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A NOTE ON THE UNIQUENESS
PROPERTY FOR BOREL G-MEASURES

Abstract

In terms of a group G of isometries of Euclidean space, it is given a
necessary and sufficient condition for the uniqueness of a G-measure on
the Borel σ-algebra of this space.

Throughout this paper, N denotes the set of all natural numbers, for each
n ∈ N the symbol Rn denotes the n-dimensional Euclidean space, and G
denotes a subgroup of the group of all isometries of Rn. In addition, the
symbol ln stands for the classical n-dimensional Lebesgue measure on Rn and
bn stands for the restriction of ln to the Borel σ-algebra B(Rn) of Rn. The
symbol Cn denotes the closed unit ball in Rn, i.e.,

Cn = {x ∈ Rn : ||x|| ≤ 1}.

A non-negative functional µ defined on some G-invariant σ-ring of subsets
of Rn is called a G-measure if the following three conditions are satisfied:

(1) µ(Cn) = bn(Cn);

(2) µ is countably additive on its domain dom(µ);

(3) if X ∈ dom(µ) and Y ∈ dom(µ) are any two G-congruent sets, then
µ(X) = µ(Y ) (the G-invariance of µ).

Clearly, the standard examples of G-measures on Rn are ln and bn.
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Remark 1. Replacing in the above definition the term “σ-ring” with “ring”
and the term “countably additive” with “finitely additive,” we come to the
notion of a G-volume in Rn (cf. [3], [10]).

Remark 2. LetM(G) be the class of all G-measures on Rn. Some properties
of this class are considered in [5]. The natural question arises whether M(G)
completely characterizes an original group G. In this direction, it was proved
that if G1 and G2 are two groups of isometries of Rn such that G1 \G2 6= ∅,
then there exists a G2-measure on Rn which is not G1-invariant. In particular,
for any two groups G and H of isometries of Rn, the equalityM(G) =M(H)
implies the equality G = H (for more details, see [5]). The proof of this
implication is heavily based on an uncountable form of the Axiom of Choice
(AC). Indeed, in Solovay’s model [9] of a fragment of set theory with some
countable version of AC, all subsets of the real line R = R1 are Lebesgue
measurable. It follows from this fact that, for the additive group (Q,+) of all
rational numbers and for the additive group (R,+), the equality M((Q,+)) =
M((R,+)) holds true in Solovay’s model, but these two groups trivially differ
from each other.

We shall say that µ is a Borel G-measure on Rn if µ is a G-measure on
Rn and dom(µ) = B(Rn).

Obviously, bn is a standard Borel G-measure on Rn. Below we will es-
tablish, in terms of a group G, a necessary and sufficient condition for the
uniqueness of bn in the class of all Borel G-measures on Rn. More precisely,
the statement we intend to prove is formulated as follows: the measure bn is
a unique Borel G-measure on Rn if and only if all G-orbits are everywhere
dense in Rn. For this purpose, we need several auxiliary results.

Lemma 1. Let G be a group of isometries of Rn. If at least one of the G-orbits
is not everywhere dense in Rn, then there are two distinct Borel G-measures
on Rn.

Proof. As usual, for any point z ∈ Rn and any real r > 0, we denote by
B(z, r) the open ball in Rn centered in z, with radius r.

Let now a point x ∈ Rn be such that its G-orbit G(x) is not everywhere
dense in Rn. Then there exists an open ball B(y, r) ⊂ Rn satisfying the
relation

G(x) ∩B(y, r) = ∅.
This relation implies that

(∪{g(B(x, r/2)) : g ∈ G}) ∩ (∪{g(B(y, r/2)) : g ∈ G}) = ∅.

We introduce the following three sets:
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A1 = ∪{g(B(x, r/2)) : g ∈ G};
A2 = ∪{g(B(y, r/2)) : g ∈ G};
A3 = Rn \ (A1 ∪A2).
Observe that A1, A2, A3 are G-invariant subsets of Rn, both A1 and A2

are nonempty open sets in Rn, and A3 is closed in Rn. Further, since

Rn = A1 ∪A2 ∪A3,

we have the disjunction

bn(Cn ∩A1) > 0 ∨ bn(Cn ∩A2) > 0 ∨ bn(Cn ∩A3) > 0.

