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Abstract

We prove that all negative generalized Boole transformations are
conservative, exact, pointwise dual ergodic, and quasi-finite with respect
to Lebesgue measure on the real line. We then provide a formula for
computing the Krengel, Parry, and Poisson entropy of all conservative
rational functions that preserve Lebesgue measure on the real line.

1 Introduction

Ergodic properties of rational maps that preserve an infinite measure are the
subject of much recent study as in [4], [6], [8], [9], [11] [21], [24], and [25].
They also have classical roots and were studied earlier in [2], [5], [12], [13],
[14], and [22]. In this paper we study rational maps that preserve Lebesgue
measure, λ, on R. This class of maps is often referred to as generalized Boole
transformations.

The classical Boole transformation was originally studied in [7], and, over
a century later, was shown to be conservative and ergodic in [5]. Since then
a generalized version of the Boole transformation has been studied in [2], [13]
and [14]. Generalized Boole transformations have the form

G(x) = x+ β +

N∑
k=1

pk
tk − x

, (1.1)
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where β, tk, pk ∈ R and pk > 0 for all k = 1, ..., N . It is known that ±G gives a
complete characterization of all rational functions that preserve λ ([13], [18]).
From now on we refer to +G as a positive generalized Boole transformation,
and we continue using the notation G for such transformations. Similarly, we
refer to −G as a negative generalized Boole transformation, and we will denote
these transformations by S.

The ergodic properties of positive generalized Boole transformations have
been well studied. In [14] Li and Schweiger showed that if β = 0, then G is
conservative and ergodic. In [2] Aaronson studied positive generalized Boole
transformations under the umbrella of inner functions on the upper half-plane
and proved that if β = 0, then G is exact and pointwise dual ergodic with

return sequence an(T ) ∼ 1
π

√
2n∑N

k=1 pk
. If β 6= 0, then G is totally dissipative

and non-ergodic. More recently, Aaronson and Park showed in [4] that if
β = 0, then G is quasi-finite.

A key assumption in the above results for positive generalized Boole trans-
formations is that the constant term β must be 0. In Section 2, we show that
the situation is different for negative generalized Boole transformations, and
we prove:

Theorem A. If S is a negative generalized Boole transformation, then S is:
(1) exact, (2) conservative, and (3) pointwise dual ergodic with respect to λ.

Let R : R→ R be a conservative rational function that preserves λ. Since
any λ-preserving rational map is a generalized Boole transformation, either R
is a positive generalized Boole transformation with β = 0 or R is a negative
generalized Boole transformation with any β ∈ R.

In Section 3, we compute the entropy of conservative rational functions
that preserve λ on R. Three independent definitions have been suggested for
entropy in the infinite setting. They are Krengel entropy ([12]), Parry entropy
([16]), and Poisson entropy ([11], [21]). It is known to be difficult to compute
these entropies, and, in particular, to show they are finite. In Theorem 3.4, we
prove that hKr(R) = hPa(R) = hPo(R). Then, we prove the following theorem
which provides a formula for computing the entropy.

Theorem B. If R is a conservative rational function that preserves λ, then

hKr(R) =

∫
R

log |R′(x)|dλ(x). (1.2)
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2 Ergodic properties of λ-preserving rational functions

2.1 Preliminary definitions and notation

Let (X,B,m, T ) denote a σ-finite measure space, (X,B,m), together with a
transformation T : X → X such that T−1B ⊆ B. We assume throughout
that (X,B,m, T ) is measure-preserving (i.e. m(T−1A) = m(A) for all A ∈
B). We say (X,B,m, T ) is n-to-1 if for almost every x ∈ X, the set T−1(x)
contains precisely n distinct points. Given a nonsingular n-to-1 system, we
call a partition P = {Pi}ni=1 of X a Rohlin partition for T if T : Pi → X
is one-to-one and onto for each i = 1, ..., n. From now on when we write T
we mean that (X,B,m, T ) is an infinite measure-preserving system and T is
n-to-1.

