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A GENERALIZED EGOROV’S STATEMENT
FOR IDEALS

Abstract

We consider the generalized Egorov’s statement (Egorov’s Theorem
without the assumption on measurability of the functions, see [10]) in
the case of an ideal convergence and a number of different types of
ideal convergence notion. We prove that in those cases the generalized
Egorov’s statement is independent from ZFC.

1 Introduction

In this paper we consider various versions of the classic Egorov’s Theorem.
Let us recall (see e.g. [6]) that the classic Egorov’s Theorem states that given
a sequence of measurable functions (we restrict our attention to the real func-
tions [0, 1]→ [0, 1]) which is pointwise convergent on [0, 1] and ε > 0, one can
find a measurable set A ⊆ [0, 1] with m(A) ≥ 1 − ε such that the sequence
converges uniformly on A (m denotes the Lebesgue measure).

It is interesting whether we can drop the assumption on measurability
of the functions in the above theorem. A statement which says that given
any sequence of functions [0, 1] → [0, 1] which is pointwise convergent and
ε > 0, there exists a set A ⊆ [0, 1] with m∗(A) ≥ 1 − ε (m∗ denotes the
outer measure) such that the sequence converges uniformly on A, is called the
generalized Egorov’s statement. T. Weiss in his unpublished manuscript (see
[10]) proved that it is independent from ZFC, and this fact was used in [3].
Then R. Pinciroli studied the method of T. Weiss more systematically (see
[7]). For example, he related it to cardinal coefficients: non(N) (the lowest
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possible cardinality of a non-null set), b (the lowest possible cardinality of a
family of sequences of natural numbers unbounded in the sense of the order
≤∗ of eventual domination) and d (the lowest possible cardinality of a family
of sequences of natural numbers such that every sequence is dominated in
the sense of ≤∗ by a sequence in the family). In particular, he proved that
non(N) < b implies that the generalized Egorov’s statement holds, but if, for
example, non(N) = d = c, then it fails.

We can also define a notion of convergence of a sequence of functions with
respect to a given ideal I on ω. There are different types of convergence with
respect to I, and pointwise and uniform convergence are the most common.
Given two notions of convergence with respect to an ideal, we can ask whether
the classic Egorov’s Theorem (with the measurability assumption) holds for
those two notions of convergence in the sense of whether the weaker conver-
gence implies the stronger convergence on a subset of arbitrarily large measure.
The answer may often be negative as in the case of uniform and pointwise con-
vergence for many analytic P-ideals (see [4, Theorem 3.4]). But one can also
define other types of convergence, e.g. equi-ideal convergence. And, for exam-
ple, in the case of analytic P-ideal so called weak Egorov’s Theorem for ideals
(between equi-ideal and pointwise ideal convergence) was proved by N. Mrożek
(see [4, Theorem 3.1]).

Therefore, we ask whether in the case of an ideal and two notions of con-
vergence for which Egorov’s theorem with measurability assumption holds, we
can drop this assumption. This paper deals with this question in relation to
different types of ideal convergence notions.

2 Using Pinciroli’s method

We start by a generalization of the method presented by R. Pinciroli (see [7],
and also [8]). The core of this method can be generalized to the following
theorem.

Theorem 1. Assume that non(N) < b. Let Φ ∈ (ωω)[0,1]. Then for any
ε > 0, there exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [7]).

Assume that non(N) < b. Notice that this statement holds for example
in a model obtained by ℵ2-iteration with countable support of Laver forcing
(see e.g. [1]). Also it can be easily proven, that under this assumption there
exists a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed,
if N ⊆ [0, 1] is a set of positive outer measure with |N | < b, then let Y =
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{x+y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has outer
measure 1 under the Zero-One Law.

Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ

denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n
i=0Bi]. Therefore, Φ[An] is bounded, and

for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �
In the products of the form ωS and (ωS)T we consider partial orderings,

denoted by the same symbol ≤, given by x ≤ y, if x(s) ≤ y(s) for x, y ∈ ωS ,
s ∈ S, and φ ≤ ψ, if φ(t) ≤ φ(t) for φ, ψ ∈ (ωS)T , where φ(t), ψ(t) ∈ ωS . We
say that a function o : X → P from a set X into a partially ordered set P is
cofinal if for every p ∈ P there exists x ∈ X such that p ≤ o(x).

