
RESEARCH Real Analysis Exchange
Vol. 43(2), 2018, pp. 249–262

Jeremiah J. Bass, Department of Mathematics, Tarleton State University,
Stephenville, Texas 76402, U.S.A. email: jbass@tarleton.edu

MYCIELSKI-REGULARITY OF GIBBS
MEASURES ON COOKIE-CUTTER SETS

Abstract

It has been shown that all Radon probability measures on R are
Mycielski-regular, as well as Lebesgue measure on the unit cube and
certain self-similar measures. In this paper, these results are extended
to Gibbs measures on cookie-cutter sets.

1 Introduction

Let µ be a Radon probability measure on the Euclidean space Rd for d ≥ 1,
and f : Rd → R a measurable function. Given a sequence (xn) in (Rd)N, for
any x ∈ Rd define fn(x) = f(xk), where xk is the first among x0, . . . , xn−1

that minimizes the distance from x to xk, 0 ≤ k ≤ n − 1. The measures
for which the sequence (fn)∞n=1 converges in measure to f for almost every
sequence (x0, x1, . . .) are called Mycielski-regular. The question was first posed
by Mycielski as to which measures have this property [6]. In [1], self-similar
measures with probabilities rsi (where s is the Hausdorff measure) are shown
to be Mycielski-Regular. The method used to prove this result - the method
of Voronoi tessellations - was first used by Fremlin [4] to show that all Radon
probability measures are Mycielski-Regular when d = 1 and also for Lebesgue
measure on the unit cube.

Since Fremlin has proved it in this way for all Radon probability measures
in the case d = 1, it gives some hope that the result can be generalized. On
the other hand, it could be that this property belongs to all Radon probability
measures in this space because of the structure of R. Two questions emerge.
First, can the result be generalized to Rd for d ≥ 2? Second, how might this
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be done? Might the method of Voronoi tessellations be used to prove that
this property belongs to all Radon probability measures in higher dimensions?
It is known that for certain measures on higher dimensional spaces, such as
Lebesgue measure on the unit cube or self-similar measures on bounded subsets
of Rd, the same method works. This paper considers the method of Voronoi
tesellations with respect to other measures. In particular, it is shown that
certain Gibbs measures have this property. This is significant in the sense
that such Gibbs measures are a generalization of the self-similar measures
studied in [1].

We begin with some basic definitions. In this paper, X ⊆ R
d, ρ is the

Euclidean metric on X, Ω is the infinite product space XN, and λ is the
infinite product measure µN with domain B(Ω). The following definitions are
from Fremlin [4].

Definition 1.1. Let (X, ρ) be a metric space. Let ω = (xk)∞k=0 be an infinite
sequence in XN and let ω[n] = {x0, . . . , xn−1}. Suppose that z ∈ ω[n]. Define
the Voronoi tile V (ω�n, z) by

V (ω�n, z) = {x ∈ X : ρ(x, z) = ρ(x, ω[n]) and if i < j < n and (1)

z = xj 6= xi, then ρ(x, z) < ρ(x, xi)}.

We call the collection of such V (ω �n, z) the Voronoi tessellation defined by
ω[n].

Definition 1.2. Let f : X → R, and ω[n] as above, and write xi = x(i). Let
k(ω[n], x) be the least i such that ρ(x, ω[n]) = ρ(x, x(i)), so that x ∈ V (ω �
n, x(k(ω[n], x))). Define F (ω�n, f)(x) = f(x(k(ω[n], x))).

The previous definition is another way of defining the function fn. This
will be used in the discussion to follow on the conditions for a measure to be
Mycielski-Regular.

2 Conditions for a measure to be Mycielski-Regular

Here we follow David Fremlin’s development of the conditions for a measure
to be Mycielski-Regular[4]. Following Fremlin, we define a functional θ : Σ→
[0, 1] such that for any measurable E,

lim sup
n→∞

∫
F (ω�n,1E)dµ = θ(E) (2)

for λ-almost every ω ∈ Ω. Fremlin has shown that θ has the following proper-
ties:
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(i) θ is a unital submeasure.
(ii) θ(H) ≤ µ(H) for every closed H ⊆ X, and θ(G) ≥ µ(G) for every open
G ⊆ X.
(iii) If a measurable set E is such that µ(∂E) = 0, then θ(E) = µ(E), where
∂E is the topological boundary of the set E.