We say T is ergodic if for any set A ∈ B such that T−1A = A, we have
m(A) = 0 or m(Ac) = 0. We say T is exact if for any set A ∈ B such that
T−n(Tn(A)) = A for all n > 0, we have m(A) = 0 or m(Ac) = 0. It is clear
that if T is exact, then T is ergodic, but in general the converse does not hold.

A set A ∈ B is called wandering for T if the sets {T−iA}∞i=0 are pair-
wise disjoint. We say T is conservative if there does not exist a wandering
set of positive measure. Since m(X) = ∞, then conservativity is not auto-
matic, because the preimages of a set A ∈ B have plenty of room to “wander”
throughout an infinite measure space. A set A ∈ B is called a sweep-out set
for T if

⋃∞
n=0 T

−nA = X mod m. The following theorem relates the existence
of sweep-out sets to the conservativity of measure-preserving transformations.

Theorem 2.1 (Maharam’s Recurrence Theorem, [15]). Suppose (X,B,m, T )
is a measure-preserving system. If there exists a sweep-out set A ∈ B with
m(A) <∞, then T is conservative.

Given (X,B,m, T ) with Rohlin partition P = {Pi}ni=1, we denote each
branch T |Pi

by Ti. We define the Jacobian of T by

JT (x) =

n∑
i=1

1Pi
(x)

dmTi
dm

(x). (2.1)

The Perron-Frobenius operator (or dual operator) T̂ : L1(m) → L1(m) is
defined by the finite sum

T̂ f(x) =
∑

y∈T−1(x)

f(y)

JT (y)
. (2.2)
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We let ψi denote the inverse of T restricted to Pi (i.e. ψi = T−1|Pi), and we
write (2.2) as

T̂ f(x) =

n∑
i=1

f(ψi(x)) · Jψi
(x). (2.3)

Note that if X = R, m = λ, and T is piecewise C1, then JT (x) = |T ′(x)| and
Jψi

(x) = |ψ′i(x)|.
We say T is pointwise dual ergodic if T is conservative, ergodic and there

exist constants an(T ) such that for all f ∈ L1(m) we have

1

an(T )

n−1∑
k=0

T̂ kf →
∫
X

fdm a.e. as n→∞. (2.4)

As stated in the Introduction, positive and negative generalized Boole
transformations give a complete characterization of rational functions that
preserve Lebesgue measure on the real line ([13], [18]). Let

G(x) = x+ β +

N∑
k=1

pk
tk − x

and S(x) = −x− β −
N∑
k=1

pk
tk − x

, (2.5)

where β, tk, pk ∈ R, and pk > 0. We assume throughout this paper that the
poles {ti}Ni=1 are in ascending order. That is, ti < ti+1 for all i = 1, ..., N − 1.

Let R denote a rational function that preserves Lebesgue measure (i.e.
R = G or R = S). Let q1, ..., qN+1 denote the roots of R in ascending order,
so R(qi) = 0. We define a partition Q = {Q1, ..., QN+1} of R such that
Qi = [qi, qi+1) for i = 1, ..., N and QN+1 = (−∞, q1) ∪ [qN+1,∞). Note
that there is exactly one pole between each qi and qi+1. Namely, ti ∈ Qi for
i = 1, ..., N . We further note that R is an (N + 1)-to-1 mapping with respect
to λ on R with Rohlin partition Q. The general shape of R and the partition
Q are depicted in Figure 1.

We develop a bit more notation related to Q that will be used throughout
this paper. We let ψi = R−1|Qi , so ψi : R → Qi is 1-to-1 and onto for
i = 1, ..., N + 1. We denote the refinement Qi1 ∩R−1Qi2 ∩ ...∩R−(n−1)Qin by
Qi1i2...in , and let

ψi1...in = R−1|Qi1...in
, so ψi1...in = ψi1...in−1

◦ ψin . (2.6)

For convenience, we define one more piece of notation and let

ψi[k] = ψi ◦ ψi ◦ ... ◦ ψi︸ ︷︷ ︸
k−times

. (2.7)
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q2q1 q3 q4 q5 q1 q2 q3 q4 q5

Left: R = G Right: R = S
Number of Poles 4 4
Number of Roots 5 5

Number of Fixed Points 3 5

Figure 1: Examples of conjugated R when N = 4.