For a sequence of functions fn : [0, 1] → [0, 1] and subset A ⊆ [0, 1] we
consider a notion of convergence fn # f on A. We assume that if B ⊆ A and
fn # f on A, then fn # f on B. We write fn # f provided that fn # f
on [0, 1]. Let F ⊆ {〈fn〉n∈ω : ∀n∈ωfn : [0, 1] → [0, 1]} be an arbitrary family
of sequences of functions.

We consider two hypotheses between F and #:

(H⇒(F ,#)) There exists o : F → (ωω)[0,1] such that for every F ∈ F and
every A ⊆ [0, 1], if o(F )[A] is bounded in (ωω,≤), then F # 0 on A.

(H⇐(F ,#)) There exists cofinal o : F → (ωω)[0,1] such that for every F ∈ F
and every A ⊆ [0, 1], if F # 0 on A, then o(F )[A] is bounded in (ωω,≤).

Theorem 2. Assume that non(N) < b, and H⇒(F ,#). Then for any
〈fn〉n∈ω ∈ F and any ε > 0, there exists A ⊆ [0, 1] such that m∗(A) ≥ 1 − ε
and fn # 0 on A.

Proof: Apply Theorem 1 for o(〈fn〉n∈ω) given by H⇒(F ,#). �
Recall that Z ⊆ ωω is a c-Lusin set if it is of cardinality c, and if A ⊆ Z

is meagre, then |A| < c. The existence of such a set is independent from
ZFC. Notice also that there exists a model of ZFC in which non(N) = c, and
there exists c-Lusin set. To get this model it suffices to iterate ℵ2-times Cohen
forcing with finite supports over a model of GCH (see [1, Model 7.5.8 and
Lemma 8.2.6]).

Theorem 3. Assume that non(N) = c, and that there exists a c-Lusin set. If
H⇐(F ,#) holds, then there exist 〈fn〉n∈ω ∈ F and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6# 0 on A.

Proof: Again, we follow the arguments of Pinciroli (see [7]). Let Z ⊆ ωω

be a c-Lusin set. Since every compact set is meagre in ωω, every Kσ set is also
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meagre. Therefore, if A ⊆ Z is a Kσ set, then |A| < c. Let o : F → (ωω)[0,1]

be a cofinal function given by H⇐(F ,#). Let ϕ be a bijection between [0, 1]
and Z. Finally, let 〈fn〉n∈ω = F ∈ F be such that o(F ) ≥ ϕ.

To get a contradiction, assume that for every i ∈ ω, there exists Ai ⊆ [0, 1]
such that m∗(Ai) ≥ 1 − 1/2i and fn # 0 on Ai. Let A =

⋃
i∈ω Ai. For any

i ∈ ω, o(F )[Ai] is bounded because fn # 0 on Ai, and so ϕ[Ai] is bounded
since o(F ) ≥ ϕ. Therefore, ϕ[A] ∈ Kσ and |A| = |ϕ[A]| < c because ϕ[A] ⊆ Z.
This is a contradiction because m∗(A) = 1 and non(N) = c. �

The following theorem was proved by R. Pinciroli in [7].

Corollary 4. Assume that non(N) < b. Then for any 〈fn〉n∈ω such that
fn : [0, 1]→ [0, 1] for n ∈ ω, and fn → 0, and any ε > 0, there exists A ⊆ [0, 1]
such that m∗(A) ≥ 1− ε and fn ⇒ 0 on A.
On the other hand, assume that non(N) = c, and that there exists a c-Lusin
set. Then there exist 〈fn〉n∈ω such that fn : [0, 1] → [0, 1] for n ∈ ω, and
fn → 0, and ε > 0 such that for all A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒ 0 on
A.

Proof: Let 〈fn〉n∈ω be such that fn → 0. Set εn = 1/2n, n ∈ ω. Consider
F = {〈fn〉n∈ω : ∀n∈ωfn : [0, 1]→ [0, 1] ∧ fn → 0} and #=⇒. Define

o : F → (ωω)[0,1]

in the following way. Let

oF (x)(n) = min{m ∈ ω : ∀l≥mfl(x) ≤ εn}.

