

(−1)k−j
(
k
j

)
jp =

{
0 if p = 0, 1, 2, . . . k − 1
k! if p = k.

(16)

We have by using (3)

∆s
k(xk;x, 2h) =

k∑
j=0

(−1)k−j
(
k
j

)
(x+ 2jh− kh)k

=

k∑
j=0

(−1)k−j
(
k
j

) k∑
i=0

(
k
i

)
xk−i(2j − k)ihi
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=

k∑
j=0

(−1)k−j
(
k
j

) k∑
i=1

(
k
i

)
xk−i(2j − k)ihi

=

k∑
j=0

(−1)k−j
(
k
j

) k∑
i=1

(
k
i

)
xk−ihi

i∑
l=0

(
i
l

)
(2j)l(−k)i−l

=

k∑
i=1

(
k
i

)
xk−ihi

i∑
l=0

(
i
l

)
(2)l(−k)i−l

k∑
j=0

(−1)k−j
(
k
j

)
(j)l

= (2h)kk! , using (16).
Hence

∆s
k(H;x, 2h)

(2h)k
=
A0

k!

∆s
k(xk;x, 2h)

(2h)k
= A0. (17)

Now we shall prove that

∆s
k(G;x, 2h)

(2h)k
=

∞∑
r=1

Ar(x)

(
sin rh

rh

)k

. (18)

Let k = 1. Then G is the sum of the series obtained by term-by- term once

integration of

∞∑
r=1

Ar(x) and so by (13) G(x) =

∞∑
r=1

1

r
Br(x) . Since

∆s
1( 1

rBr;x, 2h)

2h
=
Br(x+ h)−Br(x− h)

2rh
=

2Ar(x) sin rh

2rh
= Ar(x)

(
sin rh

rh

)
,

we have

∆s
1(G;x, 2h)

2h
=

∞∑
r=1

∆s
1( 1

rBr;x, 2h)

2h
=

∞∑
r=1

Ar(x)

(
sin rh

rh

)
.

So (18) is true for k = 1. Suppose that (18) is true for k = m. Let

k = m + 1. Since

∞∑
r=1

1

r
Br(x) is the once integrated series of

∞∑
r=1

Ar(x) ,

the (m + 1) times integrated series of

∞∑
r=1

Ar(x) is the same as the m times

integrated series of

∞∑
r=1

1

r
Br(x) and the m times integrated series of

∞∑
r=1

1

r
Br(x)
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converges uniformly and absolutely to G. Since the result is true for k = m,
from (18) we have,

∆s
m(G;x, 2h)

(2h)m
=

∞∑
r=1

1

r
Br(x)

(
sin rh

rh

)m

. (19)

Hence using the relation (4) we get from (19)

∆s
m+1(G;x, 2h)

(2h)m+1
=

1

2h
∆s

1

(
∆s

m(G;x, 2h)

(2h)m

)

=
1

2h

[
1

(2h)m
∆s

m(G;x+ h, 2h)− 1

(2h)m
∆s

m(G;x− h, 2h)

]

=
1

2h

∞∑
r=1

1

r
[Br(x+ h)−Br(x− h)]

(
sin rh

rh

)m

=

∞∑
r=1

Ar(x)
sin rh

rh

(
sin rh

rh

)m

=

∞∑
r=1

Ar(x)

(
sin rh

rh

)m+1

which shows that (18) is true for k = m + 1. Therefore (18) is true for all k.
So from (15), (17) and (18) we get

∆s
k(F ;x, 2h)

(2h)k
= A0 +

∞∑
r=1

Ar(x)

(
sin rh

rh

)k

,

completing the proof.

Corollary 6.2. Under the hypothesis of Theorem 6.1, we have for h 6= 0

∆s
k(F ;x, 2h)

(2h)k
h = A0h+

∞∑
r=1

Ar(x)

(
sin rh

rh

)k

h. (20)

Theorem 6.3. Under the hypothesis of Theorem 6.1 the series (12) is (R, k)
summable at x0 to s if and only if the k-th symmetric Riemann derivative of
F at x0, RDs

kF (x0) exists finitely and s = RDs
kF (x0) .

The proof follows from Theorem 6.1 by taking limit in (14) as h→ 0.