Let w1, ..., wN−1 (or wN+1) denote the fixed points of R (note that G has
N − 1 fixed points, while S has N + 1 fixed points in R). For the rest of this
paper it is convenient to conjugate R so that w1 = 0. That is, R(0) = 0 and
all other fixed points are positive. Let φ(x) = x − w1 and φ−1(x) = x + w1.
From now on we replace R with R̃ = φ ◦R ◦ φ−1. Note that Figure 1 depicts
the shape of a conjugated R.

2.2 Proofs of Ergodic properties

Lemma 2.2. If S is a negative generalized Boole transformation, then the
second iterate of S is a positive generalized Boole transformation and has the
form

S2(x) = x+

N2+2N∑
k=1

ρk
τk − x

, (2.8)

where τk, ρk ∈ R and ρk > 0.

Proof. Let G and S have the form in (2.5). Since S is a rational function
that preserves λ, any iterate of S is also a λ-preserving rational function, so
by results recalled above S2 = ±G. Now, we want to show that S2 = +G.
Note that

lim
x→−∞

(G(x)− x) = β and lim
x→−∞

(S(x)− x) =∞. (2.9)
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Thus, given a λ-preserving rational function, we can check this limit to deter-
mine if it has the form of G or S, and if it has the form of G, then we also
obtain the constant β. We check this limit for S2, noting that

S2(x) = x+

N∑
k=1

pk
tk − x︸ ︷︷ ︸

I

−
N∑
k=1

pk
tk − S(x)︸ ︷︷ ︸
II

. (2.10)

We have lim
x→−∞

(S2(x)− x) = 0. Therefore, S2 is a positive generalized Boole

transformation with constant β = 0.

Proof of Theorem A part (1). Given Lemma 2.2, we appeal to the afore-
mentioned results in [2] and [14] to conclude that S2 is exact. It is a simple
exercise to show that if the second iterate of a measure-preserving transfor-
mation is exact, then so is the original transformation. Furthermore, since S
is exact, it is also ergodic.

Before proving Theorem A part (2), we provide some motivation. It is
known that any invertible, ergodic map that preserves a non-atomic σ-finite
measure is necessarily conservative, and the only invertible, dissipative, er-
godic transformation of a σ-finite measure space is isomorphic to translation
on the integers with counting measure. However, the generalized Boole trans-
formations are non-invertible, and it is shown in [3] (remark on pg. 22 and
Proposition 6.4.8) that there exist non-invertible, totally dissipative, ergodic
measure-preserving transformations. Thus, conservativity is not immediate in
this setting.

Proof of Theorem A part (2). We will show that the set A =
⋃N
i=1Qi =

[q1, qN+1) is a sweep-out set for S and apply Maharam’s Recurrence Theorem.
Note that ψ(N+1)(q1) = qN+1, so in order to study the inverse images of

the endpoints of A we need only consider the sequence {ψ(N+1)[k](qN+1)}k≥0.
It is convenient to define two separate sequences corresponding to the even
(positive) and the odd (negative) terms. We will denote the even terms by
{Vk}k≥0 such that V0 = qN+1 and Vk = ψ(N+1)[2k](qN+1). The odd terms will
be denoted by {Wk}k≥0 such that W0 = q1 and Wk = ψ(N+1)[2k−1](qN+1). We
have

(Wdk/2e, Vbk/2c] =

k⋃
j=0

S−j(A), or [Wk/2, Vk/2) =

k⋃
j=0

S−j(A), (2.11)
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depending on whether k is odd or even. In order to show A is a sweep-out set,
we need to show

lim
k→∞

Vk =∞ and lim
k→∞

Wk = −∞. (2.12)

We provide the details for the first limit in (2.12), and the second limit follows
by a similar argument. Since Vk = ψ(N+1)[2k](qN+1), we have that Vk =

S2(Vk+1). By the proof of Lemma 2.2 we have

Vk = Vk+1 +

N∑
i=1

ρi
τi − Vk+1

, (2.13)

where N = N2 + 2N , τi, ρi ∈ R and ρi > 0.
We now show that there exists a c > 0 such that Vk ≥ c

