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A MODIFICATION OF THE
CHANG-WILSON-WOLFF INEQUALITY

VIA THE BELLMAN FUNCTION

Abstract

We describe the Bellman function technique for proving sharp in-
equalities in harmonic analysis. To provide an example along with
historical context, we present how it was originally used by Donald
Burkholder to prove Lp boundedness of the ±1 martingale transform.
Finally, with Burkholder’s result as a blueprint, we use the Bellman
function to prove a new result related to the Chang-Wilson-Wolff In-
equality.

1 Introduction

The Bellman function technique, named for applied mathematician Richard
Bellman, is a tool that has been imported from the applied field of stochastic
optimal control, and is now being used to tackle problems in probability and
harmonic analysis. It was introduced to the world of analysis by Donald
Burkholder, who in [2] used it to prove that the ±1 transform of a martingale
is a bounded operator on Lp. We will borrow Burkholder’s ideas to prove a
new result concerning the exponential integrability of dyadic martingales.

Section 2 is expository. We briefly summarize Burkholder’s use of the
Bellman function to prove a sharp martingale inequality. This will serve as
homage to Burkholder, the pioneer, and provide some historical context. As
importantly, it will give a template upon which we will build the proof of our
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main result. The Bellman function technique is much easier to demonstrate
than it is to describe abstractly.

In section 3, we introduce a well known inequality from harmonic analysis
due to Chang, Wilson, and Wolff which classifies the order of local integrability
of a function whose dyadic square function is bounded. Their result says that
given a function f : [0, 1)→ R and its dyadic square function Sf ,∫ 1

0

ef(x)−〈f〉[0,1)dx ≤ e 1
2‖(Sf)

2(x)‖L∞ .

Next, we address a related question from [8]. Namely, we explore whether
there exists a constant α such that∫ 1

0

ef(x)−〈f〉[0,1)dx ≤
∫ 1

0

eα(Sf)
2(x)dx

and if so, what the smallest valid choice of α is. Stated probabilistically, given
a dyadic martingale with f0 = 0, what is the smallest α such that

Eefn ≤ Eeα(Sfn)
2

?

We use the Bellman function to prove, without constructing an explicit exam-
ple, that α = 2 makes this inequality sharp.

Lastly, in section 4, we provide an alternate proof of our inequality by
applying Cauchy-Schwarz to a result known as Rubin’s lemma. We attempt
to construct an example of a martingale which shows α = 2 is sharp, but
come up short. Our example pushes α up to log2(e) ≈ 1.44, but finding the
extremal martingale is left for future work.

2 Bellman Function Technique

We begin by illustrating the utility of the Bellman function. We shall sum-
marize Burkholders arguments, which we will repurpose for our own problem
later on. The exposition roughly follows that of [6].

Definition 2.1. Let (Ω,F ,P) be a probability space filtered by {Fn}. Then
the sequence of random variables {fn} is called a martingale if for each n ∈ N

1. fn is Fn measurable,
(i.e., {fn} is adpapted to the filtration {Fn})

2. ‖fn‖L1 <∞,
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3. E[fn+1|Fn] = fn.

If we replace the equality in condition 3 with ≤ or ≥, {fn} is called a
supermartingale or submartingale respectively.

Definition 2.2. Let {fn} be a martingale. Define df0 = f0 and dfn = fn −
fn−1 for n > 0. {dfn} is called the difference sequence of fn.

Note that {dfn} is adapted to Fn and E[dfn+1|Fn] = 0. It is often useful
to express a martingale as the sum of its difference sequence, fn =

∑n
k=0 dfk.

Definition 2.3. Let {fn} be a martingale, and define

gn =

n∑
k=0

εkdfk

where {εk} is a deterministic sequence, all of whose terms are ±1. {gn} is
called a ±1 transform of {fn}.

In [2], Burkholder used the Bellman function technique to prove the fol-
lowing result.

Theorem 2.4. There is a constant βp such that if {gn} is a ±1 transform of
{fn}, then for all n ∈ N and 1 < p <∞

‖gn‖p ≤ βp‖fn‖p. (2.1)

In other words, each ±1 transform is a bounded operator on Lp for 1 < p <
∞. Theorem 1 has an interesting corollary, which highlights the connection
between harmonic analysis and probability. Theorem 1 implies that the Haar
basis for Lp([0, 1)) is unconditional since the partial sums of a Haar series
are a martingale on ([0, 1),B, | · |) (see [2] or [6] for details). Thinking about
functions as random variables is sometimes a useful perspective in analysis as
it allows us to import tools from probability where it is not obvious that they
belong.

We now outline Burkholder’s proof of Theorem 1 in order to demonstrate
the Bellman function technique and provide a blueprint. Its essence is to relate
the validity of an inequality to the existence of a special function. Often the
existence of the function is easier to prove or disprove than the given inequality.
We will henceforth assume that {fn} is a simple martingale (each fn takes on
finitely many values and eventually fn = fn+1 = . . . ). Passage to the general
case follows from an approximation argument.

