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Abstract

We show that any equicontractive, self-similar measure arising from
the IFS of contractions (Sj), with self-similar set [0, 1], admits an iso-
lated point in its set of local dimensions provided the images of Sj(0, 1)
(suitably) overlap and the minimal probability is associated with one
(resp., both) of the endpoint contractions. Examples include m-fold
convolution products of Bernoulli convolutions or Cantor measures with
contraction factor exceeding 1/(m + 1) in the biased case and 1/m in
the unbiased case. We also obtain upper and lower bounds on the set
of local dimensions for various Bernoulli convolutions.

1 Introduction

Consider the iterated function system (IFS) consisting of the contractions of
Sj : [0, 1] → [0, 1], with common contraction factor ρ, and probabilities pj ,
j = 0, ...,m ≥ 1. By the equicontractive, self-similar measure associated with
this IFS we mean the unique Borel probability measure µ satisfying

µ =

m∑
j=0

pj · µ ◦ S−1j . (1)
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This measure is supported on the associated self-similar set and is well known
to be either purely absolutely continuous with respect to Lebesgue measure
or purely singular. When S0(x) = ρx, S1(x) = ρx + 1 − ρ and m = 1, the
associated self-similar measures are known as Cantor measures or Bernoulli
convolutions, and are sometimes referred to as unbiased if p0 = p1, or biased
if p0 6= p1.

Our interest is in the local behaviour of these measures. The local dimen-
sion of a measure µ at a point x in the support of µ is defined as

dimloc µ(x) = lim
ε→0

log(µ([x− ε, x+ ε]))

log ε
. (2)

In the case that the IFS satisfies the open set condition, it is well known
that the set of local dimensions of the associated self-similar measure is a
closed interval and there are formulas for the endpoints of the interval which
depend on the contraction factors and the probabilities. See [5] for more
details. For measures that do not satisfy the open set condition the situation
is much less well understood. In [14], Hu and Lau discovered that the 3-fold
convolution of the unbiased middle-third Cantor measure admits an isolated
point in its set of local dimensions. This was later found to be true for certain
other equicontractive self-similar Cantor-like measures arising from IFS which
have enough ‘overlap’, such as the m-fold convolution product of the unbiased
Cantor measure with contraction factor 1/m, [2, 20]. These measures all had
the so-called ‘finite type’ property, a separation condition permitting overlaps,
but stronger than the weak separation condition.

The Bernoulli convolutions with contraction factor the inverse of a Pisot
number1 also have the finite type property. These are particularly interesting
being the only known singular Bernoulli convolutions, see [3, 19, 21]. There is
a long history of studying the dimensionality properties of these measures, c.f.,
[17, 22, 23] and the many references cited therein for historical information. In
[6, 7], Feng conducted a study of mainly unbiased Bernoulli convolutions with
contraction factor the inverse of a simple Pisot number and proved that for
this class of measures the set of local dimensions is an interval. In contrast, in
[11] it was shown that all biased Bernoulli convolutions with these contraction
factors admit an isolated point.

In this paper, we show that any equicontractive, self-similar measure will
admit an isolated point in its set of local dimensions provided the images
of [0, 1] under the contractions strictly overlap and p0 is the unique minimal
probability (Theorem 4). We also prove there is an isolated point if p0 = pm

1A Pisot number is a real algebraic integer, greater than 1, such that all of its Galois
conjugates are strictly less than 1 in absolute value.
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are the unique minimal probabilities and there is ‘sufficient’ overlap (Theorem
7). In particular, we prove that if µ is any Bernoulli convolution or Cantor
measure with contraction factor ρ > 1/(m + 1) in the biased case and ρ >
(
√
m2 + 4−m)/2 in the unbiased case, then the m-fold convolution of µ with

itself has an isolated point in its set of local dimensions, improving upon the
examples given in [2, 20].

In all these cases, the isolated point is the local dimension at 0. This local
dimension at x = 0 is easy to compute and is the maximum local dimension.
A challenging problem is to find sharp bounds for the set of local dimensions
at other x. Upper bounds have recently been found in [1] for special classes of
examples of these measures, including the biased Bernoulli convolutions. Our
arguments of Section 3 also give upper bounds. In Section 4.1 we discuss other
computational techniques that allow us to prove even better upper bounds for
the local dimensions. A variation of these techniques are used in Section 4.2 to
find lower bounds for local dimension in the case where the self-similar measure
satisfies the asymptotically weak separation condition. These techniques are
applied to various Bernoulli convolutions.