Consider three possible cases.
1. bn(Cn ∩A1) > 0. In this case, for each set X ∈ B(Rn), we define

ν(X) = bn(Cn)
bn(X ∩A1)

bn(Cn ∩A1)
.

A straightforward verification shows that the functional ν is a Borel G-measure
on Rn. At the same time, we have

ν(A2) = 0, bn(A2) > 0,

whence it follows that ν and bn differ from each other.
2. bn(Cn∩A2) > 0. Similarly to the previous case, for any set X ∈ B(Rn),

we put

ν(X) = bn(Cn)
bn(X ∩A2)

bn(Cn ∩A2)
.

Again, a direct verification shows that the functional ν is a Borel G-measure
on Rn. At the same time,

ν(A1) = 0, bn(A1) > 0,

which shows that ν and bn are two distinct Borel G-measures on Rn.
3. bn(Cn ∩A3) > 0. In this case, for each set X ∈ B(Rn), we define

ν(X) = bn(Cn)
bn(X ∩A3)

bn(Cn ∩A3)
.

Once again, a straightforward verification yields that ν is a Borel G-measure
on Rn. At the same time, we have

ν(A1) = 0, ν(A2) = 0, bn(A1) > 0, bn(A2) > 0,
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whence it follows that ν and bn differ from each other.
So, we conclude that if there exists a G-orbit which is not everywhere

dense in Rn, then there are at least two distinct Borel G-measures on Rn.
This finishes the proof of Lemma 1.

Remark 3. As can readily be checked, for a group G of isometries of the space
Rn, these two assertions are equivalent:

(a) there exists at least one point x ∈ Rn such that the orbit G(x) is every-
where dense in Rn;

(b) for any point z ∈ Rn, the orbit G(z) is everywhere dense in Rn.

If (b) holds true, then it makes sense to say that the group G acts almost
transitively in Rn.

Below, the group of all isometries of the space Rn is assumed to be endowed
with its standard topology (induced by the topology of Euclidean space of
dimension n2 + n).

Lemma 2. Let G be a group of isometries of Rn such that all G-orbits are
everywhere dense in Rn, let G∗ denote the closure of G, and let µ be a Borel
G-measure on Rn.

Then the following two relations are satisfied:

(1) for any compact set K in Rn, one has µ(K) < +∞ (consequently, µ is
a σ-finite measure);

(2) µ is a G∗-invariant measure.

Proof. Since all G-orbits are everywhere dense in Rn, the family of open
balls {g(int(Cn)) : g ∈ G} is a covering of Rn. Therefore, if K is a compact
set in Rn, then there exists a finite family {g1, g2, ..., gm} ⊂ G such that

K ⊂ g1(int(Cn)) ∪ g2(int(Cn)) ∪ ... ∪ gm(int(Cn)),

which immediately gives us µ(K) ≤ mbn(Cn) < +∞. This establishes (1) and
also implies the equality

µ(K) = inf{µ(U) : K ⊂ U, U is an open set in Rn},

because K is representable in the form K = ∩{Uj : j ∈ N}, where all Uj are
open subsets of Rn and

U0 ⊃ U1 ⊃ ... ⊃ Uj ⊃ ..., µ(U0) < +∞.
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To show the validity of (2), we use the regularity of µ, i.e., the fact that µ
is a Radon measure. So, it suffices to prove that µ(h(K)) = µ(K) whenever
h ∈ G∗ and K is compact in Rn. Take any real ε > 0. There exists an open
set U ⊂ Rn such that

h(K) ⊂ U, µ(U \ h(K)) < ε.