Theorem 2.5. Suppose there exists a function B : R2 → R with the following
three properties.
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1. (Majorization) B(x, y) ≥ xp − βppyp := V (x, y)

2. (Concavity) For all x, y, t1, t2 ∈ R, ε = ±1, and α ∈ (0, 1) such that
αt1 + (1− α)t2 = 0, we have

αB(x+ t1, y + εt1) + (1− α)B(x+ t2, y + εt2) ≤ B(x, y)

3. (Initial condition) B(x,±x) ≤ 0

Then (2.1) holds.

As promised, we’ve reduced the veracity of (2.1) to the existence of a
certain function with special properties. Note that, due to the majorization
property, the existence of B depends on our choice of β and p. This is to be
expected because (1) may hold for some β and p but not others.

B is actually not the Bellman function, but a pointwise majorant of it. The
definition of Bellman function and its relationship to our B will be discussed
momentarily.

The first property states that B dominates a function V whose definition
is suggested by the inequality we’re after. Note that (2.1) is equivalent to
EV (fn, gn) ≤ 0. Property 2 says that B is “diagonally concave,” i.e., it is
concave along the lines of slope ±1. This implies EB(x + ξ, y ± ξ) ≤ B(x, y)
for all mean zero random variables ξ by Jensen’s inequality. The form of this
concavity condition also varies with the inequality to be proven. It is chosen
so that {B(fn, gn)} is a supermartingale.

Lemma 2.6. If B satisfies condition 2 in Theorem 2.5, then {B(fn, gn)} is
a supermartingale.

Proof.

E[B(fn+1, gn+1)|Fn] = E[B(fn + dfn+1, gn ± dfn+1)|Fn] (2.2)

≤ E[B(fn, gn)|Fn] (2.3)

= B(fn, gn) (2.4)

where (2.2) uses that gn is a ±1 transform of fn and (2.3) is from apply-
ing condition 2 in Theorem 2.5 conditionally. (2.4) is because (fn, gn) is Fn
measurable.

We now prove Theorem 2.5.
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Proof. Recall that it suffices to show EV (fn, gn) ≤ 0.

EV (fn, gn) ≤ EB(fn, gn) (2.5)

= E
[
E[B(fn, gn)|Fn−1]

]
(2.6)

≤ EB(fn−1, gn−1) (2.7)

where (2.5) follows from majorization (2.6) is because conditional expectation
preserves expectation. (2.7) is from the fact that {B(fn, gn)} is a supermartin-
gale. Repeating the argument n times, we get

EV (fn, gn) ≤ EB(f0, g0) = EB(df0,±df0) ≤ 0.

The final inequality is from the initial condition.

With Theorem 2.5 proved, we can now prove Theorem 2.4 by producing an
appropriate B. However, we can actually do more. In fact, given a 1 < p <∞
and βp, if no such B exists, then (2.1) is false.

Theorem 2.7. Given 1 < p < ∞ and βp, (2.1) holds if and only if there
exists a function B with the three properties from Theorem 2.

Proof. We know that if B exists, then (2.1) holds by Theorem 2.5. Now we
must show that if (2.1) holds, then B exists.

Let M(x, y) be the set of all R2 valued martingales (fn, gn) such that
(f0, g0) ≡ (x, y) and dgn = ±dfn for n ≥ 1. We define the Bellman function
as follows.

B(x, y) := sup{EV (fn, gn) : (fn, gn) ∈M(x, y)}
We will show that B is the desired function B possessing the three prop-

erties. Majorization is straightforward. Observe that the deterministic pair
(x, y) ∈ M(x, y). The initial condition B(x,±x) ≤ 0 follows from (2.1). To
show concavity, we use a ”splicing argument.” Take x, y, t1, t2, α, ε as in the
statement of the concavity condition. Choose any (fan , g

a
n) ∈M(x+t1, y+εt1)

and (f bn, g
b
n) ∈ M(x + t2, y + εt2). We may assume the pairs are given on

([0, 1),B, | · |). We will define another martingale by ”splicing” these two. Let
(f0, g0) ≡ (x, y) and for n ≥ 0 let

(fn+1, gn+1)(ω) =

{
(fan , g

a
n)(ωα ) ω ∈ [0, α)

(f bn, g
b
n)(ω−α1−α ) ω ∈ [α, 1)

.

One can check that {(fn, gn)} ∈ M(x, y), and

B(x, y) ≥ EV (fn, gn) = αEV (fan , g
a
n) + (1− α)EV (f bn, g

b
n).
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Taking the supremum over all such (fan , g
a
n) and (f bn, g

b
n) yields

B(x, y) ≥ αB(x+ t1, y + εt1) + (1− α)B(x+ t2, y + εt2).