To show these three properties, we note first that this function is measur-
able with respect to B(Ω). To see this, write

F (ω�n, f)(x) =

n∑
i=1

f(ω(i))1V (ω�n,ω(i))(x). (3)

If f = 1E for E ∈ Σ, then for all x ∈ X, F (ω�n,1E)(x) ≤ 1, for every ω ∈ Ω.
Hence,

∫
Ω

F (ω�n,1E))dλ =

∫
Ω×X

F (ω�n,1E))d(λ× µ) <∞. (4)

So F (ω �n,1E)) ∈ L1(Ω×X,B(Ω)⊗Σ, λ× µ). It follows by Fubini’s theorem
[5] that the function

ω 7→
∫
X

F (ω�n,1E))dµ (5)

is in L1(XN,B(Ω), λ) and, in particular, is λ-measurable.
At first sight, it appears that θ depends both on E ⊆ X and ω ∈ Ω.

We will show that if ω and ω
′ ∈ Ω are eventually equal, then limn→∞(F (ω �

n, f)(x)− F (ω
′
�n, f)(x)) = 0 for almost every x ∈ X, and so

lim
n→∞

(∫
F (ω�n, f)−

∫
F (ω

′
�n, f)

)
= 0. (6)

Hence the function h : ω ∈ Ω 7→ lim supn→∞
∫
F (ω �n, f)dµ is measurable

and is constant on all sequences that are eventually equal. By the Zero-One
Law [5], the set {ω ∈ Ω : h(ω) > α} has measure 0 or 1 for every α ∈ R, and
so there is an α such that h(ω) = α for almost every ω. To show (6), we enlist
the aid of the following two propositions:

Proposition 2.1. Let (X, ρ) be a separable metric space and let µ be a topo-
logical probability measure. If X0 is the support of µ, then for every k ∈ N,
X0 = ω[N \ k] for λ-a.e. ω, where ω[N \ k] = {xk, xk+1, . . .}.

Proof. If X is separable metric, then any subspace is separable metric; in
particular, it holds for X0. Let U be a countable base for X0. Since X0 is the
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support of µ, if U ∈ U , then µ(U) > 0, and so λ({ω : ω[N \ k] ∩ U 6= ∅}) = 1,
and since ⋂

U∈U\{∅}

{ω : U ∩ ω[N \ k] 6= ∅} ⊆ {ω : X0 ⊆ ω[N \ k]}, (7)

it follows that λ({ω : X0 ⊆ ω[N \ k]}) = 1 as well.

Proposition 2.2. Let (X, ρ) be a separable metric space and let µ be a topo-
logical probability measure such that µ has no atoms. There exists Ω0 ⊆ Ω with
λ(Ω0) = 1, such that if ω,ω

′ ∈ Ω0 are eventually equal, then for µ-a.e. x ∈ X,
there is an n ∈ N such that F (ω�m, f)(x) = F (ω

′
�m, f))(x) for every m ≥ n

and for every f defined on X.

Proof. Let ω,ω
′ ∈ Ω0 such that ω(m) = ω

′
(m) for every m ≥ l. Let X0 =

ω[N \ l]\I and I = ω[l]∪ω′ [l]. Then µ(X0) = 1 since µ(I) = 0. Now if x ∈ X0

then there exists n ≥ l such that ρ(x, ω[n \ l]) < ρ(x, I), and the same is true
for all m ≥ n. So for any m ≥ n, k(ω �m,x) = k(ω

′
�m,x), and hence that

F (ω�m, f)(x) = F (ω
′
�m, f)(x).

It thus happens that the functional θ is constant on measurable sets. We
now establish the three properties mentioned above. First, θ is a unital sub-
measure. By “unital” is meant that θ : Σ → [0, 1], which is clear. That it is
a submeasure is also easy to see. By “submeasure” is meant that θ has the
following three properties:

(i) θ(A ∪B) ≤ θ(A) + θ(B) for all A,B ∈ Σ,
(ii) θ(A) ≤ θ(B) if A ⊆ B, and
(iii) θ(∅) = 0.

