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Further Evaluation of Wahl Vanishing Theorems for
Surface Singularities in Characteristic p

Masayuki Hirokado

Abstract. Let (SpecR,m) be a rational double point defined over
an algebraically closed field k of characteristic p ≥ 0. We evaluate
further the dimensions of the local cohomology groups, which were
treated by Wahl in 1975 as vanishing theorem C (resp., D) under the
assumption that p is a very good prime (resp., good prime) with re-
spect to (SpecR,m). We use Artin’s classification of rational dou-
ble points and completely determine the dimensions dimk H 1

E
(SX)

and dimk H 1
E

(SX ⊗OX(E)), supplementing Wahl’s theorems. In the

proof, we concretely construct derivations that do not lift to the min-
imal resolution X → SpecR and an equisingular family that injects
into a versal deformation of the rational double point (SpecR,m).

1. Introduction

In 1975, Jonathan Wahl proved the Grauert–Riemenschneider vanishing theo-
rem along with three other types of vanishing theorems for a surface singularity
(SpecR,m) defined over an algebraically closed field k of characteristic p ≥ 0
[18]. Last decades witnessed that these theorems on local cohomology groups
have played influential roles in the theory of surface singularities. Among them,
there are what he calls Theorems C and D, which bear restrictions on the charac-
teristic of the ground field k. The versions specialized for rational double points
state the following:

Theorem C. Let π : X → SpecR be the minimal resolution of a rational double
point. Then H 1

E(SX) = 0, and in particular the resolution is equivariant, except
possibly in the following cases:

An, p | (n + 1),

Dn, p = 2,

E6, p = 2,3,

E7, p = 2,3,

E8, p = 2,3,5.
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Theorem D. Let π : X → SpecR be the minimal resolution of a rational double
point. Then H 1

E(SX(E)) = 0, except possibly in the following cases:

Dn, p = 2,

E6, p = 2,3,

E7, p = 2,3,

E8, p = 2,3,5.

In these theorems, E = ⋃
i Ei denotes the exceptional divisor in X and its

irreducible decomposition, SX is the sheaf of logarithmic derivations SX =
�X(− logE) (cf. [19]), which fits in an exact sequence

0 → SX → �X →
⊕

i

NEi/X → 0.

We say that a resolution π is equivariant if the natural inclusion π∗�X ↪→ �R is
an isomorphism (cf. [4, Section 1]).

In this paper, we completely evaluate the dimensions of k-vector spaces
H 1

E(SX) and H 1
E(SX ⊗ OX(E)) for each isomorphism class (SpecR,m) of ra-

tional double points and show that the following equality holds:

#{−2 curves in E} + dimk H 1
E(SX) + dimk H 1(SX) = τ (Tjurina number).

Before we proceed, there may be two things we should be aware of. First,
the classification of rational double points over an algebraically closed field k

of arbitrary characteristic was completed by Artin [3] in 1977. Wahl’s original
vanishing theorems do not depend on it. Second, in the theory of root systems,
there are notions of good primes [16, Ch. I, Section 4], very good primes [15,
3.13], which nicely coincide with Wahl’s theorems. It follows that, for irreducible
root systems, the bad (= not good) prime numbers are:

An, none,

Bn,Cn,Dn, p = 2,

E6,E7,F4,G2, p = 2,3,

E8, p = 2,3,5.

For the root system of type An, a prime number p is defined to be very good if p

does not divide n + 1. This suggests that there are further relationships yet to be
discovered between rational surface singularities and Lie algebras.

Our main theorem is the following:

Theorem 1.1. Let X → SpecR be the minimal resolution of a rational double
point defined over an algebraically closed field k of characteristic p ≥ 0. Then
the following assertions hold:
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(i) The natural morphism H 1(SX) → H 1(X \ E,SX) is an inclusion.
(ii) The dimension of H 1

E(SX ⊗OX(E)) is either zero or given as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for E0
8 in p = 5;E0

6,E0
7,E1

8 in p = 3; and E0
6,E2

7,E3
8 in p = 2;

2 for E0
8 in p = 3 and E1

7 ,E2
8 in p = 2;

3 for E0
7 ,E1

8 in p = 2;
4 for E0

8 in p = 2;
n − r − 1 for Dr

2n,D
r
2n+1 in p = 2.

(iii) We have an isomorphism

H 0(X \ E,�X)/H 0(X,�X) ∼= H 1
E(SX),

whose dimension is zero with the following exceptions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for An with p | (n + 1);
1 for E0

8 in p = 5;E1
6,E0

7,E1
8 in p = 3; and E0

6,E3
7,E3

8 in p = 2;
2 for E0

6 ,E0
8 in p = 3 and E2

7,E2
8 in p = 2;

3 for E1
7 ,E1

8 in p = 2;
4 for E0

7 ,E0
8 in p = 2;

n + 1 − r for Dr
2n in p = 2;

n − r for Dr
2n+1 in p = 2.