We get exactly the reasoning and the results of R. Pinciroli (see [7]). He proves
that the above function o proves that bothH⇐(F→,⇒) andH⇒(F→,⇒) hold,
and then proves Theorems 2 and 3 in this particular case. �

In next sections we apply the method used in the proof of Corollary 4.
Assume that we are given two notions of convergence of sequences of functions
fn  f and fn # f such that fn # f implies fn  f . We take

F = {〈fn〉n∈ω : ∀n∈ω fn : [0, 1]→ [0, 1] ∧ fn  0}

and we apply Theorem 2 and Theorem 3 with a suitable function

o : F → (ωω)[0,1]

to get a conclusion on the stronger convergence fn # 0 of sequences from F .
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3 Pointwise and equi-ideal convergence (for analytic P -
ideals)

Let I be an analytic P -ideal and fn : [0, 1] → [0, 1], n ∈ ω. By the well-
known result of Solecki I = Exh(φ) ([9]), where φ is a lower semicontinuous
submeasure (a function φ : 2ω → [0,∞] satisfying the following conditions:
φ(∅) = 0, φ(A) ≤ φ(A ∪ B) ≤ φ(A) + φ(B) and φ(A) = limn→ω φ(A ∩ n), for
any A,B ⊆ ω) and Exh(φ) = {A ⊆ ω : limn→∞ φ(A \ n) = 0} (see also [4]).

Fix a lower continuous submeasure φ such that I = Exh(φ). Recall that
we have the following notion of convergence (see [4]) on a set A ⊆ [0, 1]:

pointwise ideal, fn →I 0 if and only if

∀ε>0∀x∈A∃k∈ωφ({n ∈ ω : fn(x) ≥ ε} \ k) < ε,

equi-ideal, fn �I 0 if and only if

∀ε>0∃k∈ω∀x∈Aφ({n ∈ ω : fn(x) ≥ ε} \ k) < ε,

uniform ideal, fn ⇒I 0 if and only if

∀ε>0∃k∈ωφ({n ∈ ω : sup
x∈A

fn(x) ≥ ε} \ k) < ε.

It was proved in [4] that these notion of convergence are independent from
the submeasure representation of I. Moreover, the pointwise ideal and uniform
ideal convergences can be expressed without the notion of a submeasure and
they coincide with the notion of well-known ideal convergences defined for any
ideal I on ω (see the next section and also [5]).

Obviously, fn ⇒I 0⇒ fn �I 0⇒ fn →I 0.
It was also proved in [4] that the ideal version of Egorov’s Theorem holds

(in the case of analytic P -ideals) between equi-ideal and pointwise ideal con-
vergence, i.e. if 〈fn〉n∈ω is a sequence of measurable functions with fn →I 0
on [0, 1] and ε > 0, then there exists A ⊆ [0, 1] such that m(A) ≥ 1 − ε and
fn �I 0 on A. Moreover, it was proved that the ideal version of Egorov’s
Theorem (in the case of analytic P -ideals) does not hold between uniform
ideal and pointwise ideal convergence except for the trivial and “pathological”
cases (see also [5]).

Notice that since I is a proper ideal, limi→∞ φ(ω \ i) > 0. If limi→∞ φ(ω \
i) <∞, let

εn =
limi→∞ φ(ω \ i)

2n+1
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for n ∈ ω. Otherwise set εn = 1/2n+1. To use the method described in the
previous section, we state the following definition. For a sequence of functions
F = 〈fn〉n∈ω , fn : [0, 1]→ [0, 1] such that fn →I 0, let oφF ∈ (ωω)[0,1], and

(oφF )(x)(n) = min{k ∈ ω : φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn}.

The function oφ : F→I
→ (ωω)[0,1] is well defined, because for each n ∈ ω,

{k ∈ ω : φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn} is not empty since fn →I 0.

Lemma 5. Let F = 〈fn〉n∈ω be a sequence of functions with fn : [0, 1]→ [0, 1].
Then fn �I 0 on A ⊆ [0, 1] if and only if (oφ(〈fn〉n∈ω))[A] is bounded in ωω.
In particular, H⇒(F→I

,�I) holds.