The last thing that must be checked is that B is finite on all of R2. We know
B ≥ V > −∞ so we only need to check B(x, y) < ∞. The initial condition
says that B(x,±x) ≤ 0. Now suppose |x| 6= |y| and let (fn, gn) ∈M(x, y). We
construct another martingale (f ′n, g

′
n) as follows (again we may assume our

martingales are defined on ([0, 1),B, | · |).

(f ′0, g
′
0) ≡ (

x+ y

2
,
x+ y

2
)

(f ′1, g
′
1)(ω) =

{
(x, y) ω ∈ [0, 12 )

(y, x) ω ∈ [ 12 , 1)

(f ′n, g
′
n)(ω) =

{
(fn−1, gn−1)(2ω) ω ∈ [0, 12 )

(y, x) ω ∈ [ 12 , 1)

where the last equality holds for n ≥ 2. Note that f ′ is a ±1 transform of g′

and

0 ≥ EV (f ′n, g
′
n) =

1

2
V (y, x) +

1

2
EV (fn−1, gn−1).

Taking the supremum over all (fn, gn) ∈ M(x, y) gives B(x, y) ≤ −V (y, x) <
∞ and we’re done.

Equipped with Theorem 2.7, we can do more than just prove our inequality.
We can find the optimal constant βp. If B does not exist when βp < Cp but
B does exist when βp ≥ Cp, then Cp is optimal. We will not construct B
here because our intention is not to reproduce Burkholder’s result, but rather
demonstrate the utility of his approach and provide a blueprint for proving
our new inequality.

3 A modification of the Chang-Wilson-Wolff Inequality

Let f ∈ L1(I) for some real interval I. Let Fn be the σ algebra generated
by the dyadic subintervals of I of length |I|2−n and let F =

⋃
Fn. Then

fn = E[f |Fn] is a martingale on the probability space (I,F , |·||I| ). Due to the

dyadic filtration, such a martingale is called a dyadic martingale.
Now define Sfn = ‖{dfn}‖`2 =

√∑n
k=1(dfk)2 and let Sf = lim

n→∞
Sfn. In

the context of probability, the sequence {Sfn} is called the quadratic variation
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of the martingale {fn}. In the Littlewood-Paley theory of harmonic analysis,
Sf is called the dyadic square function of f and is the discrete counterpart
of the Lusin area function, whose definition would take us too far from our
present goal. For a description of the connection between the square function
and the Luzin area function, refer to [5]. For a survey of the role of square
functions in harmonic analysis, consult [9].

In [3], the authors answer a question posed by the illustrious harmonic
analyst Elias Stein. The question concerns the size of the functions in a certain
subspace of BMO: What is the sharp order of local integrability of a function
f with a pointwise bounded square function Sf? Suppose for simplicity and
concreteness that f ∈ L1([0, 1)). The authors show that∫ 1

0

ef(x)−〈f〉[0,1)dx ≤ e
1
2‖Sf‖

2
L∞
[0,1) . (3.1)

This result, called the Chang-Wilson-Wolff inequality, can be used to show
that if Sf is bounded, then f is exponentially square integrable [7].

In [8], the authors explore a related question: Is there a constant α such
that ∫ 1

0

ef(x)−〈f〉[0,1)dx ≤
∫ 1

0

eα(Sf)
2(x)dx? (3.2)

Inspired by their work, our goal in this section is to use the Bellman function
technique to find the smallest such α. In the language of probability, given a
dyadic martingale with f0 = 0, is there a constant α such that for each n ∈ N

Eefn ≤ Eeα(Sfn)
2

? (3.3)

If so, what is the smallest such α? We shall use Burkholder’s approach as a
blueprint. As before, the veracity of (3.3) can be recast as a question of the
existence of a special function satisfying three properies. The nature of these
properties are gleaned from the details of the inequality we are after.

Theorem 3.1. (3.3) holds if and only if there exists a function B : R ×
[0,∞)→ R with the following three properties.

1. (Majorization) B(x, y) ≥ ex − eαy := V (x, y)

2. (Concavity) B(x+δ,y+δ2)+B(x−δ,y+δ2)
2 ≤ B(x, y) for any δ ∈ R

3. (Initial condition) B(0, 0) ≤ 0
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Remark: As before, property 2 has a probabilistic interpretation. Given
any discrete random variable ξ with P(ξ = δ) = P(ξ = −δ) = 1

2 , we have
EB(x+ ξ, y + ξ2) ≤ B(x, y).