Statement (i) in the theorem gives an answer to the question raised in [18, (5.18.2)]
for rational double points (cf. [20, Rem. 8.8]).

As a corollary, we have a characterization of tame rational double points.

Corollary 1.2. Let (SpecR,m) be a rational double point defined over an al-
gebraically closed field k of characteristic p > 0. Then the following conditions
are equivalent:

(i) (SpecR,m) is of type A (resp. of type D or E) and p is a very good prime
(resp., a good prime), or (SpecR,m) is of type E1

8 in p = 5, or of type E1
7 ,

E2
8 in p = 3, or of type E1

6 , E4
8 in p = 2.

(ii) H 1
E(SX) = 0 for the minimal resolution π : X → SpecR.

(iii) H 1
E(SX) = H 1(SX) = 0 for the minimal resolution π : X → SpecR.

(iv) In a versal deformation of (SpecR,m), the bundle of fibers that have the
same rational double point as (SpecR,m) is trivial, that is, the closed fiber
with the reduced base Speck only. (The rational double point (SpecR,m)

has no moduli.)

Wahl vanishing theorems have come into focus in the study of three-dimensional
canonical singularities in arbitrary characteristic, and we needed further evalu-
ation of dimensions of H 1

E(SX) and H 1
E(SX ⊗ OX(E)). We have the smooth

morphism from the simultaneous resolution functor of a versal deformation of
a rational double point (SpecR,m) (cf. [2; 8]) to the deformation functor of its
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minimal resolution X:
ResX /S → DX .

Nonzero elements of H 1
E(SX) correspond to families of resolutions that are non-

trivial in ResX /S but are trivial deformations of X. These are linked with phe-
nomena of three-dimensional canonical singularities peculiar to positive charac-
teristic p, which are recently observed in [6; 7; 9; 13].

As an application, we have a condition for a well-known property in character-
istic zero to hold (cf. [12, Cor. (1.14)]).

Corollary 1.3. Let (SpecR,m) be a rational double point defined over an alge-
braically closed field k of characteristic p > 0, and let Y be a three-dimensional
quasi-projective normal variety over k with at most canonical singularities whose
general hyperplane section H ⊂ Y has a rational double point of the same type as
(SpecR,m). If the equivalent conditions on (SpecR,m) in the previous corollary
are satisfied, then there exists a zero-dimensional subvariety Z0 ⊂ Y such that, for
any point y ∈ Y \Z0, the complete local ring ÔY,y is either regular or isomorphic
to R̂⊗̂k[[w]]. (Reid’s rule continues to hold.)

We cannot expect that the converse of the last corollary is true (cf. Remark 6.1).

2. Preliminaries

When we say that (SpecR,m) is a surface singularity, it is understood that (R,m)

is a two-dimensional excellent normal local ring with maximal ideal m. We iden-
tify surface singularities (SpecR1,m1) and (SpecR2,m2) if there exists an iso-
morphism between complete local rings R̂1 ∼= R̂2. We use the term equisingular
deformations of the resolution in the sense of Wahl [19].

The following proposition is in implicit form in Artin’s work [2, Cor. 4.6].
Here R denotes a locally quasi-separated algebraic space that represents the func-
tor ResX /S of simultaneous resolutions of flat families of a surface singularity
(SpecR,m) defined over an algebraically closed field k.

Proposition 2.1. Suppose X /S is a versal deformation of a rational surface sin-
gularity (SpecR,m) at s0 ∈ S and has minimum tangent space dimension there.
Then the minimal resolution X → SpecR is equivariant if and only if the uni-
versal family X ′

R
/R is a versal deformation of X with minimum tangent space

dimension.

Proof. (⇐) Suppose that there exists a nonzero element θ ∈ H 0(X \ E,�X)/

H 0(X, �X). Then we have the diagram

X × T X × T

↓π×id ↓π×id

SpecR × T
ϕ−→ SpecR × T

where T := Speck[ε]/(ε2), and ϕ is the automorphism given by sending f ∈ R to
f + θ(f )ε. But no morphism X ×T → X ×T makes this diagram commutative.
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We may consider ϕ◦(π × id) as a resolution of SpecR×T . This gives a nontrivial
extension of T → S to T →R although X ×T is a trivial deformation of X. This
contradicts the fact that X ′

R
/R has the minimum tangent space dimension as a

versal deformation of X.
(⇒) This is proved by Artin. �

The following is a refinement of the equality used by Shepherd-Barron in [14,
Prop. 3.1].