Proof: By definition, fn �I 0 on A if and only if for any n ∈ ω, there
exists k ∈ ω such that for all x ∈ A, φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn. This
is true if and only if there exists a sequence 〈kn〉n∈ω of natural numbers such
that for any n ∈ ω and x ∈ A, φ({m ∈ ω : fm(x) ≥ εn} \ kn) < εn, which
holds if and only if for all x ∈ A, (oφF )(x)(n) ≤ kn. �

Corollary 6. Assume that non(N) < b. Let I be any analytic P -ideal, ε > 0,
and let F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for n ∈ ω, be such that fn →I 0. Then
there exists A ⊆ [0, 1] with m∗(A) ≥ 1 − ε such that fn �I 0 on A (the ideal
version of the generalized Egorov’s statement between equi-ideal and pointwise
ideal convergence for analytic P -ideals is consistent with ZFC).

Proof: Apply Theorem 2 and Lemma 5. �

Lemma 7. For any ϕ : [0, 1]→ ωω, there exists F = 〈fn〉n∈ω,

fn : [0, 1]→ [0, 1]

for n ∈ ω with fn →I 0 such that oφF ≥ ϕ. In particular, H⇐(F→I
,�I)

holds.

Proof: Fix x ∈ [0, 1]. Notice that φ(ω \ n) is a decreasing sequence with
limit greater or equal to 2ε0 > 0, so φ(ω \ n) ≥ 2ε0 > 0 for any n ∈ ω.
Therefore, for each m,n ∈ ω, there exists k > n such that φ(k \ n) > εm. Let
〈ki〉i∈ω, be an increasing sequence such that k0 = 0 and φ(ki+1 \ϕ(x)(i)) > εi,
i ∈ ω. Set fj(x) = εi if ki ≤ j < ki+1. Then fm(x) ≥ εn if and only if
m < kn+1. Therefore, if φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn, then k ≥ ϕ(x)(n),
so (oφF )(x)(n) ≥ ϕ(x)(n) for any n ∈ ω.

This proves that o is a cofinal function. Therefore, by Lemma 5, the
property H⇐(F→I

,�I) holds. �
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Corollary 8. Assume that non(N) = c, and that there exists a c-Lusin set. Let
I be any analytic P -ideal. Then there exists F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for
n ∈ ω with fn →I 0 and ε > 0 such that for every A ⊆ [0, 1] with m∗(A) ≥ 1−
ε, fn 6�I 0 on A (the negation of the ideal version of the generalized Egorov’s
statement between equi-ideal and pointwise ideal convergence for analytic P -
ideals is consistent with ZFC).

Proof: We use Theorem 3 and Lemma 7. �

4 Countably generated ideals

Recall that an ideal I over ω is countably generated (satisfies the chain con-
dition) if there exists a sequence 〈Ci〉i∈ω of elements of I such that Ci ⊆ Ci+1

for all i ∈ ω and for every A ∈ I, there exists k ∈ ω such that A ⊆ Ck.
Let 〈fn〉n∈ω, fn : [0, 1] → [0, 1], and let I be an ideal on ω. Recall the

classic notion of ideal convergence on A ⊆ [0, 1]:

pointwise ideal, fn →I 0 if and only if ∀ε>0∀x∈A{n ∈ ω : fn(x) ≥ ε} ∈ I,

quasinormal ideal, fn
QN−−→I 0 if and only if there exists a sequence of posi-

tive reals 〈εn〉n∈ω such that εn →I 0 and ∀x∈A{n ∈ ω : fn(x) ≥ εn} ∈ I,

uniform ideal, fn ⇒I 0 if and only if

∀ε>0∃B∈I∀x∈A{n ∈ ω : fn(x) ≥ ε} ⊆ B.

The quasinormal convergence with respect to an ideal I is also sometimes
called I-equal convergence. Notice that in the case of countably generated
ideals the generalized Egorov’s statement holds between uniform ideal and
quasinormal ideal convergence (see [2, Theorem 3.2]).

Let us therefore compare the pointwise and uniform ideal convergences.
First, we show that the classic version (for measurable functions) of Egorov’s
Theorem holds in the case of convergence with respect to a countably generated
ideal.