Theorem 6.4. Under the hypothesis of Theorem 6.1 the sequence {Ar(x)} of
the terms of the series (12) is (Rk) summable at x0 to 0 if and only if the
function F is Riemann smooth at x0 of order k.
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The proof follows from Corollary 6.2 by taking limit in (20) as h→ 0.

Remark 6.5. Suppose ar = O(rk−2) and br = O(rk−2) where ar and br are

as in (12). So there is M > 0 such that for all r,
|ar|
rk−2

≤ M and
|br|
rk−2

≤ M

which give
|ar|
rk
≤ M

r2
and

|br|
rk
≤ M

r2
. Therefore the series obtained by k

times term-by-term integration of (12) converges uniformly and absolutely to
a function F . So Theorem 6.3 gives necessary and sufficient condition of (R, k)
summability of the series (12) and Theorem 6.4 gives necessary and sufficient
condition of (Rk) summability of the terms of the series (12). Now let us

consider k = 2. If the series

∞∑
r=1

Ar(x) converges at a point x0 to sum s then

∞∑
r=1

Ar(x0) is a series of constant terms which converges to s. So by Theorem

4.1 we get Riemann’s first Theorem (see [33], Vol I, p 319). Again if ar, br → 0
as r → ∞ then since |Ar(x)| ≤ |ar| + |br|, {Ar(x)} converges uniformly to 0
for all x as r → ∞. For a fixed x, {Ar(x)} is a sequence of constant terms
which converges to 0 and so by Theorem 4.2, {Ar(x)} is (R2)- summable to 0.
Considering all x, since {Ar(x)} converges uniformly to 0, it is uniformly (R2)
summable to 0. Also the twice integrated series of (12) converges uniformly
and absolutely to a function F and so by Corollary 6.2 and Theorem 6.4 we
get Riemann’s second Theorem (see [33], Vol I, p320).

7 Relation between Riemann summabilty and Cesaro
summability

Cesaro summability (for the definition of Cesaro summability see ([6], p46) or
([33], Vol I, p76) and Riemann summability have interesting relation in the
sense that if the strength of one is increased it surpasses the other which is
seen in the following two theorems.

Theorem 7.1. If a series
∑
Cr is (C, k − δ) summable to s, where δ > 0,

then it is (R, k + 1) summable to s.

This is proved by Verblunsky [27]

Theorem 7.2. If a series
∑
Cr is (R, k) summable to s then it is (C, k + δ)

summable to s for k = 1 and k = 2 where δ > 0.

This is proved by Kuttner [13].
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It follows from Theorem 6.1 that Riemann summability of trigonometric
series is associated with symmetric Riemann derivative. The following the-
orem shows that Cesaro summability is associated with symmetric d.l..V. P
derivative which is to some extent equivalent to symmetric Cesaro derivative.
(see [21], p40 and p106).

Theorem 7.3. If the series (12) is (C,α) summable to s at a point x, where
α ≥ 0 and if the series obtained by k times term by term integration of (12)
converges uniformly and absolutely to a function F where k > α + 1 then
F s
(k)(x) exists and equals s.

This follows from a theorem of Wolf [32] (see also [33], Vol.II, p 66).
Now we have

Theorem 7.4. If the series (12) is (C,α) summable at a point x to s, where
α ≥ 0, and if the series obtained by k times term by term integration of (12)
converges uniformly and absolutely to a function F where k > α+ 1 then (12)
is (R, k) summable at x to s.

Proof. Since the existence of F s
(k)(x) implies the existence of RDs

kF (x) and

F s
k (x) = RDs

kF (x) (see [21], p 178) the proof follows from Theorem 7.3 and
Theorem 6.3.

8 Concluding remarks

Theorem 4.1 and Theorem 4.2 and consequently Theorem 5.1 and Theorem 5.2
show that the methods (R, k) and (Rk) are regular for k > 1. The regularity
of (R, k) and (Rk) methods for k ≥ 2 are mentioned in [9, 10] and so these are
known, but we could not locate the proofs of these and therefore we give the
proofs of these two results for completeness. For k = 1 the situation is different.
If the series (12) converges at a point x0 then the once integrated series of
(12) need not converge in a neighbourhood of x0 and so (R,1) summability
of (12) need further conditions. This summability method is called Lebesgue
summability or summable L. Zygmund proved that if an and bn are O( 1