Proposition 2.2. For a rational double or triple point (SpecR,m) and its mini-
mal resolution π : X → SpecR with the exceptional divisor E, we have the equal-
ity

dimk H 1(�X) + dimk H 0(X \ E,�X)/H 0(X,�X) = τ,

where τ is dimk Ext1R(	R,R), that is, the Tjurina number of (SpecR,m).

Proof. This is based on the fact that there is a smooth morphism of functors
ResX /S → DX [2, Lemma 3.3] and that the tangent space ResX /S(k[ε]/(ε2))

has dimension τ [2, Thm. 3]. The equality is the dimension formula for the sur-
jective k-linear mapping ResX /S(k[ε]/(ε2)) → DX(k[ε]/(ε2)). �

Proposition 2.3. Let (SpecR,m) be a rational surface singularity defined over
an algebraically closed field k of characteristic p ≥ 0, and let π : X → SpecR

be its minimal resolution with the reduced exceptional divisor E = ⋃
i Ei . Then

we have the equalities

dimk H 1
E(SX) = dimk H 1(SX ⊗OX(2KX + E)),

dimk H 1(SX) = dimk H 1
E(SX ⊗OX(2KX + E)),

where SX is the locally free sheaf defined as the kernel of the surjection from the
tangent to normal sheaves �X → ⊕

i NEi/X . In particular, the local cohomol-
ogy groups H 1

E(SX), H 1
E(SX ⊗ OX(2KX + E)) are finite-dimensional k-vector

spaces.

Proof. We have ∧2SX
∼= OX(−KX − E), and hence S∨

X
∼= SX ⊗ OX(KX + E).

We combine this with the Grothendieck local duality theorem to have the
equalities dimk H 1

E(SX) = dimk H 1(S∨
X ⊗ KX) = dimk H 1(SX ⊗ OX(2KX +

E)) and dimk H 1
E(SX ⊗ OX(2KX + E)) = dimk H 1(S∨

X ⊗ OX(−KX − E)) =
dimk H 1(SX). Then use the Leray spectral sequence E

i,j

1 := Riη∗Rjπ∗F ⇒
Ri+j (η ◦ π)∗F , where η : SpecR → Speck is the structural morphism, and
F := SX or SX ⊗ OX(2KX + E). Then we find that the k-vector spaces in
question are of finite dimension. This indeed follows from the exact sequence
H 1(π∗F) → H 1(F) → H 0(R1π∗F) → H 2(π∗F) with the first and last terms
zero, so the remaining terms are of finite dimension. �

The following theorem was pointed out by Liedtke and Satriano [10, Prop. 4.6].
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Theorem 2.4. For a rational double point (SpecR,m), we have the equality

dimk H 1(�X) = dimk H 1
E(�X) = #{−2 curves in E} + dimk H 1(SX),

where π : X → SpecR is the minimal resolution with the exceptional divisor E.

Proof. We repeat the argument in [18, Thm. 6.1]. We have an exact sequence

0 → �X → SX(E) → �E ⊗OX(E) → 0,

which gives

0 → H 0
E(�E ⊗OX(E)) → H 1

E(�X) → H 1
E(SX(E)) → 0.

Proposition 2.3 gives the second equality. For the first equality, we use the local
duality theorem and the standard isomorphism ∧2	X

∼= KX . �

3. Lower Estimates of dimk H 1(SX) and dimk H 1
E(SX)

Observing Artin’s list of rational double points [3] enables us to get the lower
bounds of dimensions of H 1(SX) and H 1

E(SX). First, we restrict ourselves to the
case p ≥ 3 and illustrate how the proof works. We concentrate on the case p = 2
in Section 5.

Proposition 3.1. Let X → SpecR be the minimal resolution of a rational double
point (SpecR,m). If (SpecR,m) is of the following type, then we have an equisin-
gular deformation that provides a linear subspace E ⊂ H 1(SX) whose dimension
is {

1 for E0
8 in p = 5 and E0

6 ,E0
7,E1

8 in p = 3;
2 for E0

8 in p = 3.

Moreover, the linear subspace E does not collapse in the tangent map

H 1(SX) → H 1(X \ E,SX).

Proof. For each rational double point (SpecR,m), we present its concrete defor-
mation X → S whose fiber Xs (s ∈ S) has a rational double point with the same
Dynkin diagram as (SpecR,m), but only the central fiber X0 admits an isomor-
phism to (SpecR,m). This deformation has a simultaneous resolution without
any base extension, which results in an equisingular deformation.