Theorem 9. If I ⊆ 2ω is a countably generated ideal and fn : [0, 1] → [0, 1],
n ∈ ω are measurable functions such that fn →I 0 and ε > 0, then there exists
a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn ⇒I 0 on [0, 1] \B.

Proof: Assume that I is countably generated and fix sets 〈Ci〉i∈ω such
that Ci ⊆ Ci+1 for all i ∈ ω and for every A ∈ I, there exists k ∈ ω such that
A ⊆ Ck. For n, k ∈ ω, let

En,k =

{
x ∈ [0, 1] :

{
m ∈ ω : fm(x) >

1

2k

}
\ Cn 6= ∅

}
.



276 M. Korch

Notice that

En,k =
⋃

m∈ω\Cn

{
x ∈ [0, 1] : fm(x) >

1

2k

}
is measurable for each n, k ∈ ω. Moreover, En+1,k ⊆ En,k and

⋂
n∈ω En,k = ∅

for all k ∈ ω. Let ε > 0. For each k ∈ ω, there exists nk ∈ ω such that

m(Enk,k) ≤ ε

2k+1
.

Let B =
⋃
k∈ω Enk,k. So m(B) ≤ ε, and if x /∈ B, then{

m ∈ ω : fm(x) >
1

2k

}
⊆ Cnk ,

for any k ∈ ω, so fn ⇒I 0 on [0, 1] \B. �
Let us consider the generalized Egorov’s statement in this setting. The

results presented below were proved by Joanna Jureczko using the method
of T. Weiss (see [10]) directly. We continue to apply the generalization of
Pinciroli’s method as presented above.

Assume that I is countably generated, and fix sets 〈Ci〉i∈ω such that Ci ⊆
Ci+1 for all i ∈ ω and for every A ∈ I, there exists k ∈ ω such that A ⊆ Ck.
We can assume that Ci+1 \ Ci 6= ∅ for all i ∈ ω.

If F = 〈fn〉n∈ω, fn →I 0, we define

(o〈Ci〉F )(x)(n) = min

{
k ∈ ω :

{
m ∈ ω : fm(x) >

1

2n

}
⊆ Ck

}
.

Notice that if A ⊆ [0, 1], then fn ⇒I 0 on A if and only if (o〈Ci〉F )[A]
is bounded, and so H⇒(F→I

,⇒I) holds. Therefore, we get the following
theorem.

Corollary 10. Assume that non(N) < b. Let I be any countably generated
ideal, and let ε > 0. Let F = 〈fn〉n∈ω, fn : [0, 1] → [0, 1], for n ∈ ω be such
that fn →I 0. Then there exists A ⊆ [0, 1] with m∗(A) ≥ 1 − ε such that
fn ⇒I 0 on A (the ideal version of the generalized Egorov’s statement between
uniform ideal and pointwise ideal convergence for countably generated ideals is
consistent with ZFC).

Proof: Apply Theorem 2. �

Lemma 11. For any ϕ : [0, 1]→ ωω there exists

F = 〈fn〉n∈ω , fn : [0, 1]→ [0, 1], fn →I 0

such that o〈Ci〉F = ϕ. In particular, H⇐(F→I
,⇒I) holds.
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Proof: Without a loss of generality we can assume that ϕ(x) is increasing
for all x ∈ [0, 1]. Let x ∈ [0, 1]. Let fj(x) = 1/2n if and only if j ∈ Cϕ(x)(n+1) \
Cϕ(x)(n). �

Corollary 12. Assume that non(N) = c, and that there exists a c-Lusin
set. Let I be any countably generated ideal. Then there exists F = 〈fn〉n∈ω,
fn : [0, 1]→ [0, 1] for n ∈ ω with fn →I 0, and ε > 0 such that for all A ⊆ [0, 1]
with m∗(A) ≥ 1 − ε, fn 6⇒I 0 on A (the negation of the ideal version of
the generalized Egorov’s statement between uniform ideal and pointwise ideals
convergence for countably generated ideal is consistent with ZFC).