2 Terminology and Basic Properties

Throughout the paper we study the IFS (Sj , pj) consisting of the contractions

Sj(x) = ρx+ dj for 0 = d0 < d1 < · · · < dm = 1− ρ, j = 0, ...,m, m ≥ 1 (3)

and probabilities pj > 0,
∑m
j=0 pj = 1, and the associated self-similar measure

µ satisfying (1). We refer to ρ as the contraction factor of the IFS or the
self-similar measure. When m = 1 the associated self-similar measure is a
Cantor measure (when ρ < 1/2) or Bernoulli convolution (when ρ > 1/2). If,
in addition, p0 = p1 = 1/2 (the unbiased case) we often denote the Cantor
measure or Bernoulli convolution by µρ.

We generally assume that di − di−1 ≤ ρ from which it follows that the
associated self-similar set (and hence support of µ) is [0, 1].

The notion of local dimension of a measure was stated in (2). Of course,
the limit need not exist and when we replace the limit by lim sup or lim inf,
then this gives the upper and lower local dimensions of µ at x denoted by
dimlocµ(x) and dimlocµ(x) respectively:

dimlocµ(x) = lim sup
ε→0

log(µ([x− ε, x+ ε]))

log ε
,

dimlocµ(x) = lim inf
ε→0

log(µ([x− ε, x+ ε]))

log ε
.
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Given σ = (σ1, σ2, . . . , σn) ∈ An where A = {0, 1, . . . ,m}, we denote
by Sσ the concatenation Sσ1 ◦ · · · ◦ Sσn and put pσ = pσ1pσ2 . . . pσn . For
σ = (σ1, σ2, σ3, . . . ) ∈ AN we define Sσ(0) = limn→∞ Sσ1σ2...σn(0). We let

E(x) = {σ ∈ AN : Sσ(0) = x}.

If σ = (σi) ∈ E(x) is a presentation of x, then x =
∑
σiρ

i−1(1 − ρ), thus the
set E(x) can be thought of as the set of beta-expansions of x with digit set A,
as first introduced in [16, 18].

We also set

En(x) = {σ ∈ An : there exists τ ∈ AN such that Sστ (0) = x}
= {σ ∈ An : x ∈ Sσ([0, 1])} (4)

and
Nn(x) =

∑
σ∈En(x)

pσ . (5)

Much is known about En(x) and Nn(x), especially when µρ is a unbiased
Bernoulli convolution, see [9, 15] for recent results. In particular, note that if
σ ∈ En(x), then Sσ([0, 1]) ⊂ [x−ρn, x+ρn]. Thus µ([x−ρn, x+ρn]) ≥ Nn(x)
from which the following statement is immediate.

Lemma 1. Assume µ is an equicontractive self-similar measure with contrac-
tion factor ρ. For all x ∈ suppµ we have

dimlocµ(x) ≤ lim sup
n→∞

log(Nn(x))

n log ρ
.

Remark 2. Suppose µ is any equicontractive self-similar measure with con-
traction factor ρ and that |S0(0)− S1(0)| = a. One can easily check that if
σ ∈ An and [0, aρn)∩Sσ[0, 1] is not empty, then σ = (0)n. Thus µ([0, aρn]) ≤
pn0 . Clearly, µ([0, ρn]) ≥ pn0 , hence if J is chosen so ρJ ≤ a, then

pn+J0 ≤ µ([0, ρn+J ]) ≤ µ([0, aρn]) ≤ pn0 .

It follows easily from this that dimlocµ(0) = log p0/ log ρ. A similar statement
holds for dimlocµ(1).

Together with an older result of Erdös, we can quickly deduce that unbi-
ased Bernoulli convolutions with large enough contraction factors have isolated
points in their set of local dimensions. This is essentially proved in [4], but we
include a sketch here for completeness.
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Proposition 3. Let µρ be the unbiased Bernoulli convolution with contraction
factor ρ > (

√
5− 1)/2. Then

sup
x∈(0,1)

dimlocµρ(x) < dimloc µρ(0) = dimloc µρ(1).

Proof. In the proof of Theorem 3 of [4] it is shown that if k is chosen such
that 1 < ρ2 +ρ3 + · · ·+ρk, then for any x ∈ (0, 1), we have #En(x) ≥ c(x)2n/k

for some c(x) > 0 and independent of n. Thus Nn(x) ≥ c(x)2−n(1−1/k).
Appealing to the previous lemma it follows that for all x 6= 0, 1,

dimlocµρ(x) ≤ lim sup
n→∞

log(c(x)2−n(1−1/k))

n log ρ
≤
(

1− 1

k

)
log 2

| log ρ|
.