If (SpecR,m) is of type E0
8 in p = 5, then the deformation is z2 + x3 + y5 +

s1xy4 = 0 over Speck[s1]. This has an E0
8 singularity on the central fiber X0 and

an E1
8 singularity on a noncentral fiber Xs (s �= 0). We obtain a simultaneous

resolution by blowing up the singular loci consecutively. The flatness follows, for
example, from [11, Thm. 23.1].

We similarly present deformations. If (SpecR,m) is of type E0
6 in p = 3, then

z2 + x3 + y4 + s1x
2y2 = 0. If (SpecR,m) is of type E0

7 in p = 3, then z2 + x3 +
xy3 + s1x

2y2 = 0. If (SpecR,m) is of type E1
8 in p = 3, then z2 + x3 + y5 +

x2y3 + s1x
2y2 = 0 over Speck[s1]. If (SpecR,m) is of type E0

8 in p = 3, then
z2 + x3 + y5 + s1x

2y3 + s2x
2y2 = 0 over Speck[s1, s2].
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Each family is locally induced by an injection to a versal deformation of
the rational double point (SpecR,m), which corresponds to a subspace of
DR(k[ε]/(ε2)). The k-linear morphism in question is the composition (cf. [19,
(1.6)]) ES(k[ε]/(ε2)) → DR(k[ε]/(ε2)) ⊂ H 1(X \ E,SX), so we have the last
assertion. �

In the following, we consider the quotient H 0(X \ E,SX)/H 0(X,SX). Note that
because of an isomorphism NEi/X

∼= OEi
(−2), we have H 0(

⊕
i NEi/X) = 0,

which induces an isomorphism H 0(X \ E,SX)/H 0(X,SX) ∼= H 0(X \ E,�X)/

H 0(X,�X).

Proposition 3.2. Suppose p ≥ 3, and let X → SpecR be the minimal resolution
of a rational double point (SpecR,m) of the following type. Then we calculate
the dimension of H 0(X \ E,SX)/H 0(X,SX) as⎧⎪⎨

⎪⎩
1 for An with p | (n + 1),

1 for E0
8 in p = 5 and E0

7 in p = 3,

2 for E0
6,E0

8 in p = 3.

For E1
8 , E1

6 in p = 3, we have

dimk H 0(X \ E,SX)/H 0(X,SX) ≥ 1.

Proof. A quadratic transformation x′ = x/y, y′ = y, z′ = z/y gives equalities of
derivations ∂/∂x = (1/y′)∂/∂x′, ∂/∂y = ∂/∂y′ − (x′/y′)∂/∂x′ − (z′/y′)∂/∂z′,
∂/∂z = (1/y′)∂/∂z′. As was pointed out by Burns and Wahl [4, Prop. 1.2], any
derivation D of the local ring (R,m) that satisfies D(m) ⊂ m can be extended to
a regular derivation on Proj

⊕
i≥0 m

i (the point blowup of m).
For An: R ∼= k[[x, y, z]]/(xy + zn+1) with p | (n + 1), we have the exact se-

quence with the defining ideal I = (xy + zn+1) (cf. [11, Thm. 25.2])

0 →
(

∂

∂z
, x

∂

∂x
− y

∂

∂y

)
→ TA3

k
⊗ R

(y x 0)−→ HomR(I/I2,R).

This is the Koszul complex associated with the regular sequence x, y ∈ R. The
derivation ∂

∂z
∈ Derk(R) does not lift to Proj

⊕
i≥0 m

i (the blowup of m).

For E0
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5) in p = 5, we have the exact sequence

with the defining ideal I = (z2 + x3 + y5),

0 →
(

∂

∂y
, z

∂

∂x
+ x2 ∂

∂z

)
→ TA3

k
⊗ R

(x2 0 −z)−→ HomR(I/I2,R).

The derivation ∂
∂y

∈ Derk(R) does not lift to the point blowup Proj
⊕

i≥0 m
i .

For E0
7 : R ∼= k[[x, y, z]]/(z2 +x3 +xy3) in p = 3, we have the exact sequence

0 →
(

∂

∂y
, z

∂

∂x
+ y3 ∂

∂z

)
→ TA3

k
⊗ R

(y3 0 2z)−→ HomR(I/I2,R).

The derivation ∂
∂y

does not lift to the point blowup.
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For E0
6 : R ∼= k[[x, y, z]]/(z2 + x3 + y4) in p = 3, we have the exact sequence

0 →
(

∂

∂x
, z

∂

∂y
+ y3 ∂

∂z

)
→ TA3

k
⊗ R

(0 y3 2z)−→ HomR(I/I2,R).

