
Michigan Math. J. 67 (2018), 31–58

Characteristic Classes of Fiberwise Branched Surface
Bundles via Arithmetic Groups

Bena Tshishiku

Abstract. This paper is about the cohomology of certain finite-index
subgroups of mapping class groups and its relation to the cohomol-
ogy of arithmetic groups. For G = Z/mZ and for a regular G-cover
S → S̄ (possibly branched), a finite-index subgroup � < Mod(S̄)

acts on H1(S;Z) commuting with the deck group action, thus induc-
ing a homomorphism � → SpG

2g
(Z) to an arithmetic group. The in-

duced map H∗(SpG
2g

(Z);Q) → H∗(�;Q) can be understood using

index theory. To this end, we describe a families version of the G-
index theorem for the signature operator and apply this to (i) compute
H 2(SpG

2g
(Z);Q) → H 2(�;Q), (ii) rederive Hirzebruch’s formula for

signature of a branched cover, (iii) compute Toledo invariants of sur-
face group representations to SU(p, q) arising from Atiyah–Kodaira
constructions, and (iv) describe how classes in H∗(SpG

2g
(Z);Q) give

equivariant cobordism invariants for surface bundles with a fiberwise
G action, following Church–Farb–Thibault.

1. Introduction

Let (S, z) be a closed oriented surface of genus g ≥ 2 with z ⊂ S a finite set of
marked points, and let Mod(S, z) be its (pure) mapping class group (see Section 2
for the definition). This note focuses on the cohomology of Mod(S, z) and its
finite-index subgroups. One source of cohomology classes is the representation
Mod(S, z) → Sp2g(Z) arising from the action of Mod(S, z) on H1(S;Z) � Z2g .
The image lies in Sp2g(Z) because Mod(S, z) preserves the algebraic intersection
pairing on H1(S;Z). A theorem of Borel [Bor74] calculates Hk(Sp2g(Z);Q) in
the stable range, that is, when g � k. We can then ask about the image of the
stable classes under H ∗(Sp2g(Z);Q) → H ∗(Mod(S, z);Q). A well-known com-
putation [Ati69] shows that their span is the algebra generated by the odd Miller–
Morita–Mumford (MMM) classes {κ2i+1 : i ≥ 0}.

In this paper, we extend the previous example. Let G be a finite group of dif-
feomorphisms of S. Let z = Fix(G), and define ModG(S, z) < Mod(S, z) as the
subgroup of mapping classes that can be realized by diffeomorphisms that com-
mute with G. The group G injects into Sp2g(Z); let SpG

2g(Z) be its centralizer.

The image of ModG(S, z) under α lands in SpG
2g(Z). Again, we can ask about the
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image of α∗ : H ∗(SpG
2g(Z);Q) → H ∗(ModG(S, z);Q), and this is a reasonable

question since SpG
2g(Z) is an arithmetic group, so its cohomology can be com-

puted in a range of degrees.
Our main result is a computation of the image of

α∗ : H 2(SpG
2g(Z);Q) → H 2(ModG(S, z);Q)

when G � Z/mZ is a finite cyclic group. To describe the image, we need some
notation. Consider the classes in H 2(ModG(S, z);Q) that are pulled back from
H 2(Mod(S, z);Q): there is the first MMM class κ1, and for each z ∈ z, there is an
Euler class ez. Fix a generator G = 〈t〉, and decompose the fixed set z = ⊔m−1

j=1 zj ,

where zj is the set of fixed points z where t acts on TzS by rotation by 2πj
m

. Set
εj = ∑

z∈zj
ez. By convention if zj = ∅, then εj = 0.

Theorem 1. Let S be a genus-g, closed, oriented surface with an orientation-
preserving action of a cyclic group G of order m. Assume that the stabilizer of
each x ∈ S is either trivial or equal to G. Denote z = Fix(G), and define zj ⊂ z
and εj ∈ H 2(ModG(S, z);Q) as in the preceding paragraph. If the genus of S/G

is at least 6, then the image of α∗ : H 2(SpG
2g(Z);Q) → H 2(ModG(S, z);Q) is the

subspace spanned by κ1 and εj + εm−j for 1 ≤ j < m/2.

Remark. In Section 2, we show that the classes κ1 and ez are nonzero in
H 2(ModG(S, z);Q) if g � 0. In particular, there is more information captured
by α∗ than by the map H ∗(Sp2g(Z);Q) → H ∗(Mod(S, z);Q).