The conclusion of the proposition holds since dimloc µρ(0) = dimloc µρ(1) =
log 2/ |log ρ|.

3 Isolated points in the set of local dimensions

We will say the IFS of (3) has strict overlap if Sj(1) > Sj+1(0) for each
j = 0, ...,m − 1. Equivalently, Sj(0, 1) ∩ Sj+1(0, 1) 6= ∅ for j = 0, . . . ,m − 1.
An example is the IFS generating the Bernoulli convolution with contraction
factor ρ > 1/2.

Theorem 4. Suppose µ is an equicontractive, self-similar measure associated
with the IFS (Sj , pj) of (3) that has the strict overlap property. If p0 < pj for
all j 6= 0, then

sup
x6=0

dimlocµ(x) < dimloc µ(0)

and thus dimloc µ(0) is an isolated point in the set {dimloc µ(x) : x ∈ suppµ}.

Proof. The strict overlap property is equivalent to the inequalities dj−1+ρ >
dj for all j = 1, . . . ,m, thus we can choose 0 < ξ < ρ so dj−1 + ρ > dj + ξ for
all j = 1, . . . ,m. Choose an integer J > 0 such that ρJ < ξ.

We claim any x 6= 0 has a presentation (ak) where the density of indices k
with ak 6= 0 exceeds 1/J . Assume pi = minj 6=0 pj . It follows from the claim

that if x 6= 0 and n is large, then Nn(x) ≥
(
p
1/J
i p

(J−1)/J
0

)n
, and hence by

Lemma 1

dimlocµ(x) ≤ log pi + (J − 1) log p0
J log ρ

<
log p0
log ρ

= dimloc µ(0),

proving the result.
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To prove the claim, we will give an iterative algorithm for producing such a
presentation. This algorithm is essentially the lazy expansion of x with respect
to the alphabet A = {0, 1, ...,m}. To begin, if x ∈ [0, d1 + ξ] ⊆ S0[0, 1] choose
a1 = 0; if x ∈ (dj + ξ, dj+1 + ξ] ⊆ Sj [0, 1] for j = 1, . . . ,m − 1 take a1 = j;
and if x ∈ (dm−1 + ξ, 1] ⊆ Sm[0, 1] take a1 = m.

Assuming a1, . . . , aN have been chosen, set σ = (a1, . . . , aN ). Then x ∈
Sσ[0, 1]. We put aN+1 = 0 if x ∈ Sσ[0, d1 + ξ], aN+1 = j if x ∈ Sσ(dj +
ξ, dj+1 + ξ] and aN+1 = m if x ∈ Sσ(dm−1 + ξ, 1].

Suppose x 6= 0 has presentation (ak) under this algorithm. As x 6= 0, there
is some index n such that an 6= 0, say an = j for j 6= 0. We will see that it is
not possible for all of an+1, . . . , an+J = 0. Without loss of generality j 6= m.
(The arguments are similar when j = m and will be left for the reader.) Put
σ = (a1, . . . , an−1). Then x ∈ Sσ(dj + ξ, dj+1 + ξ], hence x− Sσ(dj) ≥ ξρ|σ|.
If all an+j = 0 for j = 1, . . . , J , then

x ∈ Sσj 0 · · · 0︸ ︷︷ ︸
J−1

[0, d1 + ξ] ⊆ Sσj 0 · · · 0︸ ︷︷ ︸
J−1

[0, ρ].

Thus

x ≤ supSσj 0 · · · 0︸ ︷︷ ︸
J−1

[0, ρ] = Sσ(dj) + ρJ+|σ|

< Sσ(dj) + ξρ|σ|,

which is a contradiction.

Note that the proof actually establishes that

sup
x 6=0

dimlocµ(x) ≤
log(minj 6=0 pj) +

(
log ξ
log ρ − 1

)
log p0

log ξ

where ξ = minj=1,....,m(dj−1 + ρ − dj). The corollary below is a special case
of this.

Corollary 5. If µρ is a biased Bernoulli convolution with ρ > (
√

5−1)/2 and
p0 < p1, then

sup
x 6=0

dimlocµρ(x) ≤ 2/3 log p0 + 1/3 log(1− p0)

log ρ
.