Two derivations ∂
∂x

, y ∂
∂x

do not lift to the minimal resolution X. These form a
two-dimensional subspace of H 0(X \ E,SX)/H 0(X,SX).

For E0
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5) in p = 3, one has the exact sequence

with the defining ideal I = (z2 + x3 + y5),

0 →
(

∂

∂x
, z

∂

∂y
− y4 ∂

∂z

)
→ TA3

k
⊗ R

(0 y4 z)−→ HomR(I/I2,R).

Two derivations ∂
∂x

, y ∂
∂x

do not lift to the minimal resolution X.
By chasing the derivations a little further and using the original Theorem C,

we know the dimension dimk H 0(X \ E,SX)/H 0(X,SX) as stated. However, the
following two types are not of this kind, and we only have lower bounds.

For E1
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5 + x2y3) in p = 3, we have the deriva-

tion D := y∂/∂x − x∂/∂y ∈ Derk(R). This satisfies D(m) ⊂ m, so this D lifts
to a point blowup Proj

⊕
i≥0 m

i , on which there lies a rational double point of
type E0

7 . But this D does not lift to the minimal resolution, because it is the very
element considered in E0

7 .
For E1

6 in p = 3, we have R ∼= k[[x, y, z]]/(z2 + x3 + y4 + x2y2). The deriva-
tion D := (y − xy)∂/∂x + (x − y2)∂/∂y + yz∂/∂z ∈ Derk(R) does not lift to the
minimal resolution. �

4. Proof of Main Theorem in p ≥ 3

In this section, we give a proof to the following theorem.

Theorem 4.1. Let X → SpecR be the minimal resolution of a rational double
point defined over an algebraically closed field k of characteristic p �= 2. Then
the following assertions hold:

(i) The natural morphism H 1(SX) → H 1(X \ E,SX) is an inclusion.
(ii) The dimension of H 1

E(SX ⊗OX(E)) is zero except{
1 for E0

8 in p = 5 and E0
6,E0

7,E1
8 in p = 3,

2 for E0
8 in p = 3.

(iii) We have an isomorphism

H 0(X \ E,�X)/H 0(X,�X) ∼= H 1
E(SX),

whose dimension is zero with the following exceptions:⎧⎪⎨
⎪⎩

1 for An with p | (n + 1),

1 for E0
8 in p = 5 and E1

6,E0
7,E1

8 in p = 3,

2 for E0
6,E0

8 in p = 3.
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Proof. If the characteristic p is either a good prime for the rational double point
(SpecR,m) of type D or E or a very good prime if (SpecR,m) is of type A, then
Wahl’s Theorem D (resp., Theorem C) provides assertions (i) and (ii) (resp., (iii)).
If p is none of these, then we need to show that the lower estimates given in the
previous section attain indeed the actual values. This is trivially verified, since we
have the equality coming from Proposition 2.2 and Theorem 2.4,

#{−2 curves in E} + dimk H 0(X \ E,�X)/H 0(X,�X) + dimk H 1(SX) = τ.

The Tjurina numbers in Artin’s list [3] and Proposition 3.1 say that we have the
desired equalities (cf. Remarks 5.4 for concrete values). �

Remark 4.2. The pro-representable hull of equisingular deformations of X in-
jects into a versal deformation of the rational double point (SpecR,m). This
forms a nonsingular subvariety whose dimension is as prescribed in Theo-
rem 4.1(ii). The concrete equisingular families in the proof turn out to be the
entire equisingular versal families. For E0

8 in p = 3, we have a two-parameter
family z2 + x3 + y5 + s1x

2y3 + s2x
2y2 = 0 over Speck[[s1, s2]]. Two strata of

dimensions one and zero, respectively, can be observed in it. The derivations ∂
∂x

,
y ∂

∂x
of the central fiber do not lift to the minimal resolution. The latter extends to

the derivation y ∂
∂x

− s1x
∂
∂y

of the family over Speck[[s1, s2]]/(s2). Note that the
same rational double point as (SpecR,m) always lies on the central fiber only.

5. Characteristic 2

As is often the case with characteristic 2, computation becomes more involved and
demanding. However, we can complete the proof of our main theorem essentially
in the same way as before.

Proposition 5.1. Let π : X → SpecR be the minimal resolution of a rational
double point (SpecR,m) defined over an algebraically closed field k of char-
acteristic 2. Then we have a linear subspace E ⊂ H 1(SX) corresponding to an
equisingular family whose dimension is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − r for Er
6,

3 − r for Er
7,

4 − r for Er
8,

n − r − 1 for Dr
2n,D

r
2n+1.