Further, since G is everywhere dense in G∗, there exists an element g ∈ G
belonging to an appropriate neighborhood of h and also satisfying g(K) ⊂ U .
Therefore, in view of the G-invariance of µ, we may write

µ(K) = µ(g(K)) ≤ µ(U) ≤ µ(h(K)) + ε,

whence it follows that µ(K) ≤ µ(h(K)). Taking in the last inequality h−1(K)
instead ofK, we get µ(h−1(K)) ≤ µ(K) and then easily infer theG∗-invariance
of µ. Lemma 2 has thus been proved.

Lemma 3. If a group G of isometries of Rn is such that all G-orbits are
everywhere dense in Rn, then the group G∗ (the closure of G) acts transitively
in Rn.

Proof. Let 0 denote the neutral element of Rn and let x be an arbitrary
point of Rn. Since the orbit G(0) is everywhere dense in Rn, there exists a
sequence {gm : m ∈ N} of elements from G such that

limm→+∞gm(0) = x.

It can readily be seen that the family of transformations {gm : m ∈ N} is
bounded in the group of all isometries of Rn. Therefore, this family contains
a convergent subsequence {gm(i) : i ∈ N} such that

limi→+∞gm(i) = g∗ ∈ G∗.

Now, it is clear that g∗(0) = x, which completes the proof.

Before formulating the next auxiliary result, let us recall that a Borel
measure on Rn is said to be G-quasi-invariant if G preserves the class of all
µ-measure zero sets.

Obviously, for measures the property of G-quasi-invariance is much weaker
than the property of G-invariance.

The next lemma is proved in [6]. However, we enclosed its (highly nontriv-
ial) proof for the reader’s convenience.
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Lemma 4. Let G be a closed group of isometries of the space Rn acting
transitively in Rn and let θ denote the left Haar measure on G. Suppose also
that µ is a nonzero σ-finite G-quasi-invariant Borel measure on Rn. Then,
for each set X ∈ B(Rn), the equivalence

µ(X) = 0 ⇔ θ({g ∈ G : g(0) ∈ X}) = 0

holds true.

Proof. Our argument follows [6] (cf. also Chapter 9 of [7]). First of all,
we may assume without loss of generality that µ is a Borel probability G-
quasi-invariant measure on Rn. Let us define a surjective continuous mapping
φ : G→ Rn by the formula

φ(g) = g(0) (g ∈ G)

and introduce the class of sets

S = {φ−1(X) : X ∈ B(Rn)}.

Clearly, S is a countably generated σ-subalgebra of the Borel σ-algebra of G.
We can also define a probability measure ν on S by putting

ν(φ−1(X)) = µ(X) (X ∈ B(Rn)).

Since the original measure µ is G-quasi-invariant, the measure ν on S is left
G-quasi-invariant. Applying the measure extension theorem from [2], we may
extend ν to a Borel probability measure ν′ on G. Let us denote by θ′ a
probability measure equivalent to the Haar measure θ. Further, for each Borel
subset Z of G, consider a function ψZ : G→ R defined by the formula

ψZ(g) = ν′(gZ) (g ∈ G).

It is not hard to check that ψZ is a Borel function on G integrable with respect
to the measure θ′. So we may put

ν′′(Z) =

∫
G

ψZ(g)dθ′(g) =

∫
G

ν′(gZ)dθ′(g).

A direct verification shows that ν′′ is a left G-quasi-invariant Borel probability
measure on G. According to a well-known fact from the Haar measure theory,
ν′′ and θ are equivalent measures. Hence, by the Radon–Nikodym theorem,
there exists a strictly positive Borel function p : G→ R such that

ν′′(Z) =

∫
Z

p(g)dθ(g)
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for each Borel subset Z of G. In view of the definition of ν it is clear that, for
any set X ∈ B(Rn), we have

µ(X) = 0⇔ ν(φ−1(X)) = 0.

At the same time, we may write

ν(φ−1(X)) = 0⇔ ν′(φ−1(X)) = 0⇔ ν′′(φ−1(X)) = 0.

Keeping in mind the strict positivity of p, we obtain the equivalence

µ(X) = 0⇔ θ(φ−1(X)) = 0.