Proof. The proof is the same as those of Theorems 2.5 and 2.7 in the previous
section, only adapted to the present inequality. Keep in mind that we are
assuming throughout {fn} is a simple dyadic martingale with f0 = 0. First,
assume B exists. Then B(fn, (Sf)2n) is a supermartingale. Indeed,

E[B(fn+1, (Sf)2n+1)|Fn] = E[B(fn + dfn+1, (Sf)2n + (df)2n+1)|Fn] (3.4)

≤ E[B(fn, (Sf)2n)|Fn] (3.5)

= B(fn, (Sf)2n) (3.6)

where (3.5) is from applying the concavity property. Therefore, we have

EV (fn, (Sf)2n) ≤ EB(fn, (Sf)2n) (3.7)

= E
[
E[B(fn, (Sf)2n)|Fn−1]

]
(3.8)

≤ EB(fn−1, (Sf)2n−1) (3.9)

where (3.7) follows from majorization and (3.9) from the fact that
{B(fn, (Sf)2n)} is a supermartingale. Repeating the argument n times, we get

EV (fn, (Sf)2n) ≤ EB(f0, (Sf)20) = EB(0, 0) ≤ 0.

To prove the other direction, we assume (3.3) holds, and construct B. As
before, we define the Bellman function

B(x, y) := sup{EV (fn, (Sf)2n) : (fn, (Sf)2n) ∈M(x, y)}

where M(x, y) is the set of all R × [0,∞) valued processes (fn, (Sf)2n) such
that {fn} is a dyadic martingale with f0 = x and (Sf)2n = y +

∑n
k=1(dfk)2

where df0 := 0. Again, as before, we show that B satisfies the three properties.
Majorization follows from observing the constant pair (x, y) ∈M(x, y) and

the initial condition follows from (3.3). Once again, we can get concavity by
a splicing argument.

Choose any (fan , (Sf
a
n)2) ∈ M(x + δ, y + δ2) and (f bn, (Sf

b
n)2) ∈ M(x −

δ, y+ δ2). We may assume the pairs are given on ([0, 1),B, | · |). We will define
another martingale by “splicing” these two. Let (f0, (Sf0)2) ≡ (x, y) and for
n ≥ 0

(fn+1, (Sfn+1)2)(ω) =

{
(fan , (Sf

a
n)2)(2ω) ω ∈ [0, 12 )

(f bn, (Sf
b
n)2)(2(ω − 1

2 )) ω ∈ [ 12 , 1)
.
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One can check that {(fn, (Sfn)2)} ∈ M(x, y), and

B(x, y) ≥ EV (fn, (Sfn)2) =
EV (fan , (Sf

a
n)2) + EV (f bn, (Sf

b
n)2)

2
.

Taking the supremum over all such (fan , (Sf
a
n)2) and (f bn, (Sf

b
n)2) yields

B(x+ δ, y + δ2) + B(x− δ, y + δ2)

2
≤ B(x, y).

Finally, we must show B is finite on R × [0,∞). We know −∞ < V ≤ B,
so we only need to show B < ∞. It follows from the definition of B that
B(x + δ, y + δ

α ) = eδB(x, y) for any δ ∈ R such that y + δ
α ≥ 0. Hence it

suffices to show that B is finite along the x axis. Using the concavity property,
we have

B(x, 0) ≥ B(x+ δ, δ2) + B(x− δ, δ2)

2

=
eαδ

2B(x+ δ − αδ2, 0) + eαδ
2B(x− δ − αδ2, 0)

2
.

Therefore,

B(x+ δ − αδ2, 0) ≤ 2e−αδ
2

B(x, 0)− B(x− δ − αδ2, 0)

≤ 2e−αδ
2

B(x, 0)− V (x− δ − αδ2, 0).

The initial condition says that B(0, 0) ≤ 0, and we can see from the definition
that B is non-decreasing in the positive x direction, so B(x, 0) ≤ 0 for all
x ≤ 0. Furthermore, this monotonicity means it suffices to show B(xn, 0) <∞
for some sequence xn → ∞. If we take δ small enough that δ − αδ2 > 0, we
obtain the following sequence of inequalities.

B(δ − αδ2, 0) ≤ 2e−αδ
2

B(0, 0)− V (−δ − αδ2, 0) <∞

B(2(δ − αδ2), 0) ≤ 2e−αδ
2

B(δ − αδ2, 0)− V (−2αδ2, 0) <∞

B(3(δ − αδ2), 0) ≤ 2e−αδ
2

B(2(δ − αδ2), 0)− V (δ − 3αδ2, 0) <∞
. . .

B(n(δ − αδ2), 0) ≤ 2e−αδ
2

B((n− 1)(δ − αδ2), 0)−V ((n− 2)δ − nαδ2, 0) <∞
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Searching for a Bellman Function Candidate

What remains is to find a function B so that we may apply Theorem 3.1. Our
reasoning along the way needn’t be rigorous or even correct because once we
arrive at a candidate B, we will prove that it has the three properties. The
purpose of this section is to demonstrate how one might approach the task of
searching for B. Our approach will be to build a PDE. It should be noted that,
a priori, we don’t even know that a differentiable B exists, but the purpose of
this section is not to rigorously prove anything. Rather, it is to explain how
one might arrive at a candidate, which we can then test for the three required
properties.