The natural morphism H 1(SX) → H 1(X \ E,SX) induces an inclusion E →
H 1(X \ E,SX).

Proof. For each rational double point (SpecR,m), we present its deformation
X → S that has the property required in the proof of Proposition 3.1.
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If (SpecR,m) is of type D0
2n, then the family is z2 + x2y + xyn + s1xyn−1z +

s2xyn−2z+· · ·+ sn−1xyz = 0 over Speck[s1, s2, . . . , sn−1], which has the singu-
larity D0

2n on the central fiber X0. A noncentral fiber Xs (s �= 0) has a singularity
D

q

2n with some q ≥ 1.
If Dr

2n with 1 ≤ r ≤ n − 2 is the type of (SpecR,m), then the fam-
ily is z2 + x2y + xyn + xyn−rz + s1xyn−r−1z + · · · + sn−r−1xyz = 0 over
Speck[s1, s2, . . . , sn−r−1], which has Dr

2n on the central fiber X0. A noncentral
fiber Xs (s �= 0) has D

q

2n with some q ≥ r + 1.
If D0

2n+1 is the type of (SpecR,m), then the family is z2 + x2y + ynz +
s1xyn−1z + s2xyn−2z + · · · + sn−1xyz = 0 over Speck[s1, s2, . . . , sn−1], which
has D0

2n+1 on the central fiber X0. A noncentral fiber Xs (s �= 0) has D
q

2n+1 with
some q ≥ 1.

If Dr
2n+1 with 1 ≤ r ≤ n − 2 is the type of (SpecR,m), then the family is

z2 + x2y + ynz + xyn−rz + s1xyn−r−1z + s2xyn−r−2z + · · · + sn−r−1xyz = 0
over Speck[s1, s2, . . . , sn−r−1], which has Dr

2n+1 on X0. A noncentral fiber Xs

(s �= 0) has D
q

2n+1 with some q ≥ r + 1.
If E0

6 is the type of (SpecR,m), then we choose z2 + x3 + y2z + s1xyz = 0
over Speck[s1], which has the singularity E0

6 on X0 and E1
6 on Xs (s �= 0).

If Er
7 with r = 0,1,2 is the type of (SpecR,m), then the deformation is given

by z2 + x3 + xy3 + ηr + s1ηr+1 + · · · + s3−rη3 = 0 over Speck[s1, . . . , s3−r ],
where η0 := 0, η1 := x2yz, η2 := y3z, and η3 := xyz. This has the singularity Er

7
on the central fiber X0. A noncentral fiber Xs (s �= 0) has E

q
7 with some q ≥ r +1.

If Er
8 with r = 0,1,2,3 is the type of (SpecR,m), then the deformation is

z2 + x3 + y5 + θr + s1θr+1 + · · · + s4−r θ4 = 0 over Speck[s1, . . . , s4−r ], where
θ0 := 0, θ1 := xy3z, θ2 := xy2z, θ3 := y3z, and θ4 := xyz. This has the singularity
Er

8 on the central fiber X0. A noncentral fiber Xs (s �= 0) has a singularity E
q

8 with
some q ≥ r + 1.

As before, we obtain a simultaneous resolution of X → S by consecutively
blowing up the singular loci without any base extension. �

In characteristic 2, special care is needed for rational double points of type D.

Lemma 5.2. For a rational double point of type D in characteristic 2, the follow-
ing derivations do not lift to the minimal resolution:

D0
2n: R ∼= k[[x, y, z]]/(z2 + x2y + xyn),

x
∂

∂z
,

∂

∂z
, y

∂

∂z
, y2 ∂

∂z
, . . . , yn−1 ∂

∂z
;

Dr
2n: R ∼= k[[x, y, z]]/(z2 + x2y + xyn + xyn−rz) with r = 1,2, . . . , n − 1,

yn−r ∂

∂y
+ (x + nyn−1 + (n + r)yn−r−1z)

∂

∂z
,

d1, yd1, y
2d1, . . . , y

n−r−1d1 with d1 := x
∂

∂x
+ (yr + z)

∂

∂z
;
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D0
2n+1: R ∼= k[[x, y, z]]/(z2 + x2y + ynz),

∂

∂x
, y

∂

∂x
, y2 ∂

∂x
, . . . , yn−1 ∂

∂x
;

Dr
2n+1: R ∼= k[[x, y, z]]/(z2 + x2y + ynz + xyn−rz) with r = 1,2, . . . , n − 1,

d2, yd2, y
2d2, . . . , y

n−r−1d2 with d2 := (x + yr)
∂

∂x
+ z

∂

∂z
.