Proof: Apply Theorem 3 and Lemma 11. �

5 I∗ convergence for countably generated ideals

As before, let 〈fn〉n∈ω, fn : [0, 1]→ [0, 1], and let I be an ideal on ω. We have
the following notion of convergence A ⊆ [0, 1] (see [2]):

I∗-pointwise, fn →I∗ 0 if and only if for all x ∈ A, there existsM = {mi : i ∈
ω} ⊆ ω, mi+1 > mi for i ∈ ω such that ω \M ∈ I and fmi(x)→ 0,

I∗-quasinormal, fn
QN−−→I∗ 0 if and only if there exists M = {mi : i ∈ ω} ⊆

ω, mi+1 > mi for i ∈ ω such that ω \M ∈ I and fmi
QN−−→ 0 on A,

I∗-uniform, fn ⇒I∗ 0 if and only if there exists M = {mi : i ∈ ω} ⊆ ω,
mi+1 > mi for i ∈ ω such that ω \M ∈ I and fmi ⇒ 0 on A.

Notice that for any ideal I, the generalized Egorov’s statement holds be-
tween I∗-uniform and I∗-quasinormal convergence (see [2, Theorem 3.3]).

Let us therefore compare the pointwise and uniform ideal convergences.
First, we show that the classic version (for measurable functions) of Egorov’s
Theorem holds in the case of I∗-convergence with respect to a countably gen-
erated ideal I.

Theorem 13. If I ⊆ 2ω is a countably generated ideal and fn : [0, 1]→ [0, 1],
n ∈ ω are measurable functions such that fn →I∗ 0 and ε > 0, then there exists
a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn ⇒I∗ 0 on [0, 1] \B.

Proof: Assume that I is countably generated and fix 〈Cn〉n∈ω such that
for all A ∈ I, there exists n ∈ ω with A ⊆ Cn. Let ω \ Cn = {mi,n : i ∈ ω},
mi+1,n > mi,n, i, n ∈ ω, and

Fn =

{
x ∈ [0, 1] : lim

i∈ω
fmi,n(x) = 0

}
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Obviously, Fn ⊆ Fn+1 for n ∈ ω and
⋃
n∈ω Fn = [0, 1]. Moreover,

Fn =
⋂
i∈ω

⋃
j∈ω

⋂
k≥j

{
x ∈ [0, 1] : fmk,n(x) <

1

2i

}

is measurable. Therefore, there exists N ∈ ω such that m(FN ) ≥ 1−ε/2. Now
apply the classic Egorov’s Theorem for the set FN ,

〈
fmi,N

〉
i∈ω and ε/2 to get

a set A ⊆ FN such that fmi,N converges uniformly on FN \A and m(A) < ε/2.
Let B = A ∪ ([0, 1] \ FN ). We get that fn ⇒I∗ 0 on [0, 1] \ B and m(B) ≤ ε.
�

Let us consider the generalized Egorov’s statement in this setting. Assume
that I is countably generated and fix 〈Cn〉n∈ω such that for all A ∈ I, there
exists n ∈ ω such that A ⊆ Cn. Let F = 〈fn〉n∈ω be such that fn →I∗ 0. For
x ∈ [0, 1] define o〈Ci〉(F )(x) = ψ ∈ ωω by

ψ(0) = min
{
n ∈ ω : 〈fm〉m∈ω\Cn → 0

}
,

ψ(n) = min

{
m ∈ ω : ∀l∈ω\Cψ(0)

l>m

fl(x) <
1

2n

}
, n > 0.

Obviously, o〈Ci〉F is bounded if and only if fn ⇒I∗ 0, and so the property
H⇒(F→I∗ ,⇒I∗) holds.

Therefore, we get the following theorem.

Corollary 14. Assume that non(N) < b. Let I be any countably generated
ideal, and let ε > 0 and F = 〈fn〉n∈ω, fn : [0, 1] → [0, 1] for n ∈ ω, with
fn →I∗ 0. Then there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that fn ⇒I∗ 0
on A (the ideal version of the generalized Egorov’s statement between uniform
I∗ and pointwise I∗ convergence for countably generated ideals is consistent
with ZFC).

Proof: Apply Theorem 2. �

Lemma 15. For any ϕ : [0, 1]→ ωω, there exists

F = 〈fn〉n∈ω with fn : [0, 1]→ [0, 1] and fn →I∗ 0

such that o〈Ci〉F ≥ ϕ. In particular, the condition H⇐(F→I∗ ,⇒I∗) holds.