Proof. In the notation of the proof of Theorem 4 we can choose any ξ <
2ρ − 1. As ρ3 = 2ρ − 1 when ρ = (

√
5 − 1)/2, it follows that we can choose

ξ > ρ3.
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Remark 6. The m-fold convolution of a measure can be defined inductively
as µm = µm−1 ∗ µ. For the purposes of this paper, we typically rescale the
convolution so that µm still has support in [0, 1]. This will not affect dimen-
sionality results. When µ arises from an equicontractive IFS, then µm is again
a self-similar measure. For example, if µ is the biased Bernoulli convolution or
Cantor measure with contraction factor ρ and probabilities p, 1− p, then µm

is the self-similar measure associated with the IFS Sj(x) = ρx + j(1 − ρ)/m
and probabilities pj =

(
m
j

)
pj(1 − p)m−j for j = 0, ...,m. It is easy to check

that this IFS has the strict overlapping property if ρ > 1/(m + 1) and thus
the set of local dimensions will have an isolated point if p 6= 1− p.

If a stricter overlapping property is satisfied, more can be proven.

Theorem 7. Suppose µ is an equicontractive, self-similar measure associated
with the IFS (Sj , pj) of (3) that has the strict overlap property. Suppose m ≥ 2
and p0 = pm < pj for all j 6= 0,m. In addition, assume that Sm−1(1) >
SmS1(0) and S1(0) < S0Sm−1(1). Then

sup
x 6=0,1

dimlocµ(x) < dimloc µ(0)

and thus dimloc µ(0) = dimloc µ(1) is an isolated point in the set of local di-
mensions of µ.

Proof. The additional overlapping condition, Sm−1(1) > SmS1(0) and S1(0) <
S0Sm−1(1), is equivalent to the two inequalities ρ(dm−1 + ρ) > d1 and dm +
ρd1 < dm−1 + ρ. Thus we can choose ξ > 0 such that for each j,

1. dj + ρ− ξ > dj+1 + ξ

2. ρ(dm−1 + ρ− ξ) > d1 + ξ

3. dm + ρ(d1 + ξ) < dm−1 + ρ− ξ.

Let

L = [0, d1 + ξ), R = (dm−1 + ρ− ξ, 1],

Mj = [dj + ξ, dj + ρ− ξ] for j = 1, . . . ,m− 1

and M =
m−1⋃
j=1

Mj . Then [0, 1] = L∪M∪R. One should observe that properties

(1)-(3) above ensure that
⋃
σ
Sσ(M) = (0, 1) where the union is taken over all

words σ on the alphabet {0, 1, . . . ,m}.
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As in the previous proof, we claim that if ρJ < ξ, then any x 6= 0, 1 has a
presentation (ai) where the density of indices i with ai 6= 0,m is at least 1/J .

We use the following algorithm to produce the presentation: Take a1 = j
if x ∈ Mj (if there is a non-unique choice, choose either index). If x /∈

⋃
j

Mj ,

then either x ∈ L or R and we take a1 = 0 or m respectively. Now assume
a1, . . . , an−1 have been determined and put σ = (a1, . . . , an−1), so x ∈ Sσ[0, 1].
If x ∈ Sσ(Mj) take an = j, while if x ∈ Sσ(L) or Sσ(R) take an = 0,m
respectively.

If x 6= 0,m then there must be an index n where an = j ∈ {1, . . . ,m− 1}.
We claim that an+k 6= 0,m for some k < J . That is, we cannot have all of
an+1, an+2, . . . , an+J ∈ {0,m}.

To prove this claim, put σ = (a1, . . . , an−1). As an = j, we have

x ∈ Sσ(Mj) ⊆ Sσj [0, 1] = Sσj(L) ∪ Sσj(M) ∪ Sσj(R).

If x ∈ Sσj(M), then x ∈ Sσj(Mk) for some k 6= 0,m and we are done since
that ensures an+1 6= 0,m. So we can assume x ∈ Sσj(L) or Sσj(R).

We will assume that x ∈ Sσj(L); the latter case is similar. Hence an+1 = 0.
Upon rescaling we can assume

x ∈Mj = [dj + ξ, dj + ρ− ξ] ⊆ [dj , dj + ρ] = Sj [0, 1]

and x ∈ Sj(L) where

Sj(L) = [dj , dj + ρ(d1 + ξ)) ⊆ [dj , dj + ρ2]

= Sj [0, ρ] = Sj0[0, 1] = Sj0(L ∪M ∪R).

But
inf Sj0(R) = Sj0(dm−1 + ρ− ξ) = dj + ρ2(dm−1 + ρ− ξ).