These properties follow because we can write

θ(E) = lim sup
n→∞

∫
F (ω�n,1E)dµ (8)

= lim sup
n→∞

∫ n∑
i=1

1E(ω(i))1V (ω�n,ω(i))(x)dµ (9)

= lim sup
n→∞

n∑
i=1

∫
1E(ω(i))1V (ω�n,ω(i))(x)dµ, (10)

and because of the properties of the characteristic function. Thus, 1A∪B(x) ≤
1A(x) + 1B(x), and if A ⊆ B, then 1A ≤ 1B , and 1∅ ≡ 0.

To show that θ(H) ≤ µ(H) for every closed H ⊆ X, we first need the
following lemma:
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Lemma 2.3. Let f be a real-valued continuous function defined on X. Then
for almost every ω ∈ Ω and for every x ∈ supp(µ) = X0, F (ω � n, f)(x)
converges to f(x) as n→∞.

Proof. Let ε > 0. By the continuity of f , there exists a δ > 0 such that if
ρ(x, y) < δ then |f(x) − f(y)| < ε. Further, as n → ∞, for every x ∈ X0, we
have that ρ(x, ω[n]) → 0. So there is an n0 ∈ N, such that if n ≥ n0, then
ρ(x, ω[n]) < δ. So,

|F (ω�n, f)(x)− f(x)| = |
n∑
i=1

f(ω(i))1V (ω�n,ω(i))(x)− f(x)| (11)

= |f(ω(j))− f(x)| (12)

for the 1 ≤ j ≤ n such that x ∈ V (ω � n, ω(j)). As n → ∞, ρ(ω(j), x) < δ,
and so we get that |f(ω(j))− f(x)| < ε.

Now let ε > 0, and let H ⊆ X be closed. There is a continuous function
f , such that 1H ≤ f and

∫
fdµ < µ(H) + ε. Further, since limn→∞ F (ω �

n, f)(x) = f(x) for almost every x, then we have that

θ(H) = lim sup
n→∞

∫
F (ω�n,1H)dµ (13)

=

∫
f(x)dµ (by Lemma 2.3) (14)

< µ(H) + ε, (15)

and hence we have that θ(H) ≤ µ(H).
On the other hand, if G ⊆ X is open, then θ(G) = 1 − θ(X \ G) ≥

1− µ(X \G) = µ(G).
Finally, we show that if a measurable set E is such that µ(∂E) = 0, then

θ(E) = µ(E), where ∂E is the topological boundary of the set E. This follows
from

µ(E) = µ(E) = µ(intE) ≤ θ(intE) ≤ θ(E) ≤ θ(E) ≤ µ(E) = µ(E). (16)

This lays the groundwork for the following two fundamental theorems, and
which provide the key to proving which measures are in fact Mycieski-regular:

Theorem 2.4. Let (X, ρ) be a separable metric space, µ a topological proba-
bility measure on X and θ : Σ→ [0, 1] the functional defined above. Then the
following are equivalent:
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(i) µ is Mycielski-regular;
(ii) θ is absolutely continuous with respect to µ;
(iii) θ = µ.

Proof. It is clear that (i) =⇒ (iii) =⇒ (ii). It is thus sufficient to show
that (ii) =⇒ (i). Suppose then that θ is absolutely continuous with respect
to µ. Let f : X → R be measurable, and for each k ∈ N, let δk > 0 be such
that θ(E) ≤ 2−k whenever µ(E) ≤ δk. By Lusin’s theorem [5], there exists
a continuous function, call it gk : X → R, and a set Ek = {x ∈ X : gk(x) 6=
f(x)}, such that µ(Ek) ≤ min{2−k, δk}. Note that {x ∈ X : F (ω�n, f)(x) 6=
F (ω � n, gk)(x)} ⊆ {x ∈ X : F (ω � n,1Ek) = 1} for every ω ∈ Ω. Define
Wk ⊆ Ω such that ω ∈ Wk if and only if limn→∞ F (ω �n, gk)(x) = gk(x) for
almost every x and lim supn→∞

∫
F (ω�n,1Ek)dµ ≤ 2−k. Then λ(Wk) = 1.