Proof: It is enough to prove the lemma for ϕ such that ϕ(x) is increasing
for all x ∈ [0, 1]. Let x ∈ [0, 1]. Let ω \ Cϕ(x)(0) = {mi : i ∈ ω}, mi+1 > mi

for i ∈ ω. Let fj(x) = 1 for j ∈ Cϕ(x)(0) and let fj(x) = 1/2n if j ∈
(ω \ Cϕ(x)(0)) ∩ {i ∈ ω : ϕ(x)(n) ≤ i < ϕ(x)(n+ 1)}. �
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Corollary 16. Assume that non(N) = c, and that there exists a c-Lusin
set. Let I be any countably generated ideal. Then there exists F = 〈fn〉n∈ω,
fn : [0, 1] → [0, 1] for n ∈ ω, with fn →I∗ 0, and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1 − ε, fn 6⇒I∗ 0 on A (the negation of the ideal
version of the generalized Egorov’s statement between uniform I∗ and pointwise
I∗ convergence for countably generated ideals is consistent with ZFC).

Proof: Apply Theorem 3 and Lemma 15. �

6 Ideals Finα

Given an ideal I ⊆ ω and a sequence 〈In〉n∈ω of ideals of ω, we can consider an
ideal I-

∏
n∈ω In on ω2 called the I-product of the sequence of ideals 〈In〉n∈ω

and define it in the following way. For any A ⊆ ω2,

A ∈ I-
∏
n∈ω

In ↔ {n ∈ ω : A(n) /∈ In} ∈ I,

where A(n) = {m ∈ ω : 〈n,m〉 ∈ A} (see [5]). If In = J for any n ∈ ω, we
usually denote I-

∏
n∈ω In as I × J .

Fix a bijection b : ω2 → ω and a bijection aβ : ω \ {0} → β for any limit
β < ω1. The ideals Finα, α < ω1, are defined inductively (see [5]) in the
following way. Let Fin1 = Fin be the ideal of finite subsets of ω. We set
Finα+1 = {b[A] : A ∈ Fin× Finα} and for limit β < ω1, let Finβ = {b[A] : A ∈
Fin-

∏
i∈ω Finaβ(i+1)}.

In [5, Theorem 3.25], N. Mrożek proves that ideal Finα for any α < ω1

satisfies the Egorov’s theorem for ideals (between uniform ideal and pointwise
ideal convergences).

Let Fα = F→Finα
. We get the following theorem.

Theorem 17. Assume that non(N) < b. Let 0 < α < ω1, and let ε > 0 and
F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for n ∈ ω, with fn →Finα 0. Then there exists
A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that fn ⇒Finα 0 on A (the ideal version of
the generalized Egorov’s statement between uniform Finα and pointwise Finα

convergence is consistent with ZFC).

Proof: We define oα : Fα → (ωω)[0,1] in the following way. Let εn = 1
2n for

n ∈ ω, and let

Fnα = {〈fk〉k∈ω : ∀k∈ωfk : [0, 1]→ [0, 1] ∧ ∀x∈[0,1]{q ∈ ω : fq(x) ≥ εn} ∈ Finα}.

First, define onα : Fnα → (ωω)[0,1], n ∈ ω, 0 < α < ω1, by induction on α. Let

M1,n,x = min{p ∈ ω : ∀q≥pfq(x) < εn},
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and let
(on1F )(x)(k) = M1,n,x

be a constant sequence. Given onα, let

Mα+1,n,x = min
{
p ∈ ω : ∀q≥p{m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finα

}
,

and

(onα+1F )(x)(k) =


Mα+1,n,x for k = b(p, q),

p < Mα+1,n,x + 1, q ∈ ω,
(onα

〈
fb(p−1,r)

〉
r∈ω)(x)(q) for k = b(p, q),

p ≥Mα+1,n,x + 1, q ∈ ω.

This definition is correct, since
〈
fb(p−1,r)

〉
r∈ω ∈ F

n
α for p ≥Mα+1,n,x + 1.