Property (2) thus implies that supSj(L) < inf Sj0(R) and hence we must
actually have x ∈ Sj0(L ∪M). Thus an+2 6= m. If an+2 6= 0 we are done
and otherwise x ∈ Sj0(L). We repeat the argument. Since Sj 0 · · · 0︸ ︷︷ ︸

J−1

(L) is an

interval of length at most ρJ with left endpoint dj and x ≥ dj + ξ, we see that
if ρJ < ξ we cannot have x ∈ Sj 0 · · · 0︸ ︷︷ ︸

J−1

(L). This completes the proof.

Corollary 8. Suppose µ is the self-similar measure associated with the IFS

Sj(x) = ρx+
j

m
(1− ρ),
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with j = 0, ...,m, m ≥ 2, and probabilities pj that satisfy p0 = pm < minj 6=0,k pj.
If

ρ >

√
m2 + 4−m

2
,

then the set of local dimensions of µ has an isolated point.

Proof. A routine calculation shows that all three overlap requirements of
Theorem 7, dj < dj−1 + ρ, ρ(dm−1 + ρ) > d1 and dm + ρd1 < dm−1 + ρ, are
satisfied for such ρ.

We remark that (
√
m2 + 4−m)/2 < 1/m, so this improves upon the fact

that the local dimension of the m-fold convolution of the uniform Cantor
measure on the Cantor set with ratio 1/m has an isolated point at 0, as shown
in [2, 20]. Note that when ρ = 1/(m + 1), the IFS satisfies the open set
condition and hence there is no isolated point.

4 Computational techniques to find upper and lower
bounds

4.1 Upper bounds

Proposition 3 and Theorem 4 give upper bounds on the local dimension of
the Bernoulli convolution µρ at x for any x ∈ (0, 1) in the unbiased (ρ >
(
√

5 − 1)/2) and biased (ρ > 1/2) cases respectively. Upper bounds are also
given in [1]. In all of these cases, these bounds can be used to show that the
local dimension at x = 0 is an isolated point within the set of all possible
local dimensions. However, while sufficient to demonstrate a gap in the set
of local dimensions, these bounds are not tight. This section will discuss
computational techniques that can be used to improve the upper bounds for
the set of local dimensions for x ∈ (0, 1). We do this for both the unbiased
and biased Bernoulli convolutions.

In the case of the unbiased Bernoulli convolution, we see that dimloc µρ(0) =
log 2/| log ρ|. This is given by the blue curve in Figure 1. Further, as shown
in Proposition 3 (and [4]), taking k such that 1 < ρ2 + · · ·+ ρk, gives

dimlocµρ(x) ≤
(

1− 1

k

)
log 2

| log ρ|
for x ∈ (0, 1).

This formula is shown by the red curve in Figure 1. The black curve in Figure
1 shows the tighter upper bound given by an application of Theorem 9 below.

Now consider the case of the biased Bernoulli convolutions. Assume p0 <
p1. It is easy to see that dimloc µρ(0) = log p0/ log ρ. This is given by the blue
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Figure 1: Upper bounds for local dimensions of unbiased Bernoulli convolu-
tions

curve in Figure 2. Both Theorem 4 and Baker in [1], show there exists some
k such that

dimlocµρ(x) ≤ log p0 + (k − 1)p1
k log ρ

.

The choice of k varies in the two approaches and depends on ρ. When ρ <√
5−1
2 , the k found by Theorem 4 results in a tighter upper bound than that

found in [1], while for ρ >
√
5−1
2 , the converse is true. The green curve in

Figure 2 shows the upper bound given by Theorem 4, while the red curve
shows the bound found in [1]. The black curve is, again, the upper bound
found using Theorem 9.

Let µ be a self-similar measure with support [0, 1]. Let I be a subset of
[0, 1]. We generalize equation (4) to give

En(x, I) = {σ ∈ An : ∃ τ ∈ AN such that Sστ (0) = x and Sτ (0) ∈ I}
= {σ ∈ An : x ∈ Sσ(I)}.

We similarly generalize equation (5) to give

Nn(x, I) =
∑

σ∈En(x,I)

pσ.

We easily see that Nn(x, I) ≤ Nn(x) for all x, I and n.
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Figure 2: Upper bounds for local dimensions of biased (p0 = 0.4, p1 = 0.6)
Bernoulli convolutions

Theorem 9. Let µ be a self-similar measure with support [0, 1]. Let I ⊂ [0, 1]
be an open interval such that for all x ∈ (0, 1) there exists a word σ with
x ∈ Sσ(I). Let k = minx∈I Nn(x, I). Then

dimlocµ(x) ≤ log k

n log ρ
.