This completes the proof of Lemma 4.

We thus see that the family of all µ-measure zero subsets of Rn is com-
pletely determined by θ, so does not depend on the choice of µ satisfying the
assumptions of Lemma 4.

Lemma 5. Let G be a group of isometries of Rn, all G-orbits of which are
everywhere dense in Rn, and let µ be a σ-finite G-invariant Borel measure
on Rn absolutely continuous with respect to bn. Then µ is proportional to bn,
i.e., there exists a real constant t ≥ 0 such that µ = tbn.

Proof. Since all G-orbits are everywhere dense in Rn, the measure bn is
metrically transitive (ergodic) with respect to G, i.e., for any Borel set X ⊂ Rn

with bn(X) > 0, there exists a countable family {gi : i ∈ I} ⊂ G such that

bn(Rn \ ∪{gi(X) : i ∈ I}) = 0.

This fact readily follows from the classical Lebesgue theorem on the existence
of density points in X. Now, it suffices to apply one general theorem from
the theory of invariant measures, stating that if a σ-finite invariant measure is
absolutely continuous with respect to a σ-finite metrically transitive measure,
then these two measures are proportional (see, e.g., [5] for a proof of the
above-mentioned general statement).

We now are ready to establish the following result.

Theorem 1. For a group G of isometries of Rn, these two assertions are
equivalent:

(1) all G-orbits are everywhere dense in Rn;

(2) any Borel G-measure on Rn is identical with bn.
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Proof. The implication (2) ⇒ (1) immediately follows from Lemma 1. Let
us show the validity of the converse implication (1)⇒ (2). Suppose (1) and let
µ be any Borel G-measure on the space Rn. Denote by G∗ the closure of G.
According to Lemma 3, the group G∗ acts transitively in Rn and, according
to Lemma 2, the measure µ is G∗-invariant. Further, by virtue of Lemma 4, µ
and bn are equivalent measures and, in particular, µ is absolutely continuous
with respect to bn. So, we may apply Lemma 5 and infer that µ is proportional
to bn. Finally, taking into account that

µ(Cn) = bn(Cn),

we conclude that µ and bn coincide with each other.

Remark 4. The proof of the above theorem is not quite elementary in the
sense that it uses the notion of a Haar measure on a closed (in general, non-
commutative) group of isometries of Rn, so the presented argument leaves the
framework of classical real analysis. In this connection, it would be interest-
ing to give an elementary proof of Theorem 1 without appealing to profound
properties of the Haar measure.

Remark 5. The assertion of Theorem 1 fails to be true if we somehow weaken
the definition of a G-measure on Rn. For instance, consider a Borel measure
µ on R2 satisfying the following condition:

(*) µ(B) = b2(C2) = π for every closed disc B ⊂ R2 of radius 1.

Then we cannot assert, in general, that µ is identical with b2. Indeed, as shown
in [1], there are two real constants α 6= 0 and β 6= 0 such that∫ ∫

B

sin(αx+ βy)dxdy = 0

for any disc B ⊂ R2 congruent to C2. Consequently, if µ is defined by

µ(Z) = b2(Z) +

∫ ∫
Z

sin(αx+ βy)dxdy

for each set Z ∈ B(R2), then µ satisfies (*) but differs from b2 (see also [4]
for some related interesting results).

Remark 6. Let G be again a group of isometries of Rn, all G-orbits of which
are everywhere dense in Rn. In general, the standard Borel measure bn does
not possess the uniqueness property with respect to the class of all σ-finite
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G-invariant Borel measures on Rn (here the uniqueness means the propor-
tionality of measures). For example, define the subgroup H of R2 by the
equality

H = R×Q.

Clearly, H is a Borel uncountable everywhere dense subgroup of R2. For any
Borel set X ⊂ R2, put

ν(X) =
∑
{b1(X ∩ (R× {q})) : q ∈ Q}.