First, we expand the concavity condition B(x−δ,y+δ2)+B(x+δ,y+δ2)
2 ≤ B(x, y)

as a Taylor series in δ and subtract B(x, y) from both sides.

δ2

2
(Bxx(x, y) + 2By(x, y)) +O(δ3) ≤ 0

Dividing through by δ2

2 and letting δ → 0 yields

Bxx(x, y) + 2By(x, y) ≤ 0. (3.10)

So B is a subsolution of the reverse heat equation.
A common strategy is to search for Bellman candidates which share certain

homogeneity properties with V .1 In our case, we have

V
(
x+ δ, y +

δ

α

)
= ex+δ − eα(y+ δ

α ) = eδV (x, y).

Let δ = −αy. Then
V (x− αy, 0) = e−αyV (x, y).

Note that functions with this property are completely determined by their
values along the x axis. We shall search for a B that shares this property.
Define f(x) = B(x, 0) and assume B has the form

B(x, y) = eαyf(x− αy). (3.11)

Plugging (3.11) into (3.10) and replacing the inequality with an equation gives

eαyf ′′(x− αy)− 2αeαyf ′(x− αy) + 2αeαyf(x− αy) = 0. (3.12)

1Recall, we are merely looking for a pointwise majorant B of the true Bellman function
B. The latter must possess this homogeneity property by its definition. Perhaps there are
other B that don’t share this property, but we shall search for those which do.
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Dividing through by eαy reveals a second order ODE with constant coefficients.
The solutions to the characteristic equation are α±

√
α2 − 2α. If α < 2 then

these solutions are complex, meaning f oscillates. Thus B(x, 0) = f(x) will
have no hope of dominating V (x, 0) = ex − 1. On the other hand, if α = 2,
then f(x) = C1xe

2x + C2e
2x. We must select C1 and C2 such that f(x) =

B(x, 0) ≥ V (x, 0) = ex − 1 (majorization) and f(0) = B(0, 0) ≤ V (0, 0) =
0 (initial condition). Given these constraints, we find f(x) = xe2x and so
our Bellman function candidate is B(x, y) = (x − 2y)e2x−2y. Unfortunately,
this is not a valid B as the concavity property is violated. For example,
B(1−δ,1+δ2)+B(1+δ,1+δ2)

2 → 0 as δ → ∞ but B(1, 1) = −1. Interestingly,
although this line of thinking produced the wrong B, it produced the correct
α. It turns out 2 is the sharp constant in (3.3).

Why did our reasoning produce a bad B? One potential problem is that,
assuming B is smooth, (3.10) is a consequence of the concavity condition, not
equivalent to it. Also, turning our differential inequality

f ′′ − 2αf ′ + 2αf ≤ 0. (3.13)

into an equation was unjustified even though doing so produced the optimal
α.

All hope is not lost, however. We know that some B have the form (3.11).
Furthermore, we know that any correct B must satisfy (3.13) with f(0) = 0
and f ′(0) = 1 (to ensure compliance with the majorization property and the
initial condition). It just turns out that the solution to (3.13) with equality
does not produce a valid B. In situations like these, there is no shame in
using guess and check as a preliminary strategy. That is, choosing solutions to
(3.13) which obey the initial conditions and testing the corresponding B(x, y)
for the concavity property. f(x) = e2x − ex is such a function (for α = 2) and
the associated Bellman candidate is B(x, y) = e2x−2y − ex. If we prove this B
has the three desired properties, we’ve shown (3.3) holds with α = 2.

Theorem 3.2. Suppose {fn} is a dyadic martingale with f0 = 0. Then

Eefn ≤ Ee2(Sfn)
2

.

Proof. B(x, y) = e2x−2y − ex obeys the three properties from Theorem 3.1.
We begin with majorization. Using the inequality 1− et ≤ e−t − 1 we have

V (x, y) = ex − e2y = ex(1− e2y−x) ≤ ex(ex−2y − 1) = B(x, y).
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Next, we show that B satisfies the concavity condition.

B(x+ δ, y + δ2) +B(x− δ, y + δ2)

2

=
e2(x+δ)−2(y+δ

2) − ex+δ + e2(x−δ)−2(y+δ
2) − ex−δ

2

= e2x−2y−2δ
2

cosh 2δ − ex cosh δ

≤ e2x−2y − ex = B(x, y)

In the last line, we use the inequality 1 ≤ cosh t ≤ e
t2

2 . Lastly, the initial
condition is immediate: B(0, 0) = 0.

At this point, we’ve answered half of our original question: (3.3) holds with
α = 2. To show that α = 2 is minimal, we must show that the three properties
in Theorem 3.1 are mutually incompatible when α < 2. Then Theorem 3.1
implies (3.3) is false for this range of α.