√
k, which implies

Vk → ∞ as k → ∞ (this argument has been adapted from [14]). First, for
k ≥ 0 we have Vk > 0 and Vk ∈ QN+1. Thus, Vk > τi for all i = 1, ...,N. By
(2.13) we have that for k ≥ 0

Vk ≤ Vk+1 −
ρN
Vk+1

. (2.14)

Multiplying both sides by Vk+1 and using the quadratic formula yields

4V 2
k+1 ≥ 2V 2

k + 2Vk

√
V 2
k + 4ρN + 4ρN. (2.15)

We note that
√
V 2
k + 4ρN ≥ Vk, so (2.15) implies

V 2
k+1 ≥ V 2

k + ρN. (2.16)

By induction on (2.16) we have Vk ≥
√
ρN ·

√
k. Thus, Vk → ∞. A similar

argument shows Wk → −∞.

Proof of Theorem A part (3). Let A = [q1, qN+1) as in the proof of part
(2). By Lemma 2.2 and the aforementioned results in [2] we have that S2 is

pointwise dual ergodic with return sequence an(S2) ∼ 1
π

√
2n∑N2+N

k=1 ρk
, so we

have
1

an(S2)

n−1∑
k=0

(̂S2)
k
1A(x)→ λ(A) a.e. as n→∞. (2.17)

We want to show there exists a sequence an(S) such that

1

an(S)

n−1∑
k=0

Ŝk1A(x)→ λ(A) a.e. as n→∞, (2.18)



144 R. L. Bayless

and pointwise dual ergodicity will follow from Hurewicz’s Ergodic Theorem
[10]. For notational convenience, we will write an = an(S2) and bn = an(S).

Let

bn =

{
2an

2
if n is even

2an−1
2

if n is odd.

If n is even:

1

bn

n−1∑
k=0

Ŝk1A(x) =
1

2an
2

n
2−1∑
k=0

(̂S2)
k
1A(x) +

n
2−1∑
k=0

(̂S2)
k
(Ŝ1A)(x)

 . (2.19)

If n is odd:

1

bn

n−1∑
k=0

Ŝk1A(x) =
1

2an−1
2

1A(x)+

n−1
2∑

k=1

(̂S2)
k
1A(x) +

n−1
2 −1∑
k=0

(̂S2)
k
(Ŝ1A)(x)

 .

(2.20)
Since S2 is pointwise dual ergodic, then along the two sequences of even and
odd terms we have,

1

bn

n−1∑
k=0

Ŝk1A(x)→ 1

2

(
λ(A) +

∫
R
Ŝ1A(x)dλ(x)

)
= λ(A), (2.21)

λ-a.e. as n→∞. Thus, S is pointwise dual ergodic.

Corollary 2.3. If S is a negative generalized Boole transformation, then the
return sequence bn ∼

√
2an, where an is the return sequence for S2.

Proof. By the definitions of an and bn given in the proof of Theorem A part
(3) we have

lim
n→∞

b2n
a2n

= lim
n→∞

b2n−1
a2n−1

=
√

2. (2.22)

3 Entropy

3.1 The induced transformation

One technique commonly used to study conservative infinite measure-preser-
ving transformations is inducing on a finite-measure sweep-out set. Let A ∈ B
be a sweep-out set for (X,B,m, T ). For x ∈ X define φA(x) = min{n :
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Tn(x) ∈ A}. That is, φA(x) is the first-hitting-time of x to A. If x ∈ A,
then φA(x) is often referred to as the first-return-time of x to A. The induced
transformation, TA : A→ A, is defined by

TA(x) = TφA(x)(x) for x ∈ A.

If (X,B,m, T ) is a measure-preserving system and A is a sweep-out set for
T , then TA is a measure-preserving transformation of (A,B|A,m|A), where
B|A = {B ∩A : B ∈ B} and m|A(B) = m(A ∩B).

We develop some notation to describe precise hitting-times to A. Let A
denote the first-return partition of A. That is, A = {Ak}, where

Ak = {x ∈ A : φA(x) = k} = A ∩ T−kA \
k−1⋃
j=1

T−jA. (3.1)

Let B = {Bk} be a similar partition of Ac. That is,

Bk = {x ∈ Ac : φA(x) = k} = Ac ∩ T−kA \
k−1⋃
j=1

T−jA = T−kA \
k−1⋃
j=0

T−jA.