It is not difficult to see that:

(a) ν is a Borel σ-finite H-invariant measure on R2;

(b) ν(C2) = +∞.

Actually, for the uniqueness of bn with respect to the class of all σ-finite G-
invariant Borel measures on Rn, a much stronger assumption on G is needed.
One of the sufficient conditions is formulated as follows: for each point x ∈
Rn, the G-orbit G(x) is everywhere dense in Rn, and the group G is thick in
its closure G∗, which means that θ∗(G

∗ \ G) = 0, where θ∗ denotes the inner
measure canonically associated with the left Haar measure θ on G∗ (cf. [6];
see also Chapter 9 of [7]). It is still unknown whether the above sufficient
condition is also necessary. In this context, let us notice that some necessary
and sufficient conditions for the uniqueness property of ln with respect to the
class of all σ-finite G-invariant measures on Rn are presented in Chapter 9
of [7].

At the end of this note, we would like to give another, slightly stronger
formulation of Theorem 1. For this purpose, we need one well-known statement
from classical descriptive set theory.

Lemma 6. Let E be a Polish space and let {Zm : m ∈ N} be a family of
Borel subsets of E. Then the following two assertions are equivalent:

(1) the family {Zm : m ∈ N} separates points in E, i.e., for any two distinct
points x ∈ E and y ∈ E, there exists m ∈ N such that card(Zm ∩
{x, y}) = 1;

(2) the σ-algebra generated by {Zm : m ∈ N} is identical with the Borel
σ-algebra of E.

Proof. The implication (2) ⇒ (1) is almost trivial, so we restrict our atten-
tion to the implication (1) ⇒ (2). Let {Zm : m ∈ N} separate points of E.
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Consider Marczewski’s characteristic function χ indiced by {Zm : m ∈ N}.
As known, χ acts from E into Cantor’s discontinuum {0, 1}N and is defined
as follows: for each z ∈ E one has

χ(z) = {iz(m) : m ∈ N},

where iz(m) = 1 if z ∈ Zm, and iz(m) = 0 if z 6∈ Zm. By virtue of (1), this
χ turns out to be an injective Borel mapping, so the χ-images of all Borel
subsets of E are Borel sets in {0, 1}N and, actually, χ is a Borel isomorphism
between E and χ(E) (see, for instance, [8]). Taking into account the fact that

χ(Zm) = {t ∈ {0, 1}N : tm = 1} ∩ χ(E) (m ∈ N),

one easily concludes that the σ-algebra generated by {Zm : m ∈ N} coincides
with the Borel σ-algebra of E.

Theorem 2. For a group G of isometries of Rn, the following two assertions
are equivalent:

(1) all G-orbits are everywhere dense in Rn;

(2) any G-measure µ is an extension of the measure bn.

Proof. By virtue of Lemma 1 and Theorem 1, it suffices to demonstrate that
if (1) is valid and µ is a G-measure on Rn, then dom(µ) entirely contains the
Borel σ-algebra B(Rn). For this purpose, denote again by 0 the neutral ele-
ment of the additive group Rn and observe that there exists a countable family
{gi : i ∈ I} of elements of G such that the set {gi(0) : i ∈ I} is everywhere
dense in Rn. From this fact it is not difficult to deduce that the countable fam-
ily of sets {gi(Cn) : i ∈ I} separates the points in Rn. Consequently, according
to Lemma 6, the σ-ring generated by the family {gi(Cn) : i ∈ I} coincides with
the Borel σ-algebra B(Rn). Thus, the inclusion B(Rn) ⊂ dom(µ) holds true.
In fact, a more simple geometric argument also leads to the required result.
Namely, for any real ε > 0, there exist two indices i ∈ I and j ∈ I such that
the set gi(Cn) ∩ gj(Cn) has nonempty interior and its diameter is strictly less
than ε. From this circumstance it is not hard to infer that every open subset of
Rn belongs to the σ-algebra generated by the family {gi(Cn) : i ∈ I}, whence
the inclusion B(Rn) ⊂ dom(µ) trivially follows.
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