Our strategy will be to prove that the Bellman function cannot possess the
three properties assuming it is twice continuously differentiable. Then we will
drop this assumption using a mollification argument. This scheme will first
require a couple of lemmas about a class of differential inequalities.2

Lemma 3.3. If g : R→ R satisfies g′′ ≤ −bg where b is some positive constant
and g(x0) > 0, then there is some x > x0 such that g(x) = 0.

Proof. Of course, by the intermediate value theorem, it suffices to show that
eventually g(x) ≤ 0. Suppose for contradiction that g(x) > 0 for all x > x0.
Then on [x0,∞), g′ is monotonically decreasing because g′′ ≤ −bg < 0. Thus
lim
x→∞

g′(x) exists and is either finite or −∞. Call this limit L.

If L < 0, then we are done because g′(x) is eventually bounded above by
L+ ε < 0 and thus g(x)→ −∞.

On the other hand, suppose that L ≥ 0. Then g′(x) ≥ 0 for all x ≥ x0,
and thus for such x we have g(x) ≥ g(x0).

Now fix ε ∈
(

0, bg(x0)
2

)
. Select c such that |g′(x) − L| < ε when x > c.

Lastly, choose x1 and x2 such that c < x1 < x2 and x2 − x1 > 2. Then for

2The author thanks Iosif Pinelis for his assistance provided via mathoverflow.net in the
proof of these lemmas.
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some t ∈ (x1, x2) we have

g′′(t) =
g′(x2)− g′(x1)

x2 − x1
≥ L− ε− (L+ ε)

x2 − x1

=
−2ε

x2 − x1
≥ −ε

≥ −bg(x0)

2
.

Therefore,

−bg(x0)

2
≤ g′′(t) ≤ −bg(t) ≤ −bg(x0)

which gives our contradiction.

Lemma 3.4. Suppose g : R → R satisfies g′′ ≤ −bg where b is some real
positive constant. If g(x0) > 0 then g(x) = 0 for some x ∈

[
x0, x0 + π√

b

]
.

Proof. We break into two cases.

Case 1: g′(x0) ≤ 0
Let x1 = min{x > x0 : g(x) = 0}. We know x1 exists by the previous lemma.
Note that g′′ ≤ −bg ≤ 0 on [x0, x1] since g ≥ 0 there. Hence g′ ≤ 0 on [x0, x1]
because g′(x0) ≤ 0 and g′ is decreasing. Let E(x) = g′(x)2 + bg(x)2. Then for
all x ∈ [x0, x1]

E′(x) = 2g′(x)g′′(x) + 2bg(x)g′(x)

= 2g′(x)(g′′(x) + bg(x))

≥ 0.

Therefore, E(x0) ≤ E(x) for all x ∈ [x0, x1], i.e., g′(x0)2 + bg(x0)2 ≤ g′(x)2 +
bg(x)2. Thus, recalling that g′(x) ≤ 0, we have

1 ≤ −g′(x)√
g′(x0)2 + bg(x0)2 − bg(x)2

.
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Integrating both sides over the interval [x0, x1] yields

x1 − x0 ≤
−1√
b

sin−1

(
g(x)

√
b

g′(x0)2 + bg(x0)2

)∣∣∣∣∣
x=x1

x=x0

=
−1√
b

[
sin−1(0)− sin−1

(√
bg(x0)2

g′(x0)2 + bg(x0)2

)]

≤ −1√
b

(0− sin−1(1))

=
π

2
√
b
.

Case 2: g′(x0) > 0
This time we let x2 = min{x > x0 : g(x) = 0}. Again we note that g′′ ≤ 0
on [x0, x2]. Therefore, there is a point x1 ∈ [x0, x2] such that g′(x1) = 0
with g′ > 0 on [x0, x1] and g′ < 0 on [x1, x2]. From Case 1, we know that
x2 − x1 ≤ π

2
√
b
. It suffices to show x1 − x0 ≤ π

2
√
b
.

Recall E(x) = g′(x)2 + bg(x)2 and E′(x) = 2g′(x)(g′′(x) + bg(x)). Since
g′ ≥ 0 on [x0, x1], E′(x) ≤ 0 there. Thus on that interval, we have g′(x)2 +
bg(x)2 ≥ g′(x1)2 + bg(x1)2 = bg(x1)2 which implies

1 ≤ g′(x)√
bg(x1)2 − bg(x)2

.

As before, we integrate both sides over [x0, x1] to get

x1 − x0 ≤
1√
b

sin−1
(
g(x)

g(x1)

)∣∣∣∣x=x1

x=x0

=
1√
b

[
sin−1(1)− sin−1

(
g(x0)

g(x1)

)]
≤ π

2
√
b
.

Theorem 3.5. If B(x, 0) ∈ C2(R), then α = 2 is the minimal constant such
that (3.3) holds. Here B is the theoretical Bellman function as in the the proof
of Theorem 3.1.