Moreover, for limit β < ω1, let

Mβ,n,x = min
{
p ∈ ω : ∀q≥p{m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finaβ(q)

}
and

(onβF )(x)(k) =


Mβ,n,x for k = b(p, q),

p < Mβ,n,x + 1, q ∈ ω,
(onaβ(p−1)

〈
fb(p−1,r)

〉
r∈ω)(x)(q) for k = b(p, q),

p ≥Mβ,n,x + 1, q ∈ ω.

This definition is correct, since, for each p ≥ Mβ,n,x + 1,
〈
fb(p−1,r)

〉
r∈ω ∈

Fnaβ(p−1).
Notice that Fα ⊆ Fnα , for any n ∈ ω. Therefore, finally let

(oαF )(x)(k) = (onαF )(x)(m),

for k = b(n,m), n,m ∈ ω.
Now, notice that if F = 〈fr〉r∈ω ∈ Fα, and oαF is bounded on a set

A ⊆ [0, 1], then fr ⇒Finα 0 on A. Indeed, if oαF is bounded, then for each
n ∈ ω, onαF is bounded. If so, {m ∈ ω : supx∈A fm(x) ≥ εn} ∈ Finα, for all
n ∈ ω. We fix n ∈ ω and prove this statement by induction on α < ω1. Let
(onαF )(x)(k) < ak,n for all x ∈ A, k ∈ ω and some 〈ak,n〉k∈ω ∈ ω

ω. If α = 1, we
get fq(x) < εn for all x ∈ A and all q ≥ a0, so {m ∈ ω : supx∈A fm(x) ≥ εn} ∈
Fin. Now, assume that the statement holds for some α < ω1. Then for all
x ∈ A, Mα+1,n,x < ab(0,0), so for all p ≥ ab(0,0), onα

〈
fb(p−1,r)

〉
r∈ω is bounded by〈

ab(p,q)
〉
q∈ω, and thus by the induction hypothesis, {r ∈ ω : supx∈A fb(p−1,r) ≥
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εn} ∈ Finα for all p ≥ ab(0,0). Therefore, {m ∈ ω : supx∈A fm(x) ≥ εn} ∈
Finα+1. Analogous reasoning can be easily applied for limit β < ω1. This
proves that H⇒(Fα,⇒Finα) holds.

Therefore, by Theorem 2, there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such
that fn ⇒Finα 0 on A. �

Theorem 18. Assume that non(N) = c, and that there exists a c-Lusin set.
Let 0 < α < ω1. Then there exist 〈fn〉n∈ω ∈ Fα and ε > 0 such that for
all A ⊆ [0, 1] with m∗(A) ≥ 1 − ε, fn 6⇒Finα 0 on A (the negation of the
ideal version of the generalized Egorov’s statement between uniform Finα and
pointwise Finα convergence for countably generated ideals is consistent with
ZFC).

Proof: As before, let εn = 1/2n, n ∈ ω. This time, we define oα in a
different way then in the previous proof. Namely, let

(oαF )(x)(n) = Mα,n,x,

where Mα,n,x is defined as in the previous proof. Notice that if F = 〈fn〉n∈ω is
such that fn ⇒Finα 0 on a set A ⊆ [0, 1], then {m ∈ ω : supx∈A fm(x) ≥ εn} ∈
Finα for all n ∈ ω. If α = 1, this means that min{p ∈ ω : ∀q≥pfq(x) < εn} =
M1,n,x = o1F (x)(n) is bounded on A. If α is a limit ordinal, then for all n ∈ ω,
there exists Mn such that for all q ≥Mn, {m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finaα(q).
In other words, Mα,n,x = oαF (x) is bounded on A. Similar argument can be
used in the case of a successor ordinal α > 1.

Moreover, fix any ϕ : [0, 1] → ωω. Without a loss of generality, assume
that for x ∈ [0, 1], ϕ(x) is increasing. There exists F = 〈fn〉n∈ω ∈ F such that
oα(F ) ≥ ϕ. It is obvious for α = 1. For α > 1, let fn(x) = εk for k = b(i, j),
ϕ(x)(k) ≤ n < ϕ(x)(k + 1). Therefore H⇐(Fα,⇒Finα) holds.

In conclusion, by Theorem 3, there exist 〈fn〉n∈ω ∈ F and ε > 0 such that
for all A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒Finα 0 on A. �
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