For a given measure µ, if we can find an interval I that satisfies the require-
ments of the theorem and can compute k, then we will have a computational
method to find an upper bound for dimlocµ(x) for x ∈ (0, 1).

Proof. First, assume that x ∈ I. We will further assume that k > 0, other-
wise the bound is trivial. Hence there exists at least one σ such that x ∈ Sσ(I).
This gives us that

E2n(x, I) = {σ ∈ A2n : x ∈ Sσ(I)}
= {σ1, σ2 ∈ An : x ∈ Sσ1σ2

(I)}
⊇ {σ1, σ2 ∈ An : x ∈ Sσ1σ2

(I), x ∈ Sσ1
(I)}

= {σ1, σ2 ∈ An : x ∈ Sσ1
(I), S−1σ1

(x) ∈ Sσ2
(I)}

= {σ1, σ2 : σ1 ∈ En(x, I), σ2 ∈ En(S−1σ1
(x), I)}.

Note that if x ∈ Sσ1
(I), then S−1σ1

(x) is well defined and in I.
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From this it follows that

N2n(x) ≥ N2n(x, I) ≥
∑

σ1∈En(x,I)

∑
σ2∈En(S−1

σ1
(x),I)

pσ1
pσ2
≥ k2.

Similarly Nmn(x) ≥ km. Furthermore for mn ≥ N ≥ (m − 1)n we have
NN (x) ≥ km. Taking limits gives

dimlocµ(x) ≤ lim sup
N→∞

logNN (x)

log ρN
≤ lim
m→∞

log km

log ρn(m−1)
≤ log k

n log ρ
.

The case for x ∈ (0, 1)�I is similar. We know there is some σ, say of length
t, such that x ∈ Sσ(I). As S−1σ (x) ∈ I, we have that Nnm(S−1σ (x), I) ≥ km

as above. Thus Nmn+t(x, I) ≥ pσk
m, and the result follows as before, taking

limits.

Next, we will demonstrate how the theorem can be implemented to produce
upper bounds on local dimensions by means of an example. Consider the
unbiased Bernoulli convolution with contraction factor ρ = 0.8 and let I =
(0.3, 0.7). One can check that

⋃
|σ|=1 Sσ(I) = (0.24, 0.76) and in general that⋃

|σ|=n Sσ(I) = (0.3(0.8)n, 1− 0.3(0.8)n). It follows that the hypothesis of the

theorem is satisfied. There are 16 images of Sσ(I) for |σ| = 4; these are given
in Table 1. One can readily check that for each x ∈ (0.3, 0.7) there are at
least 3 words σ such that x ∈ Sσ(I). Thus N4(x, (0.3, 0.7)) ≥ 3/16. Hence

k ≥ 3/16 and dimlocµρ(x) ≤ log(3/16)
4 log(0.8) ∼ 1.876.

These calculations while exact, are also locally constant. It can be shown
that there is a neighbourhood around ρ = 0.8 and around the endpoint 0.3
and 0.7 such that k ≥ 3/16 within this neighbourhood. This comment is true
in general, not just for the special case of ρ = 0.8, I = [0.3, 0.7] and n = 4.

This process can be generalized to other Bernoulli convolutions and auto-
mated. Consider, first, the interval I = (a, 1− a) where ρa+ 1− ρ < 1/2 and
ρ(1−a) > 1/2. (For example, take any a satisfying 0 < a < 1−1/(2ρ).) Then
S0(I)∪S1(I) = (ρa, 1−ρa) and, more generally,

⋃
|σ|=n Sσ(I) = (ρna, 1−ρna).

It is clear that the hypothesis of the theorem is satisfied for such I.
Consider, next, an interval I = (b, 1 − b) where b may be larger than

1 − 1/(2ρ). If there exists a choice of a with 0 < a < 1 − 1/(2ρ) and integer
n such that (a, 1− a) ⊆

⋃
|σ|=n Sσ(I), then again I will satisfy the hypothesis

of the theorem.
For the purposes of the graphs, we considered the intervals ( 1

2 (1−1/(2ρ)), 1−
1
2 (1− 1/(2ρ))) = ( 1

2 −
1
4ρ ,

1
2 + 1

4ρ ), (0.1, 0.9), (0.2, 0.8) and (0.3, 0.7). The first
always satisfies the conditions of the theorem and we compute the associated
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σ Sσ([0.3, 0.7]
0000 [.12288, .28672]
0001 [.22528, .38912]
0010 [.25088, .41472]
0100 [.28288, .44672]
1000 [.32288, .48672]
0011 [.35328, .51712]
0101 [.38528, .54912]
0110 [.41088, .57472]
1001 [.42528, .58912]
1010 [.45088, .61472]
1100 [.48288, .64672]
0111 [.51328, .67712]
1011 [.55328, .71712]
1101 [.58528, .74912]
1110 [.61088, .77472]
1111 [.71328, .87712]