(3.2)
We now turn our attention back to conservative rational functions that

preserve Lebesgue measure with sweep-out set A = [q1, qN+1). We partition
each atom Ak of A into N sets Ak,i for i = 1, .., N such that Rk : Ak,i → A
is one-to-one and onto. That is, we let Ak,i = ψi ◦ ψ(N+1)[k−1](A). Figure 2
shows how Ak,i and Bk move under the ψ maps. Each solid arrow depicts a
1-to-1 and onto mapping, and the dashed arrows indicate (N − 2) individual
1-to-1 and onto mappings.

3.2 Preliminaries on entropy

We quickly recall the definition of entropy for transformations preserving a
finite measure and point the reader to [17] or [23] for a more in-depth discus-
sion. Let (Ω, C, µ) be a finite-measure space, and let α = {ai} be a countable
partition of Ω. The entropy of α is defined by

H(α) = −
∞∑
i=0

m(ai) log(m(ai)). (3.3)

If T is a measure-preserving transformation of (Ω, C, µ), then T−nα denotes
the partition {T−nai}. The entropy of T with respect to α is defined by

h(T, α) = lim
n→∞

1

n
H(α ∨ T−1α ∨ ... ∨ T−(n−1)α). (3.4)
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B1 B2 B3
...

A1 A2 A3 A4

...

A

ψN+1

ψN+1 ψN+1 ψN+1

Ac

A

ψ1

A1,1 ...

ψN

A1,N

ψ1

A2,1 ...

ψN

A2,N

ψ1

A3,1 ...

ψN

A3,N

ψ1

A4,1 ...

ψN

A4,N

Figure 2: How hitting-time sets move under ψj , j = 1, ..., N + 1.

The entropy of the transformation T is defined by

h(T ) = suph(T, α), (3.5)

where the supremum is taken over all finite partitions α.
Krengel was the first to extend the notion of entropy to infinite measure-

preserving transformations (see [12]). He provided the following definition.

Definition 3.1 ([12]). Let (X,B,m, T ) be a conservative σ-finite measure-
preserving system. Let A ∈ B such that 0 < m(A) <∞. Define

hKr(T ) = sup
A
h(TA,m|A). (3.6)

Krengel also proved the following theorem which provides a useful simpli-
fication of Definition 3.1 in the case where A is a sweep-out set.

Theorem 3.1 ([12]). Let (X,B,m, T ) be a conservative σ-finite measure-
preserving system. If A ∈ B such that 0 < m(A) < ∞, and A is a sweep-out
set for T , then

hKr(T ) = h(TA,m|A). (3.7)

We note that Krengel’s definition of entropy is equivalent to Abramov’s
formula for entropy in the finite measure-preserving case. Also, we have writ-
ten m|A, to emphasize that we are considering the measure, m, restricted to
A (not normalized).



Ergodic Properties of Rational Functions 147

3.3 Other entropy definitions and quasi-finiteness

In addition to the Krengel entropy, two other definitions of entropy have been
suggested for infinite measure-preserving transformations. In this section, we
quickly recall these definitions and show that all three entropies coincide for
conservative rational functions that preserve Lebesgue measure on R.

In 1969 Parry provided a new extension of entropy to transformations
preserving an infinite measure ([16]). Before stating Parry’s definition, we
need a few definitions. Let (X,B,m, T ) be a measure-preserving system. Let
C be a sub-σ-algebra of B. If f ∈ L1(m), then dµ = fdm defines a measure
such that µ(A) =

∫
A
fdm. By the Radon-Nikodym Theorem there exists a

function E(f |C) such that∫
C

E(f |C)dm =

∫
C

fdm for all C ∈ C. (3.8)

For A ∈ B we define m(A|C) = E(1A|C). If α = {ai} is a measurable partition
of X, then we define the conditional information of α given C to be

I(α|C) = −
∑
ai∈α

log(m(ai|C)) · 1ai . (3.9)

Finally, the conditional entropy of α given C is defined by

H(α|C) =

∫
X

I(α|C)dm. (3.10)

Given a partition α we write α̂ to denote the σ-algebra generated by α. That
is, elements of α̂ are unions of the atoms in α. For more information on the
information function and conditional entropy see [16] or [17]. We now state
Parry’s definition of entropy for infinite measure-preserving transformations.