Proof. Recall that B(x, y) = sup{EV (fn, (Sf)2n) : (fn, (Sf)2n) ∈ M(x, y)}
where M(x, y) is the set of all R × [0,∞) valued processes (fn, (Sf)2n) such
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that {fn} is a dyadic martingale with f0 = x and (Sf)2n = y+
∑n
k=1(dfk)2. By

the proof of Theorem 3.1, B satisfies the majorization and concavity properies
as well as the initial condition as long as (3.3) holds. We will show that if
α < 2, B does not obey these properties, and thus (3.3) is false.

From the definition of B, we have

eαyB(x− αy, 0) = B(x, y).

This is essentially a consequence of the fact that V has this property. Thus,
as before, if we define f(x) = B(x, 0) then B has the form

B(x, y) = eαyf(x− αy). (3.14)

Plugging (3.13) into the concavity property and setting y = 0 gives

f(x− δ − αδ2) + f(x+ δ − αδ2)

2
≤ e−αδ

2

f(x). (3.15)

If we express f as a second order Taylor polynomial in δ centered at x (valid
because we are assuming f ∈ C2), then (3.14) becomes

f(x)− αδ2f ′(x) +
δ2

2
f ′′(x) +O(δ3) ≤ e−αδ

2

f(x)

= f(x)− αδ2f(x) +O(δ4).

Dividing through by δ2

2 and letting δ → 0, we get

f ′′(x)− 2αf ′(x) + 2αf(x) ≤ 0. (3.16)

Multiply both sides by e−αx to get

e−αxf ′′(x)− 2αe−αxf ′(x) + 2αe−αxf(x)

=
(
e−αxf(x)

)′′
+ (2α− α2)e−αxf(x) ≤ 0.

Letting g(x) := e−αxf(x) and b := 2α− α2 we have g′′ + bg ≤ 0.
Suppose3 0 < α < 2 so that b > 0. Then by Lemma 3.3, g(x) ≤ 0 and thus

f(x) ≤ 0 for some x > 0. Hence, for this x, B(x, 0) = f(x) ≤ 0 < V (x, 0) =
ex − 1. Therefore, for this range of α, the Bellman function B cannot possess
both the majorization and concavity properties of Theorem 3.1, and (3.3) is
false.

3Assuming α > 0 is valid because if (3.3) fails for some α, it clearly fails for all smaller
α.
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The next theorem allows us to drop the smoothness assumption on B.
However, we will use a mollification argument which requires B to be contin-
uous. We will subsequently show that the continuity of B is a consequence of
the concavity property.

Theorem 3.6. If B(x, 0) is continuous, then α = 2 is the minimal constant
such that (3.3) holds.

Proof. Let η(x) be the standard mollifier.

η(x) :=

{
Ce

1
x2−1 if |x| < 1

0 if |x| ≥ 1

with C > 0 chosen so that
∫
R η(x)dx = 1. Let ηε(x) := 1

ε η(xε ). Convolving
both sides of (3.15) with ηε gives

fε(x− δ − αδ2) + fε(x+ δ − αδ2)

2
≤ e−αδ

2

fε(x)

where fε = f ∗ ηε.
fε ∈ C∞(R), so by the proof of the previous theorem, we have g′′ε + bgε ≤ 0

where gε(x) := e−αxfε(x) and b := 2α− α2. As before, we suppose 0 < α < 2
so that b > 0.

Fix ε′ > 0. Select x0 such that ε′ < ex0 − 1. Since f is continuous by
assumption, fε → f uniformly on compact sets [4], and we can select ε such
that |f − fε| < ε′ on [x0, x0+ π√

b
]. By Lemma 3.4, there exists x ∈ [x0, x0+ π√

b
]

such that gε(x) ≤ 0 which implies fε(x) ≤ 0. Therefore, for this x, we have

B(x, 0) = f(x) < fε(x) + ε′ ≤ ε′ < ex0 − 1 < ex − 1 = V (x, 0).

Once again, we’ve shown B cannot posses both the majorization and con-
cavity properties of Theorem 3.1, and so (3.3) is false for α < 2 assuming B is
continuous.

Our final task is to justify the assumption that B is continuous. Indeed,
this follows from the concavity property.

Lemma 3.7. Given α ∈ R, if f : R→ R is an increasing function such that

f(x0 − t− αt2) + f(x0 + t− αt2)

2
≤ e−αt

2

f(x0)

for all t, then f is continuous at x0.
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Proof. Let U = lim
x→x+

0

f(x) and L = lim
x→x−0

f(x). U and L exists with L ≤ U

because f is increasing. It suffices to show that L ≥ U .
Fix ε > 0. Choose δ > 0 such that f(x) > L − ε when x ∈ (x0 − δ, x0).