Table 1: Images of Sσ([0.3, 0.7]) for |σ| = 4

k. The other three may or may not depending on whether we can find a choice
of n ≤ 10 as above where we view these intervals as the choice (b, 1 − b) and
understand the first interval as (a, 1− a). If we can quickly find a suitable n,
we compute the associated k. Otherwise we ignore the interval. We take the
minimum k resulting from these choices of intervals.

A similar method can be used for any self-similar measure with non-trivial
overlaps, with the details being left to the reader.

4.2 Lower bounds

In Section 4.1, we showed how one could use computational techniques to find
upper bounds for the local dimension for µρ(x) for any x ∈ (0, 1). Similar
techniques can be used to find lower bounds for the range of possible local
dimensions assuming the IFS satisfies a suitable separation condition.

The IFS (or any associated self-similar measure) with contraction factor
ρ is said to satisfy the weak separation condition (wsc) if there is a constant
c > 0 such that whenever σ, τ ∈ An, then either

Sσ(0) = Sτ (0) or |Sσ(0)− Sτ (0)| ≥ cρn. (6)

The following definition is equivalent to that of [8].
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Definition 10. A equicontractive IFS with ratio of contraction ρ satisfies the
asymptotically weak separation condition (asymptotically wsc) if there exists
a sequence f(n) such that log f(n)/n → 0 as n → ∞, and such that for each
n ∈ N and each x ∈ [0, 1] we have

#{Sσ[0, 1] : σ ∈ An, Sσ[0, 1] ∩ (x− ρn, x+ ρn) 6= ∅} ≤ f(n) (7)

The weak separation condition implies the asymptotically wsc, with the
latter being strictly weaker. Indeed, as observed in [8], a Bernoulli convolution
with contraction factor the reciprocal of a Salem number2 in (1, 2) satisfies the
asymptotically wsc, but not the wsc. It is widely believed that if there are any
contraction factors which give rise to purely singular Bernoulli convolutions
other than reciprocals of Pisot numbers, then the prime candidates would be
reciprocals of Salem numbers.

It is worth noting that if ρ ∈ (1/2, 1) is transcendental then Sσ(0) 6= Sτ (0)
for all σ 6= τ and hence all images on the left hand side of (7) are unique.
Hence if ρ is transcendental then the IFS canot satisfy the asympototically
weak separation condition.

We can obtain lower bounds in the spirit of Lemma 1 under the assumption
of the asymptotically wsc.

Lemma 11. Assume µ is an equicontractive, self-similar measure with con-
traction factor ρ that satisfies the asymptotically weak separation condition.
Then for all x ∈ suppµ we have

dimlocµ(x) ≥ lim inf
n→∞

log(supyNn(y))

n log ρ
.

Proof. Suppose f(n) is a sequence with (log f(n))/n→ 0 and satisfying (7).
It is convenient to put

Hn = {σ ∈ An : Sσ[0, 1] ∩ [x− ρn, x+ ρn] 6= ∅}.

With this notation, we have µ[x− ρn, x+ ρn] ≤
∑
σ∈Hn pσ for all n. Let

Hn = {Sσ(0) : σ ∈ Hn}.

Note that Hn may contain fewer elements than Hn as we may have Sσ(0) =
Sτ (0) for σ, τ ∈ Hn. Indeed, the asymptotically wsc guarantees #Hn ≤ f(n).
Since

∑
σ∈An:Sσ(0)=y pσ ≤ Nn(y), we see that

µ[x− ρn, x+ ρn] ≤
∑
y∈Hn

Nn(y) ≤ #Hn sup
y
Nn(y) ≤ f(n) sup

y
Nn(y).