Let W = ∩k∈NWk. For any ω, we have that

min{|F (ω�n, f)− F (ω�n, gk)|,1X} ≤ min{F (ω�n, |f − gk|),1X} (17)

≤ F (ω�n,1Ek). (18)

Hence,

min {|F (ω�n, f)− f |,1X} ≤ min{|F (ω�n, f)− F (ω�n, gk)|,1X} (19)

+ min{|F (ω�n, gk)− gk|,1X}+ min{|gk − f |,1X} (20)

≤ F (ω�n,1Ek) + min{|F (ω�n, gk)− gk|,1X}+ 1Ek . (21)

Thus we have that if ω ∈W , then

lim
n→∞

∫
min{|F (ω�n, f)− f |,1X}dµ ≤ lim

∫
F (ω�n,1Ek)dµ (22)

+ lim

∫
min{|F (ω�n, gk)− gk|,1X}dµ (23)

+ lim

∫
1Ekdµ (24)

≤ 2−k + 0 + 2−k+1. (25)

Since this is true for every k ∈ N, it follows that F (ω�n, f) converges to f
in measure. And since f is arbitrary, we have that µ is Mycieski-regular.

We now give a sufficient condition for a measure to be Mycielski-regular in
terms of its tessellations. We need the following definition:
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Definition 2.5. Let X, ρ, µ,Ω, and λ be as defined above. We say that µ has
moderated Voronoi tessellations if for every ε > 0 there exists M ≥ 0 such
that

∞∑
n=1

λ{ω : µ
(⋃
{V
′
(ω�n, z) : z ∈ ω[n], µ(V

′
(ω�n, z)) ≥M/n}

)
≥ ε} <∞,

(26)
where each V

′
(ω�n, z) is the punctured Voronoi tile V (ω�n, z) \ {z}.

Note that if µ has moderated Voronoi tessellations for M then µ has moder-
ated Voronoi tessellations for allM

′ ≥M . The reason for this is as follows: call

A(n,M, ε) = {ω : µ
(⋃
{V ′(ω�n, z) : z ∈ ω[n], µ(V

′
(ω�n, z)) ≥M/n}

)
≥ ε},

and B(n,M) =
⋃
{V ′(ω �n, z) : z ∈ ω[n], µ(V

′
(ω �n, z)) ≥ M/n}. If V

′
(ω �

n, z)) ∈ B(n,M
′
), then V

′
(ω�n, z)) ∈ B(n,M) so that B(n,M

′
) ⊆ B(n,M).

Thus, if µ(B(n,M
′
)) ≥ ε then µ(B(n,M)) ≥ ε. So if ω ∈ A(n,M

′
, ε) then

ω ∈ A(n,M, ε). Hence, if
∑
A(n,M, ε) < ∞ then

∑
A(n,M

′
, ε) < ∞. We

now have the proper background to state the following theorem.

Theorem 2.6. Let (X, ρ) be a separable metric space, µ a topological prob-
ability measure on X which has moderated Voronoi tessellations. Then µ is
Mycielski-regular.

Proof. Let θ be the submeasure introduced above. We will show that θ is
absolutely continuous with respect to µ and therefore by the previous theorem,
it will follow that µ is Mycielski-regular.

Let ε > 0, and let M ≥ 0 such that

∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε/3} <∞.

(27)
Let

Ω1 = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
< ε/3

for all but finitely n}. (28)

It follows that λ(Ω1) = 1.
Now, let δ > 0 such that 2Mδ ≤ ε/3, δ ≤ ε/3, and δ ≤ 1/2. Suppose that

µ(E) ≤ δ. Let

Ω2 = {ω : Card{n : Card{i : i < n, ω(i) ∈ E} > 2δn} <∞}. (29)
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It follows by the Strong Law of Large Numbers [5] that λ(Ω2) = 1. Let
ω ∈ Ω1 ∩ Ω2. Let n be such that

µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≤ ε/3, (30)

and
Card{i : i < n, ω(i) ∈ E} ≤ 2δn. (31)

Set I = E ∩ ω[n], and J = {z : z ∈ ω[n],µ(V (ω�n, z)) ≥M/n}. Thus,∫
F (ω�n,1E)dµ =

∑
z∈I

µ(V (ω�n, z)) (32)

=
∑
z∈I∩J

µ(V (ω�n, z)) +
∑
z∈I\J

µ(V (ω�n, z)) (33)

≤ ε/3 + Card(I \ J) ·M/n (34)

≤ ε/3 +M · Card(I)/n (35)

≤ ε/3 + 2Mδ ≤ ε. (36)

As this is true for all but finitely n, it follows that θ(E) ≤ ε, and thus that θ
is absolutely continuous with respect to µ.