Proof. Local calculation based on induction on n ≥ 2. �

Proposition 5.3. Let π : X → SpecR be the minimal resolution of a rational
double point (SpecR,m) defined over an algebraically closed field k of charac-
teristic 2. We have a lower bound of dimk H 0(X \ E,�X)/H 0(X,�X) as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for An with 2 | (n + 1),

1 for E0
6,

4 − r for Er
7,E

r
8,

n + 1 − r for Dr
2n,

n − r for Dr
2n+1.

Proof. We give derivations of the local ring (R,m) that do not lift to the minimal
resolution. For An, the derivation is exactly of the same form as before, so we
omit it.

For E0
6 : R ∼= k[[x, y, z]]/(z2 + x3 + y2z), we have the exact sequence with

I = (z2 + x3 + y2z),

0 →
(

y2 ∂

∂x
+ x2 ∂

∂z
,

∂

∂y

)
→ TA3

k
⊗ R

(x2 0 y2)−→ HomR(I/I2,R).

The derivation ∂
∂y

∈ Derk(R) does not lift to the point blowup Proj
⊕

i≥0 m
i .

For E0
7 : R ∼= k[[x, y, z]]/(z2 + x3 + xy3), we have the exact sequence with

I = (z2 + x3 + xy3),

0 →
(

xy2 ∂

∂x
+ (x2 + y3)

∂

∂y
,

∂

∂z

)
→ TA3

k
⊗ R

(x2+y3 xy2 0)−→ HomR(I/I2,R).

Four derivations ∂
∂z

, x ∂
∂z

, y ∂
∂z

, y2 ∂
∂z

∈ Derk(R) do not lift to the minimal resolu-
tion X.

For E0
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5), we have the exact sequence

0 →
(

y4 ∂

∂x
+ x2 ∂

∂y
,

∂

∂z

)
→ TA3

k
⊗ R

(x2 y4 0)−→ HomR(I/I2,R).

Four derivations ∂
∂z

, y ∂
∂z

, y2 ∂
∂z

, x ∂
∂z

do not lift to the minimal resolution X.
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For E1
7 : R ∼= k[[x, y, z]]/(z2 + x3 + xy3 + x2yz), the following three deriva-

tions do not lift to the minimal resolution:

xy
∂

∂x
+ y2 ∂

∂y
+ (yz + x)

∂

∂z
,

d3, yd3 with d3 = xz
∂

∂x
+ (yz + x)

∂

∂y
+ (z2 + y)

∂

∂z
.

For E2
7 : R ∼= k[[x, y, z]]/(z2 + x3 + xy3 + y3z), the following two derivations

do not lift to the minimal resolution:

y
∂

∂y
+ (z + x)

∂

∂z
, (xy2 + y2)

∂

∂x
+ (x + z)

∂

∂y
+ (y2z + y2)

∂

∂z
.

For E3
7 : R ∼= k[[x, y, z]]/(z2 + x3 + xy3 + xyz), the following derivation does

not lift to the minimal resolution:

y
∂

∂y
+ (y2 + z)

∂

∂z
.

For E1
8 : R ∼= k[[x, y, z]]/(z2 +x3 +y5 +xy3z), the following three derivations

do not lift to the minimal resolution:

y3 ∂

∂x
+ y2z

∂

∂y
+ (yz2 + x)

∂

∂z
,

d4, yd4 with d4 := y2z
∂

∂x
+ (yz2 + x)

∂

∂y
+ (z3 + y)

∂

∂z
.

For E2
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5 + xy2z), the following two derivations

do not lift to the minimal resolution:

x
∂

∂y
+ y2 ∂

∂z
, y2 ∂

∂x
+ z

∂

∂y
+ x

∂

∂z
.

For E3
8 : R ∼= k[[x, y, z]]/(z2 + x3 + y5 + y3z), the following derivation does

not lift to the minimal resolution:

y
∂

∂y
+ (y2 + z)

∂

∂z
.

By Lemma 5.2 these altogether complete the proof. �

Proof of Theorem 1.1. The case p ≥ 3 is already settled in Theorem 4.1. For
p = 2, we combine Propositions 5.1 and 5.3 with the equality

#{−2 curves in E} + dimk H 0(X \ E,�X)/H 0(X,�X) + dimk H 1(SX) = τ.