Remark. The assumption that G is cyclic and the assumptions on point stabilizers
in Theorem 1 are added to make the statement simpler and because it is all we
need for our applications. The more general cases where G is not cyclic or some
point stabilizer is a nontrivial proper subgroup of G can also be treated by the
methods of this paper.

Theorem 1 has the following corollary for the cohomology of the Torelli subgroup
of ModG(S, z).

Corollary 2. Fix S and G as in Theorem 1. Define IG < ModG(S, z) as the
kernel of ModG(S, z) → SpG

2g(Z). For each 1 ≤ j < m/2, if zj ∪ zm−j 
= ∅, then

εj +εm−j is nontrivial and is in the kernel of H 2(ModG(S, z);Q) → H 2(IG;Q).

At the heart of Theorem 1 is an index theorem, stated in Theorem 4. Before dis-
cussing this, we give some further applications of Theorem 4.

1.1. Applications

In Section 5 we discuss the following applications of the index formula.

Geometric Characteristic Classes After Church–Farb–Thibault. Following
[CFT12], a characteristic class c ∈ Hk(B Diff(F )) is called geometric with re-
spect to cobordism if two F bundles M → Bk and M1 → Bk

1 have the same
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characteristic numbers c#(M → B) = c#(M1 → B1) whenever the manifolds M

and M1 are cobordant. In particular, such a characteristic class is insensitive to
the fibering M → B .

The cohomology H ∗(ModG(S, z);Q) can be interpreted as the ring of char-
acteristic classes for (S,G)-bundles, which we define as surface bundles S →
M → B with a fiberwise G action that can locally be identified with the given ac-
tion G < Diff(S). One source of characteristic classes is from the Hodge bundle E
(which is a complex vector bundle over the moduli space of Riemann surfaces; see
Section 2): let ci(E) ∈ H 2i (Mod(S, z);Q) be its Chern classes. In the presence of
the G action, the Hodge bundle decomposes into eigenbundles E = ⊕

qm=1 Eq ,

and this gives classes ci(Eq) ∈ H 2i (ModG(S, z);Q) for each mth root of unity
qm = 1. We further abbreviate ci,q = ci(Eq).

Our first application is that c1,q ∈ H 2(ModG(S, z);Q) is geometric with re-
spect to G-cobordism.

Corollary 3. Fix S and G as in Theorem 1. Let S → M → � be an
(S,G)-bundle over a surface. Then for each qm = 1, the characteristic num-
ber c#

1,q (M → �) is a G-cobordism invariant, that is, it depends only on the
G-cobordism class of M .

This corollary is an equivariant version of a theorem of Church–Farb–Thibault.
For example, the standard Atiyah–Kodaira example is a surface bundle S6 →
M → S129 with a fiberwise G = Z/2Z action. The manifold M also fibers as
S321 → M → S3, and we have Hodge eigenbundles

C3 → E1 → S129 and C3 → E−1 → S129,

C104 → E′
1 → S3 and C217 → E′−1 → S3.

The corollary says that

〈c1(E1), [S129]〉 = 〈c1(E
′
1), [S3]〉 and 〈c1(E−1), [S129]〉 = 〈c1(E

′−1), [S3]〉,
where 〈·, ·〉 denotes the pairing between cohomology and homology.

Surface Group Representations. From an S-bundle M → � with monodromy in
ModG(S, z) we obtain a collection of surface group representations π1(�) → H

where H is either Sp2k(R) or SU(a, b). The Toledo invariant of such a rep-
resentation coincides with the Chern class c1(Eq) of one of the Hodge eigen-
bundles Eq → �. The index formula (1) relates these Chern classes c1,q ∈
H 2(ModG(S, z);Q) to the classes κ1, ez ∈ H 2(ModG(S, z);Q), which allows us
to compute these Toledo invariants. For example, the Atiyah–Kodaira construc-
tion for G = Z/7Z can be used to produce a representation

α : π1(�717+1) → SU(8,13) × SU(9,12) × SU(10,11),

whose Toledo invariants (obtained by projecting to individual factors) are nonzero
and distinct. See Section 5.
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Hirzebruch’s Formula for Signature of Branched Covers. The index formula can
be used to express how the odd MMM classes behave under fiberwise branched
covers. In the case of κ1 this allows us to derive Hirzebruch’s formula for the
signature of a branched cover. One interesting thing about this derivation is that it
emphasizes the connection to arithmetic groups.