3 Gibbs Measures

As in the case of the measures studied in [1], we are interested in measures
that concentrate their mass on fractal sets which are constructed via a set of
contractions. Let (F1, . . . , Fl) be a conformal iterated function system satis-
fying the Hölder condition (for a complete definition, see [7]) on a closed and
bounded subset X of Rd. Let C be the unique, nonempty compact subset of
X satisfying

C =

l⋃
i=1

Fi(C). (37)

We look at the measure defined on sets which can be thought of as non-
linear analogues of Cantor sets, sometimes called cookie-cutter sets. These are
sets which are approximately self-similar in the sense that small parts of the
set can be mapped by a transformation onto a large part of the set without
too much distortion. Gibbs measure is a measure which has its support on
a cookie-cutter set and is a generalization of a self-similar measure. We will
show that certain Gibbs measures are Mycielski-Regular. The proof for such
measures would also include the self-similar measures as a special case.
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A cookie-cutter set can be thought of in two related ways: as the repeller
of a dynamical system or as the attractor of an iterated function system.
Following Falconer [3], let f be an expanding function (with |f ′(x)| > 1)
defined on a finite collection of disjoint subsets X1, X2, . . . , Xl of X. We
assume that the function f is of class C2 and maps each Xj bijectively onto
X, for each j. Consider the set of all points x that remain in ∪lk=1Xk for all
iterates under f . That is, consider the set

C = {x ∈ X : fk(x) ∈
l⋃
i=1

Xi for all k ≥ 0} =

∞⋂
k=0

f−k(X). (38)

Associated with the function f is the conformal iterated function system,
consisting of conformal mappings Fi for i = 1 . . . l, with Fi(x) = f−1(x) ∩Xi.
Let Ik = {1, . . . , l}k, and let σ = i1i2 . . . ik, with im ∈ {1, . . . , l} for 1 ≤ m ≤ k.
Define Xσ = Fi1 ◦· · ·◦Fik(X) = f−kσ (X). Thus, for σ ∈ Ik, Xσ is a set that fk

maps bijectively onto X. Moreover, there exist real numbers γ and η between
0 and 1 such that

η ≤ |Fi(x)| ≤ γ (39)

for each i, 1 ≤ i ≤ l and for all x ∈ X.
We want to define a measure which concentrates its mass on the cookie-

cutter set C. To do so, we need a Lipschitz function φ : ∪li=1Xi → R, and a
function

Skφ(x) =

k−1∑
j=0

φ(f j(x)). (40)

The following theorem is proved in [3]; it establishes the existence of a
Gibbs measure with support in the set C:

Theorem 3.1. For all k and σ ∈ Ik, let xσ ∈ Xσ. Then the limit

P (φ) = lim
k→∞

1

k
log

∑
σ∈Ik

expSkφ(xσ) (41)

exists and does not depend on the xσ ∈ Xσ chosen. Furthermore, there exists
a Borel probability measure µ supported on C and a number a > 0 such that
for all k and all σ ∈ Ik,

a−1 ≤ µ(Xσ)

exp(−kP (φ) + Skφ(x))
≤ a (42)

for all x ∈ Xσ.
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Let φ(x) = −s log |f ′(x)| and let s ∈ R be such that P (φ) = 0. Then it can
be shown (see the proof of Theorem 5.3 in [3]) that there exists b ∈ R such
that

b−1|Xσ|s ≤ µ(Xσ) ≤ b|Xσ|s (43)

for all σ ∈ Ik. It should be pointed out that the existence of these bounds
depends upon the fact that the IFS is conformal.