n )
then (12) is convergent at x0 to s(x0) if and only if it is summable L at x0 to
s(x0) (see [33], Vol I, pp 321-323]). Moricz [19] relaxed this condition on an
and bn and proved under this weaker condition that if (12) converges at x0 to
s(x0) then (12) is summable L at x0 to s(x0). Vindas [31] extended this result
of Moricz for several other summability methods. It is remarked in [9, 10]
that methods (R, 1) and (R1) are not regular. Also it is remarked in [31] that
summability L is somehow complicated and it is not regular and that if (12)
converges at x0 then it is not necessarily summable L at x0 (see [31], p76).
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To prove Theorem T ′ in [8] Hardy and Littlewood proved that if φ(n) is any
positive function of n tending steadily to infinity with n it is possible to find
a convergent series

∑
an for which

an = O

(
φ(n)

n

)
and lim sup

h→0

∑
an

sinnh

nh
=∞

(See [8]; proof of Theorem T ′, pp 255-261. See also [26]; p 389). In the proof
the authors took any function φ(n) <

√
n. So the following theorem came out:

Theorem 8.1. (Hardy and Littlewood). There is a convergent series
∑
an of

constant terms such that

an = O

(
1

2
√
n

)
(21)

and

lim sup
h→0

∑
an

sinnh

nh
=∞. (22)

This theorem shows that the summability method (R, k) is not regular for
k = 1. So, for k = 1 Theorem 4.1 and Theorem 4.2 do not necessarily hold.
For trigonometric series we get:

Theorem 8.2. There is a trigonometric series
∑
Ar(x) which converges at

a point x0 but

lim sup
h→0

∑
Ar(x0)

sin rh

rh
=∞ (23)

and hence
∑
Ar(x0) is not (R, 1) summable.

Proof. Without loss of generality we can take x0 = 0. Let us take the series∑
ar of Theorem 8.1 and consider the series

∑
Ar(x) where Ar(x) = ar cos rx.

Then
∑
Ar(x) converges at x = 0. So by taking x0 = 0 and applying (22) the

relation (23) holds for x0 = 0, proving the theorem.

Theorem 8.2 shows that Theorem 5.1 and Theorem 5.2 do not hold for
k = 1.
Consider the trigonometric series

∑
Ar(x) =

∑
ar cos rx where ar are as in

Theorem 8.1. Since ar satisfies (21) the once integrated series
∑
ar

sin rx
r of∑

Ar(x) converges uniformly and absolutely to a function, say L(x) and hence
by Theorem 6.1

∆s
1(L;x, 2h)

2h
=
∑

ar cos rx

(
sin rh

rh

)
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which gives by (22)

lim sup
h→0

∆s
1(L; 0, 2h)

2h
=∞. (24)

However in (24) approximate limit exists and

lim
h→0

ap
∆s

1(L; 0, 2h)

2h
= lim

h→0
ap
∑

ar
sin rh

rh
=
∑

ar.

For, Rajchmann and Zygmund (see [29], Lemma 24) proved that if a series∑
Cr of constant terms converges to s then

lim
h→0

ap
∑

Cr
sin rh

rh
= s.

This result shows that if a series is convergent and if it is not (R, 1)-summable
then it has a property which may be called approximately (R, 1)-summable.

We need the following theorem of Hardy.

Theorem 8.3. The series
∑

n−beAina where A > 0, 0 < a < 1, b = β + iγ,

is (C, k) summable for k > −1 if and only if (k + 1)a+ β > 1.

This is proved in ([6]; p 141, Theorem 84).

Theorem 8.4. There exists a series which is not convergent, but is (R, 2)
summable.

Proof. Putting A = 1, a =
1

2
= b the series in Theorem 8.3 becomes∑

n−
1
2 ein

1
2 . Since in this case (k+1)a+β = (k+1)

1

2
+

1

2
=
k

2
+1 > 1 if and

only if k > 0, by Theorem 8.3 the series
∑

n−
1
2 ein

1
2 is (C, k) summable if

and only if k > 0. So,
∑

n−
1
2 ein

1
2 is not convergent but is (C,

1

2
) summable.

Again by Theorem 7.1 (C,
1

2
) summability implies (R, 2) summability. Hence

the series
∑

n−
1
2 ein

1
2 is (R, 2) summable. This completes the proof.
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