1.2. Methods of Proof

The index theorem described further is the common ingredient in our main result
and applications. As in Section 1.1, denote by E = ⊕

qm=1 Eq the decomposition
of the Hodge bundle into eigenbundles. Denote the Chern character by ch(Eq).

Theorem 4 (Index formula). Fix S and G as in Theorem 1. Denote θj = 2πj
m

. For
1 ≤ r ≤ m − 1,∑

qm=1

qr [ch(Eq) − ch(Ēq̄ )] =
∑

1≤j≤m−1
zj 
=∅

coth

(
εj + irθj

2

)
. (1)

Remark. The assumption on point stabilizers implies that zj 
= ∅ only if
gcd(j,m) = 1.

Theorem 4 is a families version of the G-index theorem for the signature operator.
The left-hand side of (1) is a families version of the g-signature Sig(g, S) of
[AS68c]. For g = e2πir/m 
= 1, this index is computed using the Atiyah–Segal
localization theorem [AS68a], and this gives the right-hand side of (1). The case
g = 1 is special, where we obtain instead the more familiar formula (see [AS68c,
Section 6] and [AS71, Thm. 5.1]) from the families index theorem:

ch(E − Ē) = π!
(

x

tanh(x/2)

)
, (2)

where π!(x2i ) = κ2i−1 (the power series on the right-hand side is a polynomial in
x2).

As a consequence of formulas (1) and (2), we see that under α∗ : H ∗(SpG
2g(Z);

Q) → H ∗(ModG(S, z);Q), the stable cohomology is mapped into the subalgebra
generated by the odd MMM classes {κ2i+1 : i ≥ 0} and the classes εj . Moreover,
Theorem 1 describes the image precisely in degree 2. The precise image of α∗ :
Hk(SpG

2g(Z);Q) → Hk(ModG(S, z);Q) for k > 2 is more complicated.

Remark on proofs. Theorem 4 is obtained by combining the results of [AS68a;
AS68c; AS71]. As far as the author knows, this does not appear in the literature,
although it is surely known to experts (see the last sentence of [AS71, Section 5]).
Theorem 1 is proved by computing the stable cohomology of SpG

2g(Z) (following
Borel), relating this cohomology to the Chern classes of the Hodge eigenbundles
and applying the index formula to reduce the problem to the linear algebra of
circulant matrices.
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1.3. Outline of Paper

In Section 2 we relate ModG(S, z) to a finite-index subgroup of a mapping
class group and interpret H ∗(ModG(S, z)) as the ring of characteristic classes
of (S,G)-bundles. The index formula of Theorem 4 is proved in Section 3. In
Section 4 we prove Theorem 1, and in Section 5 we discuss the applications men-
tioned in Section 1.1.

2. Mapping Class Groups, Subgroups, and Surface Bundles

Throughout this section we assume that S is a closed surface of genus at least 2
with a smooth action of a finite cyclic group G. Denote by z ⊂ S the set points
fixed by each g ∈ G.

It is well known that a surface bundle S → M → B is determined by its mon-
odromy π1(B) → Mod(S). In this section we record an equivariant version of
this fact, which gives a monodromy characterization of (S,G)-bundles (defined
further). Then we define the liftable subgroup Modμ(S̄, z̄) < Mod(S̄, z̄) associ-
ated with a branched cover μ : S → S̄ with branched set z̄ ⊂ S̄. We show that
Modμ(S̄, z̄) is finite index in Mod(S̄, z̄) and show that it contains a finite-index
subgroup that is a subgroup of ModG(S, z). Finally, we define the characteristic
classes of (S,G)-bundles that appear in this paper.

2.1. Defining (S,G)-Bundles

Let Diff(S, z) denote the group of orientation-preserving diffeomorphisms that
fix each z ∈ z, and define the mapping class group Mod(S, z) = π0(Diff(S, z)).
Our primary interest in Mod(S, z) is in its relation to surface bundles. In this
paper by a surface bundle with fiber (S, z) we mean a locally trivial fibration
π : M → B with structure group Diff(S, z). The bundle π is determined up to
isomorphism by a homotopy class of map B → B Diff(S, z) to the classifying
space. The monodromy is the induced homomorphism

π1(B) → π1(B Diff(S, z)) � π0(Diff(S, z)) ≡ Mod(S, z).

If the structure group of π reduces to the group DiffG(S, z) of diffeomorphisms
that commute with the G < Diff(S, z), then the total space M has a G action that
preserves each fiber, and this action can locally be identified with the G action on
(S, z). In this case we call π : M → B an (S,G)-bundle. The monodromy of an
(S,G)-bundle is contained in the centralizer ModG(S, z) of G in Mod(S, z).