As Falconer points out, the pressure formula (41) generalizes the dimension
formula for self-similar sets to a non-linear setting [3]. Hence, the proof for
the Gibbs measure associated with this choice of s also proves the result for
self-similar measures.

We are now in a position to show that the Gibbs measure associated with
the function φ(x) = −s log |f ′(x)| is Mycielski-Regular. This will be done by
showing that it has moderated Voronoi Tessellations.

Theorem 3.2. Let φ(x) = −s log |f ′(x)| and let s ∈ R be such that P (φ) = 0.
Then the associated Gibbs measure µ is Mycielski-Regular.

Before presenting the proof of the main result, a couple of lemmas are
inserted to which reference will be made in the course of the proof. The
first result is obvious, but it is included here to keep down the clutter in the
following proof. A very similar version to the second lemma is also stated and
proved in [2].

Lemma 3.3. Let {xk} and {yk} be sequences of positive real numbers with
xk, yk → ∞ as k → ∞. Then there exist real numbers α > 1 and 0 < β < 1

and k0 ∈ N such that for all k ≥ k0,
dxke
bykc

≤ αxk
βyk

.

Lemma 3.4. Let {Vi} be a collection of disjoint open sets of Rn such that
each Vi contains a ball of radius c1r and is contained in a ball of radius c2r.
Then any ball B of radius 2c2r intersects, at most, (4c2)nc−n1 of the sets Vi.

Proof. If Vi meets B, then Vi is contained in a ball concentric with B and
of radius 4c2r. If Γ of these sets meets B, then we use the fact that each of
the sets also contains a ball of radius c1r to obtain an upper bound for the
number of sets meeting B. Summing up over the volumes of the interior balls,
we obtain Γ(c1r)

n ≤ (4c2r)
n, which gives Γ ≤ (4c2)nc−n1 .

We now proceed with the proof of our main result.

Proof. Let ε > 0 and let

M =

⌈
2 ln

(
8eαb2

βηsε

)⌉
, (44)



Mycielski-Regularity 259

where α and β are chosen as in Lemma 3.3 (in particular, we will want to take
xk = b(ηζ)−s and yk = ε

2bζs ). Note that for ε small enough, M > 1. For large

n ∈ N, choose k(n) ∈ N that satisfies the following:

bM

2(ηζ)s
≤ n ≤ bM

(ηζ)s
≤ 2ε/4bζ

s

, (45)

where ζ = γk(n) (here γ is defined by (39)). Also note that in the following
pages, k(n) will be denoted by k.

For the moment, fix n satisfying (45), and let z ∈ C. Define Sk to be the
set of sequences which are truncated at the first j such that ηζ ≤ |Xi1...ij | ≤ ζ.
Let Vk = {Xσ : σ ∈ Sk} and let K be the set of members of Vk meeting B(z, ζ).
By Lemma 3.4, if B is a ball of radius ζ, then there are a finite number (call
it Γ) of members of Vk that intersect B and this number is independent of the
level k.

Let V ⊆ X be a convex set. Suppose that y ∈ (V ∩ C) \ ∪K such that
y ∈ Xσ for some Xσ ∈ Vk. Since y 6∈ ∪K, it follows that ρ(y, z) > ζ. Since
|Xσ| ≤ ζ, it follows that Xσ ⊆ intB(y, ρ(y, z)). Define

Vz = V
⋂ ⋃

w∈(V ∩C)\∪K

{Xσ ∈ Vk : Xσ ⊆ intB(w, ρ(w, z))}. (46)

From above, it follows that y ∈ Vz. Accordingly, (V ∩ C) \ Vz ⊆ ∪K and is
covered by at most Γ members of Vk, and so (we can drop the C since µ is a
measure with support in C)

µ(V \ Vz) ≤ Γb|Xσ|s ≤ Γbζs = Γ′ζs, (47)

where Γ′ = Γb.
Now let

Hn(ω) =
⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 2Γ′ζs}, (48)

and
Kω = {Xσ ∈ Vk : Xσ ∩ ω[n] = ∅}. (49)

Note that the set V (ω �n, z) is a convex set. Let this set play the role of
the set V above. Thus, if V (ω�n, z) ⊆ Hn(ω), then µ(V (ω�n, z)) ≤ 2µ(V (ω�
n, z) ∩ ∪Kω). This is because