Definition 3.2 (Parry Entropy, [16]). Let (X,B,m, T ) be a σ-finite measure-
preserving system. The Parry entropy of T is defined by

hPa(T ) = sup{H(α|T̂−1α)}, (3.11)

where the supremum is taken over all measurable partitions α such that α̂ is
σ-finite and T−1α ≤ α.

More recently, another definition of entropy for infinite measure-preserving
transformations has been suggested. The Poisson suspension, (X∗,B∗,m∗, T∗),
of a system preserving a σ-finite measure, (X,B,m, T ), is a method of asso-
ciating a probability-preserving transformation to a possibly infinite measure-
preserving system. We have that (X∗,B∗,m∗, T∗) is a point process in which
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identical particles propagate according to T , do not interact with one another,
and the expected number of particles in each set E ∈ B is determined (in a
Poisson manner) by m(E). A formal description of the Poisson suspension is
given in [21] and [11].

Definition 3.3 (Poisson Entropy, [21]). The Poisson entropy of an infinite
measure-preserving transformation is defined as the Kolmogorov entropy of
the Poisson suspension. That is, hPo(T ) = h(T∗).

The three definitions of entropy for infinite measure-preserving transfor-
mations coincide in the case when T is a quasi-finite transformation ([16],
[11]).

Definition 3.4 (Quasi-Finite, [12]). Suppose (X,B,m, T ) is a conservative
measure-preserving system. The map T is called quasi-finite if there exists a
sweep-out set A ∈ B with m(A) <∞ such that the first return time partition,
A = {Ak}, has finite entropy.

A related property is called log lower bounded, and the following definition
can be found in [4].

Definition 3.5. Given a conservative, ergodic, infinite measure-preserving
system, (X,B,m, T ), we set

Flog =

{
A ∈ B : 0 < m(A) <∞ and

∫
A

log(φA)dm <∞
}
. (3.12)

The transformation T is called log-lower bounded (LLB) if Flog 6= ∅.

The following Lemma is stated as a remark in [4], and the details of the
proof are outlined in a slightly different context in [1].

Lemma 3.2. If T is log lower bounded, then T is quasi-finite.

Aaronson and Park proved the following theorem which provides an equiv-
alence between LLB transformations and pointwise dual ergodic transforma-
tions with a specific condition on the return sequence.

Theorem 3.3 ([4]). If T is a conservative, pointwise dual ergodic, infinite
measure-preserving transformation of (X,B,m), then

T is LLB ⇐⇒
∞∑
n=1

1

nan(T )
<∞. (3.13)
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Theorem 3.4. All conservative rational functions that preserve Lebesgue mea-
sure are log-lower bounded (and quasi-finite). Thus,

hKr(R) = hPa(R) = hPo(R). (3.14)

Proof. The results in [2] combined with the proof of Theorem A part (3)
show an(R) ∼ c

√
n, where c ∈ R and c > 0. Thus, we apply Theorem 3.3 and

obtain that R is LLB, and therefore R is quasi-finite by Lemma 3.2. Thus,
the three entropy definitions coincide by the results of [16] and [11].

3.4 Entropy formula

Before proving Theorem B we give a little motivation and history for the
integral formula. The following definition can be found in [22].

Definition 3.6. Let I = [a, b] be a closed interval in R. Let TRen(I) denote
the class of all transformations T : I → I such that there exists a partition
into subintervals {Ij : j ∈ J} satisfying the following properties:

1. (piecewise differentiable and surjective) T |Ij is C2 and T (Ij) = I for all
j. Each Ij contains exactly one fixed point of T .

2. (expanding) There exists a ρ > 1 such that |T ′(x)| ≥ ρ for all x ∈ Ij .