2A Salem number is a real algebraic integer, greater than 1, such that all of its Galois
conjugates ≤ 1 in absolute value and at least one conjugate is 1 in absolute value.
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σ Sσ([0, 1]
0000 [.0000, .4096]
0001 [.1024, .5120]
0010 [.1280, .5376]
0100 [.1600, .5696]
1000 [.2000, .6096]
0011 [.2304, .6400]
0101 [.2624, .6720]
0110 [.2880, .6976]
1001 [.3024, .7120]
1010 [.3280, .7376]
1100 [.3600, .7696]
0111 [.3904, .8000]
1011 [.4304, .8400]
1101 [.4624, .8720]
1110 [.4880, .8976]
1111 [.5904, 1.000]

Table 2: Images of Sσ([0, 1]) for |σ| = 4

Thus

dimlocµ(x) = lim inf
n→∞

log(µ[x− ρn, x+ ρn])

log(2ρn)

≥ lim inf
n→∞

log(supyNn(y)) + log(f(n))

n log ρ+ log 2

= lim inf
n→∞

log supy(Nn(y))

n log ρ
.

Note that supy∈[0,1]Nn+m(y) ≥ supy∈[0,1]Nn(y)× supy∈[0,1]Nm(y). Thus
good bounds on supy∈[0,1]Nn(y) will result in good lower bounds for dimlocµ(x).

We will consider the same example as in the previous subsection. Let
ρ = 0.8 and n = 4. We will again assume that p0 = p1 = 1/2, the unbiased
case. When considering upper bounds, we wished to use some I ( [0, 1]. In
this case we will use I = [0, 1]. There are 16 images of Sσ([0, 1]) for |σ| = 4.
These are listed in Table 2 in increasing order of the left endpoint.

It is easy to compute that supy∈[0,1]N4(y) = N4(0.5) = 14/24. From this

we conclude that dimlocµ(x) ≥ log 14/24

4 log(0.8) ∼ 0.5984102692. Because we are using
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Range of ρ Lower bound for dimlocµ(x)
[0.50, 0.55] 0.792021
[0.55, 0.60] 0.825663
[0.60, 0.65] 0.840348
[0.65, 0.70] 0.824701
[0.70, 0.75] 0.750984
[0.75, 0.80] 0.635012
[0.80, 0.851] 0.416226

Table 3: Lower bound for local dimensions

[0, 1] exactly, we need to worry about situations where Sσ(0) = Sτ (1) for some
|σ| = |τ |. Such cases are known as transition points. In these cases the value of
supyNn(y) may change as ρ is increased or decreased slightly. Such transition
points occur when ρ satisfies very precise algebraic conditions and are easily
enumerated for each n. A discussion of how to find and properly compute
these transition points for a fixed n is discussed in [12, 13].

In Figure 3 we indicate the lower bounds using n up to 10. The points on
this graph indicate the lower bounds at transition points, whereas the lines in-
dicate regions between transition points when supy∈[0,1]Nn(y) is constant. We
have computed the lower bounds for supy∈[0,1]Nn(y) at all transition points.
The following theorem illustrates the kind of information this approach will
yield.

Theorem 12. Suppose the unbiased Bernoulli convolution µρ satisfies the
asymptotically weak separation condition. Then for all x ∈ [0, 1] we have
lower bounds as described in Table 3. More precise information can be found
in Figure 3.

It is worth noting that Theorem 12 applies only to those ρ for which the
measure satisfies the asymptotically wsc, whereas this is not clearly indicated
in Figure 3. Figure 3 should be interpreted as: If µρ satisfies the asymtotically
wsc, then the value on the graph is a lower bound of the set {dimloc µ(x) :
x ∈ [0, 1]}. If, instead, µρ does not satisfy the asymptotically wsc, then the
corresponding value on the graph has no meaning.

The smallest known Salem number is approximately 1.176280, the root of
x10 + x9− x7− x6− x5− x4− x3 + x+ 1. This has an approximate reciprocal
of 0.850137. The smallest Pisot number is approximately 1.324718, the root
of x3 − x − 1, with approximate reciprocal of 0.754877. As the only known
Bernoulli convolutions satisfying the asymptotically wsc are those where ρ is
the reciprocal of a Pisot or Salem number, Table 3 was restricted to ρ ≤ 0.851.
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Figure 3: Lower bounds for local dimensions of unbiased Bernoulli convolu-
tions

Remark 13. After this work was completed, Tom Kempton (private com-
munication) observed that the requirement of asymptotically weak separation
condition is not needed in the statement or proof of Lemma 11. Instead
we note that if |σ| = n is such that Sσ([0, 1]) ∩ [x − ρn, x + ρn] then σ ∈
En(x)∪En(x−ρn)∪En(x+ρn). This gives that µ[x−ρn, x+ρn] ≤ 3 supyNn(y)
from which the result follows.
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