Select t such that

0 < t < min

(
1

α
,

√
δ

α
+

1

4
− 1

2

)
.

Note that this selection of t ensures that 0 < t−αt2 and αt2 + t < δ. Finally,
choose x such that

min(x0 + αt2 − t, x0 + αt2 + t− δ) < x < x0.

Such an x is known to exists since αt2 − t < 0 and αt2 + t < δ. Then we have

x0 − δ < x− αt2 − t < x < x0 < x− αt2 + t

and hence

L− ε+ U

2
≤ f(x− αt2 − t) + f(x− αt2 + t)

2
≤ f(x)e−αt ≤ f(x) ≤ L.

Since ε was arbitrary, we have L+U
2 ≤ L and thus U ≤ L as desired.

We are now prepared to state our main result.

Theorem 3.8. α = 2 is the smallest constant such that

Eefn ≤ Eeα(Sfn)
2

for all dyadic martingales with f0 = 0.

Proof. It is clear from the definition that B(x, 0) is increasing. This fact cou-
pled with the concavity property implies B(x, 0) is continuous by the previous
lemma. Now apply Theorem 3.6.

4 Examples and Future Work

It is worth noting that a simpler proof of Theorem 3.2 exists. It uses a result
known as Rubin’s lemma [7], which says that if {fn} is a real valued dyadic
martingale on [0, 1) whose limit is f , then for all λ ≥ 0,∫ 1

0

eλ(f(x)−〈f〉[0,1))−
λ2

2 (Sf)2(x)dx ≤ 1.
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See [1] for a proof.
We can use the Cauchy-Schwarz inequality with Rublin’s lemma to prove

Theorem 3.2. As usual, we may work on ([0, 1),B, | · |).∫ 1

0

ef(x)−〈f〉[0,1)dx =

∫ 1

0

ef(x)−〈f〉[0,1)−(Sf)
2(x)+(Sf)2(x)dx

≤

√∫ 1

0

e2[f(x)−〈f〉[0,1)]−2(Sf)
2(x)dx

√∫ 1

0

e2(Sf)2(x)dx

≤
√

1

√∫ 1

0

e2(Sf)2(x)dx

≤
∫ 1

0

e2(Sf)
2(x)dx

The Bellman function method is still desirable in at least two ways. First,
it is a general technique for proving inequalities, while this simpler proof is
very particular to the details of our problem. Second, the Bellman function
allowed us to prove the sharpness of Theorem 3.2. The shorter proof would
requiring an accompanying construction of a martingale which maximizes the
left side of the inequality relative to the right side.

Such a construction could provide the basis for some future work. Some-
times, extremal examples can be deduced from the Bellman function itself
(see, e.g. [10]). Although we were unable to do this, we have an example of a
martingale which shows that∫ 1

0

ef(x)−〈f〉[0,1)dx ≤
∫ 1

0

eα(Sf)
2(x)dx (4.1)

is false for α < log2(e) ≈ 1.44. Recall that α = 2 was optimal.

Let f =
∞∑
n=0

χI0n =
∞∑
n=1

nχI1n where Ikn =
[
k
2n ,

k+1
2n

)
. As always, we can think

of f as a dyadic martingale by letting fn = E[f |Dn] where Dn is the σ-algebra
generated by the nth generation of dyadic subintervals of [0, 1). This function
is a discrete approximation of − log2 x has the property that (Sf)2 = f . It is
a ”fixed point” of the operator that sends f 7→ (Sf)2. The left side of (4.1)
becomes ∫ 1

0

ef(x)−〈f〉[0,1)dx ≈
∫ 1

0

e− log2 xdx =

∫ 1

0

x− log2(e)dx =∞.

On the other hand, the right side becomes∫ 1

0

eα(Sf)
2(x)dx =

∫ 1

0

eαf(x)dx ≈
∫ 1

0

e−α log2 xdx =

∫ 1

0

x−α log2(e)dx
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which is finite for α < 1
log2(e)

= ln(2) ≈ .69. So our example falsifies (4.1) for

this range of α.
We can push this example further. [S(λg)]2 = λ2[S(g)]2 for all g follows im-

mediately from the definition of S. Applying this to our present example gives
[S(λf)]2 = λ2[S(f)]2 = λ2f . Plugging λf into (4.1), the left side is approxi-

mately
∫ 1

0
x−λ log2(e)dx and the right side is approximately

∫ 1

0
x−αλ

2 log2(e)dx.

Thus for λ = 1
log2(e)

, the left side is infinite and the right side is finite when

α < log2(e) ≈ 1.44, so f
log2(e)

falsifies (4.1) for this range of α.

We are still left without a martingale showing α = 2 is sharp. While the
Bellman function proof makes it unnecessary, finding an explicit example is
an interesting future problem.

Acknowledgment. The author wishes to thank the referees for their con-
structive critique of the first draft.
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