µ(V (ω�n, z)) = µ(V (ω�n, z) \ ∪Kω) + µ(V (ω�n, z) ∩ ∪Kω) (50)

≤ µ(V (ω�n, z) ∩ ∪Kω) + µ(V (ω�n, z) ∩ ∪Kω) (51)

= 2µ(V (ω�n, z) ∩ ∪Kω), (52)
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where the inequality in the second line comes from the fact that µ(V (ω �
n, z)\∪Kω) ≤ Γ′ζs, whereas from the definition of Hn(ω) we have that µ(V (ω �
n, z)) ≥ 2Γ′ζs. (If y ∈ V (ω �n, z) with y 6= z, then intB(y, ρ(y, z))∩ω[n] = ∅,
and if Xσ ⊆ intB(y, ρ(y, z)) then Xσ ∈ Kω.)

Thus,

µ(Hn(ω)) ≤ 2µ(Hn(ω) ∩ ∪Kω) (53)

≤ 2µ(∪Kω) (54)

≤ 2bζsCardKω. (55)

Therefore, if µ(Hn(ω)) ≥ ε, then Card(Kω) ≥ ε

2bζs
≥ m, where m =⌊

ε

2bζs

⌋
. It follows that

{ω ∈ Ω : µ(Hn(ω)) ≥ ε} ⊆ {ω ∈ Ω : Card(Kω) ≥ m}. (56)

Define [Vk]m = {K ⊆ Vk : Card(K) = m}. Then,

λ({ω ∈ Ω : µ(Hn(ω)) ≥ ε}) ≤ λ({ω ∈ Ω : Card(Kω) ≥ m}) (57)

≤
∑

K∈[Vk]m

λ({ω : ω[n] does not meet ∪ K}). (58)

Also, note that 1 ≥ µ(∪Vk) ≥ Card(Vk)b−1ηsζs, so that

Card(Vk) ≤ b(ηζ)−s. (59)

Then,∑
K∈[Vk]m

λ({ω : ω[n] ∩ ∪K = ∅}) ≤
(
db(ηζ)−se

m

)(
1− m(ηζ)s

b

)n
(60)

≤ (db(ηζ)−se)m

m!

(
1− m(ηζ)s

b

)n
(61)

≤ (db(ηζ)−se)m

m!

(
1− m(ηζ)s

b

) (bM(ηζ)−s)
2

(62)

≤ em (db(ηζ)−se)m

mm

(
1− m(ηζ)s

b

) (bM(ηζ)−s)
2

(63)
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≤ em (db(ηζ)−se)m

mm

(
1

e

)Mm/2

(64)

≤
(
e (db(ηζ)−se)
meM/2

)m
(65)

≤
(

1

2

)m
(by Lemma 3.3 and choice of M)

(66)

=

(
1

2

)⌊
ε

2bζs

⌋
. (67)

By (45), it follows that for n sufficiently large,

(
1

2

)⌊
ε

2bζs

⌋
≤ 1

n2
. (68)

Let n0 be such that for all n ≥ n0, (45) holds. Then,

∞∑
n=1

λ({ω ∈ Ω : µ(Hn(ω)) ≥ ε)}) ≤ n0 +

∞∑
n=n0

λ({ω ∈ Ω : µ(Hn(ω)) ≥ ε)})

(69)

≤ n0 +

∞∑
n=n0

1

n2
<∞. (70)

4 Concluding Remarks

The arguments used here show both the utility and short-comings of the
method of moderated Voronoi tessellations. Its utility lies in its ability to
show Mycielski-Regularity for numerous measures. It works especially well if
the sets are disjoint at any level k in the construction of the set on which the
measure concentrates its mass. If the sets are not disjoint, trying to find an
upper bound on the number Γ of sets becomes problematic - an upper bound
which is crucial in the proof. Moreover, we first set out to show that Gibbs
measures were Mycielski-Regular for any s ∈ R; however, so far we have been
unable to do this. In the end, this is still a particular case of the more general
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problem: are all Radon probability measures Mycielski-Regular? We think so,
but it remains to be proven.
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