3. (Adler’s condition)
∣∣∣ T ′′(x)T ′(x)2

∣∣∣ is bounded on
⋃
j∈J Ij .

If T ∈ TRen(I), then T satisfies Renyi’s condition, and T preserves an abso-
lutely continuous finite measure, µ ([19], [22]). Furthermore, we can compute
the entropy of T via the following formula.

Theorem 3.5 (Rohlin’s Formula, [20]). Let I = [a, b] be a closed interval of
R. If T ∈ TRen(I) and µ is invariant for T , then

h(T ) =

∫
I

log |T ′(x)|dµ(x). (3.15)

Lemma 3.6. Suppose R is a conservative rational function that preserves λ on
R and let A = [q1, qN+1). Then the induced transformation, RA ∈ TRen(A),
and

h(RA) =

∫
A

log |R′A(x)|dλ|A(x). (3.16)

Proof. We want to show that RA satisfies (1)-(3) of Definition 3.6. Consider
the partition {Ak,i} defined above. To show (1) we note that if x ∈ Ak,i,
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then RA = Rk, so RA : Ak,i → A is one-to-one and onto. Furthermore, R is
piecewise smooth on R, so RA is C2 on each Ak,i. To show (2) we note,

|R′(x)| = 1 +

N∑
i=1

pi
(ti − x)2

. (3.17)

We have |R′(x)| > 1 for all x ∈ R, but |R′(x)| → 1 as x → ∞. The set
A = [q1, qN+1), however, is bounded away from ∞. Therefore, there exists a
constant ρ > 1 such that infx∈A |R′(x)| ≥ ρ, so by the chain rule |R′A(x)| ≥
ρ > 1 for all x ∈ A. Finally, (3) was shown in [14] for the case when R = G
and β = 0. We will modify the argument to show (3) in the case when R = S.
Let x ∈ Ak,i. The chain rule yields∣∣∣∣ (S)′′A(x)

((S)′A(x))2

∣∣∣∣ ≤ k∑
j=1

∣∣∣∣ (S)′′((S)k−j(x))

((S)′((S)k−j(x)))2

∣∣∣∣ . (3.18)

A calculation shows |(S)′′(y)((S)′(y))−2| is bounded and decreases for
large |y| satisfying |(S)′′(y)((S)′(y))−2| ≤ M |y|−3. Since x ∈ Ak, we know
(S)k−j(x) ∈ Bj (as in (3.2)). From our study of A in (2.11), we have the
following two cases:

1. If j is even, then Bj = (V(j/2)−1, Vj/2) ∪ {Wj/2}.

2. If j is odd, then Bj = (Wdj/2e,Wbj/2c) ∪ {Vbj/2c}.

Therefore, (S)k−j(x) ∈ [Vbj/2c−1, Vdj/2e] ∪ [Wdj/2e,Wbj/2c]. Starting with the
right-hand side of (3.18) we have

k∑
j=1

∣∣∣∣ (S)′′((S)k−j(x))

((S)′((S)k−j(x)))2

∣∣∣∣ ≤M k∑
j=1

|Wbj/2c|−3 + |Vbj/2c−1|−3

≤M
k∑
j=1

1

c32(bj/2c)3/2
+

1

c31(bj/2c − 1)3/2
, (3.19)

where the second line comes from the proof of Theorem A part (2). We see
that the limit as k →∞ of (3.19) is finite.

Therefore RA ∈ TRen(A), and the integral formula follows from Theorem
3.5.

We are now ready to prove Theorem B.
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Proof of Theorem B. By the Theorem 3.1 and Lemma 3.6 we have

hKr(R) = h(RA) =

∫
A

log |R′A(x)|dλ|A(x). (3.20)

By Theorem 10.6 in [16] we have∫
A

log |R′A(x)|dλ|A(x) ≤
∫
R

log |R′(x)|dλ(x). (3.21)

Now, by the definition of Parry entropy and Lemma 10.5 in [16] it follows that∫
R

log |R′(x)|dλ(x) ≤ hPa(R). (3.22)

We already proved that hKr(R) = hPa(R) in Theorem 3.4. Therefore,

hKr(R) =

∫
R

log |R′(x)|dλ(x). (3.23)
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