The Tjurina numbers in Artin’s list give the statements (cf. Table 1 for concrete
values). �

Remarks 5.4. (i) We summarize in Table 1 the invariants of rational double
point (SpecR,m) in bad prime p. For F -purity, we use Fedder’s criterion
(cf. [5]).
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Table 1 Invariants of rational double points in bad prime p

p Type τ dimk H 1(X \ E,SX) dimk H 1(SX) F -purity On
/H 1(X,SX) Proj

⊕
j≥0 m

j

2 Dr
4 8 − 2r 3 − r 1 − r (∗∗) A1, A1, A1

Dr
2n 4n − 2r n + 1 − r n − r − 1 (∗∗) A1, D

max{r−1,0} (∗)
2n−2

Dr
5 8 − 2r 2 − r 1 − r (∗∗) A3, A1

Dr
2n+1 4n − 2r n − r n − r − 1 (∗∗) A1, D

max{r−1,0} (∗)
2n−1

E0
6 8 1 1 – A5

E1
6 6 0 0 F -pure A5

E0
7 14 4 3 – D0

6

E1
7 12 3 2 – D0

6

E2
7 10 2 1 – D1

6

E3
7 8 1 0 F -pure D2

6

E0
8 16 4 4 – E0

7

E1
8 14 3 3 – E0

7

E2
8 12 2 2 – E1

7

E3
8 10 1 1 – E2

7

E4
8 8 0 0 F -pure E3

7

3 E0
6 9 2 1 – A5

E1
6 7 1 0 F -pure A5

E0
7 9 1 1 – D6

E1
7 7 0 0 F -pure D6

E0
8 12 2 2 – E0

7

E1
8 10 1 1 – E0

7

E2
8 8 0 0 F -pure E1

7

5 E0
8 10 1 1 – E7

E1
8 8 0 0 F -pure E7

(∗) n ≥ 3. (∗∗) F -pure if and only if r = n − 1, that is, the type is either Dn−1
2n

or Dn−1
2n+1.

(ii) It is possible to unify the derivations presented in the proof of Proposition 5.3
as derivations of families. For example, in the equisingular family of E0

7 ,

z2 + x3 + xy3 + s1x
2yz + s2y

3z + s3xyz = 0 over Speck[[s1, s2, s3]],
we have the derivation

(s2
2s3x

2 + s3
2xy2 + s1s2xz + s2y

2 + s1s
2
2z2 + s2s3z)

∂

∂x
+ (s1s2s3xy2

+ s1xy + s2x + s1s
2
2y4 + s3

2y3 + s1s
2
2s3y

2z
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+ s2s
2
3y2 + s1s2yz + s3y + s2

2z)
∂

∂y

+ (s2s3x
2 + s2

2xy2 + s1xz + y2 + s1s2z
2 + s3z)

∂

∂z
.

For the family over Speck[[s1, s2, s3]]/(s3), we have another derivation

s1xy
∂

∂x
+ (s1y

2 + s2y)
∂

∂y
+ (x + s1yz + s2z)

∂

∂z
.

(iii) As Artin observed in [3], by knowing resolution graphs and Tjurina numbers
we can classify rational double points defined over an algebraically closed
field k up to isomorphism. It turns out that we could also distinguish isomor-
phism classes of rational double points with the information of the Dynkin
diagram and dimk H 1(SX) (or of the Dynkin diagram and dimk H 1

E(SX)).
But this observation does not generalize well to other rational surface singu-
larities over k. Rational triple points in characteristic 2, for example, defined
respectively by

w2

x + z2 + wy
= x

y
= y

z
,

w2 + wy

x + z2
= x

y
= y

z
,

have an identical resolution graph (x2 = −3, o2 = −2, cf. [1])

o

o.oooox

After modification (cf. [17, Section 2]), we have rational double points of
type D1

6 and D2
6 , respectively, so these triple points cannot be isomorphic.

But they both have τ = 10, dimk H 1(SX) = 1, dimk H 1
E(SX) = 1, so we can-

not distinguish these by such numerical invariants.

6. Proof of Corollary 1.2 and Corollary 1.3

Proof of Corollary 1.2. The equivalence of (i), (ii), (iii) immediately follows from
Theorem 1.1. (iii) ⇒ (iv) follows from the facts that the smooth morphism
ResX /S → DX is an isomorphism (cf. [2, Cor. 4.6]) and that the equisingular
functor ES ⊂ DX is trivial (cf. [19, Prop. 2.5]). (iv) ⇒ (ii) follows from Proposi-
tion 2.1. �

Proof of Corollary 1.3. Use the same argument as in characteristic zero
(cf. [12]). �

Remark 6.1. As stated in Introduction, the converse of Corollary 1.3 cannot be
true. This is obvious if we consider rational double points of the following types:

An, p | (n + 1),

E0
8, p = 5,
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E0
7, p = 3,

E0
8,E1

8, p = 3.

In these cases the same statement as (iv) in Corollary 1.2 fails, but Corollary 1.3
continues to hold (cf. [7, Cor. 23, Thm. 3]).
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