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A NOTE ON MONOTONICITY THEOREMS
FOR APPROXIMATELY CONTINUOUS
FUNCTIONS

We say that f(x) is approximately continuous at a if there is a measurable
set V such that a is a density point of V" and the restriction f|y (z) is continuous
at a. If in addition f|y(z) is differentiable at a then we say that f(z) is
approximately differentiable at a, and we denote the derivative by f;,(a). It
is well known, Theorem 2.5 [2], that f;,(z) > 0 at every point x of an interval
I implies that f is nondecreasing on I. See [2], page 107 for the proof of this
result. The first part of this note is to provide a simple proof of Theorem 2.5.
Since the conditions used in our proof are much weaker than those of Theorem
2.5, our Theorem 2 can be also regarded as its generalization.

Definition 1. Let A be a measurable set and A(A) its Lebesque measure. The
upper and lower right densities of a point x with respect to A are d¥(A,x) =
limsupy,_,o+ M(AN(z,z+h))/h and dy (A, z) = liminf, o+ A(AN(z,2+h))/h
respectively. The upper and lower left densities are defined as d—(A,x) =
limsup;,_,g+ A(AN(x—h,z))/h and d_ (A, x) = liminf;,_o+ A(AN(x—h,z))/h
respectively. When the two lower densities are 1, we say that x is a density
point of A.

Let B, = {z : f(z) < y}, and EY = {z : f(z) > y}. The condition
that f is approximately continuous at a implies that if « € E, then a is a
density point of £, and if a € EY, then a is a density point of EY. Moreover
if f is approximately continuous on an interval I, then it’s measurable (See
Theorem 5.2 [2]). In proving monotonicity results, the assumption f, (a) >0
on an interval can be replaced with the weaker assumption that f;,(a) > 0, for

Mathematical Reviews subject classification: Primary: 26A24

Key words: approximately continuous functions, monotonicity theorems
Received by the editors January 25, 2017

Communicated by: Brian S. Thomson
*The research for this paper was supported by CSUSB 2016 Mini-grant.

429



430 HaJjruDIN FEJZIG

the weaker assumption is true for f,(z) = f(z)+ tz. Now the monotonicity of
fn(z) for every n implies the monotonicity of f. The assumption f; (a) >0,
implies that dy({x > a: f(z) > f(a)},a) = 1.

Theorem 2. Let f be a measurable function defined on an open interval I,
such that for x € E, we have d~ (Ey,x) > 1/2 while for x € EY we have
dT(EY,z) > 1/2. In addition suppose that for all but countably many z € I,
dt*({z>=z: f(z) > f(x)},z) > 1/2. Then f is nondecreasing on I.

PROOF. Suppose to the contrary that there is a < b such that f(a) > f(b).
Let f(a) >y > f(b). We will show that there is a < r < b such that f(r) =y
and dt({z > r: f(z) > f(r)},r) < 1/2. Since the last inequality can hold for
only countably many r, and we have uncountably many choices for y, we have
a contradiction.

Let A= {z: f(x) > y}. Consider a continuous function g on [a, b] defined
by

9(r) = A(AN (a,7)) — 5(z ).

Then g(a) = 0 and since a € EY C A, by assumption we have that d* (A, a) >
d*(EY,a) > 1/2 which implies that limsup,_,,+ 22=9@ > 0. Thus if
denotes the point where g(x) attains its maximum, then a < r < b. Hence
for every a < z < r, g(z) < g(r). This implies that W > 1/2. Taking
liminf,_,,.- we see that

d_(A,r) >1/2.

If » € E,, then by assumption we would have d~(Ey,,r) > 1/2, but E, is
disjoint from A so this is impossible. Hence r ¢ E, and thus r < b.

So for all r < z < b, g(r) > g(z) which implies that w < 1/2.
Taking limsup,_,,+ we see that

dt(A,r) <1)2.

