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A NOTE ON MONOTONICITY THEOREMS
FOR APPROXIMATELY CONTINUOUS

FUNCTIONS

We say that f(x) is approximately continuous at a if there is a measurable
set V such that a is a density point of V and the restriction f |V (x) is continuous
at a. If in addition f |V (x) is differentiable at a then we say that f(x) is
approximately differentiable at a, and we denote the derivative by f ′ap(a). It
is well known, Theorem 2.5 [2], that f ′ap(x) ≥ 0 at every point x of an interval
I implies that f is nondecreasing on I. See [2], page 107 for the proof of this
result. The first part of this note is to provide a simple proof of Theorem 2.5.
Since the conditions used in our proof are much weaker than those of Theorem
2.5, our Theorem 2 can be also regarded as its generalization.

Definition 1. Let A be a measurable set and λ(A) its Lebesque measure. The
upper and lower right densities of a point x with respect to A are d+(A, x) =
lim suph→0+ λ(A∩(x, x+h))/h and d+(A, x) = lim infh→0+ λ(A∩(x, x+h))/h
respectively. The upper and lower left densities are defined as d−(A, x) =
lim suph→0+ λ(A∩(x−h, x))/h and d−(A, x) = lim infh→0+ λ(A∩(x−h, x))/h
respectively. When the two lower densities are 1, we say that x is a density
point of A.

Let Ey = {x : f(x) < y}, and Ey = {x : f(x) > y}. The condition
that f is approximately continuous at a implies that if a ∈ Ey then a is a
density point of Ey and if a ∈ Ey, then a is a density point of Ey. Moreover
if f is approximately continuous on an interval I, then it’s measurable (See
Theorem 5.2 [2]). In proving monotonicity results, the assumption f ′ap(a) ≥ 0
on an interval can be replaced with the weaker assumption that f ′ap(a) > 0, for
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the weaker assumption is true for fn(x) = f(x)+ 1
nx. Now the monotonicity of

fn(x) for every n implies the monotonicity of f . The assumption f ′ap(a) > 0,
implies that d+({x > a : f(x) ≥ f(a)}, a) = 1.

Theorem 2. Let f be a measurable function defined on an open interval I,
such that for x ∈ Ey we have d−(Ey, x) > 1/2 while for x ∈ Ey we have
d+(Ey, x) > 1/2. In addition suppose that for all but countably many x ∈ I,
d+({z > x : f(z) ≥ f(x)}, x) > 1/2. Then f is nondecreasing on I.

Proof. Suppose to the contrary that there is a < b such that f(a) > f(b).
Let f(a) > y > f(b). We will show that there is a < r < b such that f(r) = y
and d+({z > r : f(z) ≥ f(r)}, r) ≤ 1/2. Since the last inequality can hold for
only countably many r, and we have uncountably many choices for y, we have
a contradiction.

Let A = {x : f(x) ≥ y}. Consider a continuous function g on [a, b] defined
by

g(x) = λ(A ∩ (a, x))− 1

2
(x− a).

Then g(a) = 0 and since a ∈ Ey ⊂ A, by assumption we have that d+(A, a) ≥
d+(Ey, a) > 1/2 which implies that lim supx→a+

g(x)−g(a)
x−a > 0. Thus if r

denotes the point where g(x) attains its maximum, then a < r ≤ b. Hence

for every a ≤ z < r, g(z) ≤ g(r). This implies that λ(A∩(z,r))
r−z ≥ 1/2. Taking

lim infz→r− we see that
d−(A, r) ≥ 1/2.

If r ∈ Ey, then by assumption we would have d−(Ey, r) > 1/2, but Ey is
disjoint from A so this is impossible. Hence r /∈ Ey and thus r < b.

So for all r < z ≤ b, g(r) ≥ g(z) which implies that λ(A∩(r,z))
z−r ≤ 1/2.

Taking lim supz→r+ we see that

d+(A, r) ≤ 1/2.

Since Ey ⊂ A we also have d+(Ey, r) ≤ 1/2. If r ∈ Ey, then by assumption
d+(Ey, r) > 1/2, which is a contradiction. Hence r /∈ Ey∪Ey, that is f(r) = y
and A ⊃ {z > r : f(z) ≥ f(r)}.

Another monotonicity theorem for approximately continuous functions was
obtained by Ornstein in 1971, [6].

Ornestein Theorem. Let f be approximately continuous on an interval I.
Suppose that for all ( but countably many ) x ∈ I, d+({w > x : f(w) ≥
f(x)}, x) > 0. Then f is nondecreasing.
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The Ornestein theorem provides a positive answer to a question from 1937
by A. J. Ward.

Scottish book problem # 157. Let f be approximately continuous on an
interval I. Suppose that for all x ∈ I, the approximate upper right derivate,
D+
apf(x) is positive. Is f(x) monotone increasing?

See [1] on problem 157 and [3] for a different proof of Ornestein theorem.
In the second part of this note, using similar ideas as in our proof of Theo-
rem 2 we present a shorter proof of Ornestein theorem. Moreover we prove
“the parenthetical version” of Ornestein’s theorem which is stronger than the
original version.

Proof. Suppose to the contrary that there is a < b such that f(a) > f(b).
Let f(b) < y < f(a). We will show that there is a < r < b such that f(r) = y
and d+({w > r : f(w) ≥ f(r)}, r) = 0. Since the last equality can hold for
only countable many r, and we have uncountably many choices for y, we have
a contradiction.

Let A = {x : f(x) ≥ y}, and for any positive integer n let Cn = {t : f(t) >

y − y−f(b)
n } so that Cn’s are nested and A = ∩∞n=1Cn. Consider a continuous

function

g(x) =

∞∑
n=1

1

2n
λ(Cn ∩ (a, x)) + λ(A ∩ (a, x))− (x− a).

Since g(a) = 0, and a is a right density point of A we have that

limx→a+
g(x)−g(a)
x−a ≥ limx→a+

2λ(A∩(a,x))
x−a − 1 = 1. Therefore if r is the point

where g attains its maximum then a < r ≤ b. Thus for every a ≤ z < r, we
have g(z) ≤ g(r) which implies that

∞∑
n=1

1

2n
λ(Cn ∩ (z, r))

r − z
+
λ(A ∩ (z, r))

r − z
≥ 1. (1)

If there is an integer n such that r /∈ Cn, then approximate continuity im-

plies that d−(Cn+1, r) = 0. From (1) we get 1 − 1
2n+1 + 1

2n+1

λ(Cn+1∩(z,r))
r−z +

λ(Cn+1∩(z,r))
r−z ≥ 1. Taking lim supz→r− we obtain a contradiction 1− 1

2n+1 ≥ 1.
Thus r ∈ Cn for all n and thus also in A = ∩∞n=1Cn. Hence r < b and

g(w) ≤ g(r) for all r < w ≤ b. This implies that

∞∑
n=1

1

2n
λ(Cn ∩ (r, w))

w − r
+
λ(A ∩ (r, w))

w − r
≤ 1. (2)
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Since r ∈ Cn for all n, approximate continuity of f implies that

limw→r
λ(Cn∩(r,w))

w−r = 1. Taking lim supw→r+ in (2) we obtain 1+d+(A, r) ≤ 1,

that is d+(A, r) = 0.
If f(r) > y then by the approximate continuity of f we would have

d+(A, r) = 1. Therefore f(r) = y, A ⊃ {w > r : f(w) ≥ f(r)}.
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