Since EY C A we also have d*(EY,r) < 1/2. If r € EY, then by assumption
d*t(EY,r) > 1/2, which is a contradiction. Hence r ¢ E,UFEY, thatis f(r) =y
and AD {z>r: f(z) > f(r)}.

O

Another monotonicity theorem for approximately continuous functions was
obtained by Ornstein in 1971, [6].

Ornestein Theorem. Let f be approximately continuous on an interval I.
Suppose that for all ( but countably many ) z € I, d*({w > z : f(w) >
f(@)},2) > 0. Then f is nondecreasing.
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The Ornestein theorem provides a positive answer to a question from 1937
by A. J. Ward.

Scottish book problem # 157. Let f be approzimately continuous on an
interval I. Suppose that for all x € I, the approxzimate upper right derivate,
D f(x) is positive. Is f(x) monotone increasing?

See [1] on problem 157 and [3] for a different proof of Ornestein theorem.
In the second part of this note, using similar ideas as in our proof of Theo-
rem 2 we present a shorter proof of Ornestein theorem. Moreover we prove
“the parenthetical version” of Ornestein’s theorem which is stronger than the
original version.

PROOF. Suppose to the contrary that there is ¢ < b such that f(a) > f(b).
Let f(b) <y < f(a). We will show that there is a < r < b such that f(r) =y
and dt({w > r: f(w) > f(r)},r) = 0. Since the last equality can hold for
only countable many r, and we have uncountably many choices for y, we have
a contradiction.
Let A= {z: f(x) > y}, and for any positive integer n let C,, = {t : f(t) >

y— & f(b } so that C,,’s are nested and A = N2, C,,. Consider a continuous
function

2222i CpnN(a,x))+AAN(a,2)) — (z —a).

Since g(a) = 0, and a is a right density point of A we have that

% > lim, ,,+ 2A40@2) 1 — 1 Therefore if r is the point

11mm~>a+ z—a
where ¢ attains its maximum then a < r < b. Thus for every a < z < 7, we
have g(z) < ¢g(r) which implies that

=1 MC, N ( MAN

S (1) , MANGT) || "
= 2m r—z r—z

If there is an integer n such that r» ¢ C,,, then approximate continuity im-

plies that d=(Cp41,7) = 0. From (1) we get 1 — 2,}“ + 2,}“ ACni10Gr)) 4

r—z
w > 1. Taking limsup,_,,— we obtain a contradiction 1 — 2n+1 > 1.

Thus r € C), for all n and thus also in A = N2, C,. Hence r < b and
g(w) < g(r) for all r < w < b. This implies that

i% (Cnn( rw))+/\(Aﬂ(r,w)) <1 @)

w — w—-r -
n=1
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Since r € C}, for all n, approximate continuity of f implies that
limy,—y W = 1. Taking limsup,,_,,+ in (2) we obtain 14+d*(4,r) <1,
that is d*(A,r) = 0.

If f(r) > y then by the approximate continuity of f we would have
d4+(A,r) = 1. Therefore f(r) =y, A D {w>r: f(w) > f(r)}.

O

References

[1] K. Beanland, P. Humke and T. Richards, On Scottish Book 157, Real
Anal. Exchange, 41(2) (2016), 331-346.

[2] A. Bruckner, Differentiation of Real Functions, CRM Monograph Series,
American Mathematical Society (1994).

[3] C. Freiling, P. Humke and R. O’Malley, An Alternate Solution to Scottish
Book 157, Real Anal. Exchange, (2016), 403—-408.

[4] C. Freiling, P. Humke and R. O’Malley, Approzimetely continuous func-
tions have approrimate extrema, a mew proof, Real Anal. Exchange,

(2016), 409-414.
[5] R. O'Malley, Approzimate mazima, Fund. Math., 1 (1977), 75-81.

[6] D. Ornstein, A characterization of monotone functions, lllinois J. Math.,
15 (1971), 73-76.