Remark. The embedding i : G ↪→ Diff(S, z) is part of the data of an (S,G)-
bundle. Since we fix i at the beginning, we omit it from the notation.

Remark. The primary known examples of (S,G)-bundles are obtained by the
fiberwise branched covering constructions of Atiyah and Kodaira [Ati69] and
Morita [Mor01].
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2.2. Classifying (S,G)-Bundles

One of the miracles in the study of surface bundles is that an (S, z)-bundle
π : M → B is determined by its monodromy. The following theorem gives the
analogue for (S,G)-bundles and is a consequence of Earle and Schatz [ES70].

Theorem 5. Fix a closed surface S with an action of a finite group G. For each
manifold B , there is a bijection⎧⎨

⎩
(S,G)-bundles

M → B

up to isomorphism

⎫⎬
⎭ ↔

⎧⎨
⎩

homomorphisms
π1(B) → ModG(S, z)

up to conjugacy

⎫⎬
⎭ .

Proof. Let Diff0 denote the path component of the identity in Diff(S, z). There is
a fiber sequence

Diff0 ∩DiffG(S, z) → DiffG(S, z) → ModG(S, z)

(which is also an exact sequence of groups). It follows from [ES70, Section 5(F)]
that Diff0 ∩DiffGu (S, z) is contractible, which implies that B DiffG(S, z) →
B ModG(S, z) is a homotopy equivalence, and the theorem follows. �

Remark.

(1) The Earle–Schatz theorem says, in particular, that DiffG(S, z) ∩ Diff0 is con-
nected, so if φ ∈ DiffG(S, z) is isotopic to the identity, then it has an isotopy
through diffeomorphisms that commute with G (compare with [BH72]). Con-
sequently, the surjection π0(DiffG(S, z)) → ModG(S, z) is an isomorphism.

(2) By Theorem 5, if the monodromy π1(B) → Mod(S, z) of an (S, z)-bundle
M → B factors through ModG(S, z), then M → B has the structure of a
(S,G)-bundle. Without the Earle–Schatz theorem, it is not obvious why a
bundle with monodromy ModG(S, z) admits a fiberwise G-action.

(3) As a consequence of (the proof of) Theorem 5, the cohomology
H ∗(ModG(S, z)) can be identified with the ring of characteristic classes of
(S,G)-bundles.

2.3. Liftable Subgroups

For a finite regular G-cover μ : S → S̄ branched over z̄ with z = μ−1(z̄), define
the liftable subgroup

Modμ(S̄, z̄) = {[f ] ∈ Mod(S̄, z̄) | f admits a lift f̃ ∈ DiffG(S, z)}.
By definition, there is an exact sequence

1 → G → ModG(S, z) → Modμ(S̄, z̄) → 1. (3)

Our goal in this subsection is to explain the following proposition, which is a mod-
ification of an argument of Morita [Mor01, Lemma 4.13] to the case of a branched
cover. Although our standing assumption is that G is cyclic, this proposition does
not require this.
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Proposition 6. Let G be a finite group, and fix a regular G-cover μ : S → S̄

branched over z̄ ⊂ S̄. Assume that S is closed and χ(S̄ \ z̄) < 0. Then the liftable
subgroup Modμ(S̄, z̄) < Mod(S̄, z̄) is finite index and contains a finite-index sub-
group over which the exact sequence (3) splits.

Proof. Remove z̄ and z = μ−1(z̄) to get an unbranched regular cover �̂ → �.
The group Mod(S̄, z̄) is isomorphic to a finite subgroup of Mod(�) :=
π0(Diff(�)) (namely, the subgroup where the punctures are not permuted). The
same is true for (S, z) and �̂. Thus it suffices to prove the proposition for the
liftable subgroup Modμ(�) in Mod(�).

Set T̂ = π1(�̂) and T = π1(�). The cover gives an exact sequence 1 → T̂ →
T

q−→ G → 1. Give T the standard presentation T = 〈a1, b1, . . . , ag, bg,p1, . . . ,

pn | ∏[ai, bi]∏pj = 1〉, where pj is a loop around the j th puncture (here
n = |z|). By assumption χ(�) < 0, so we may realize T as a Fuchsian group
T < PSL2(R) so that the ai , bi are hyperbolic and the pj are parabolic. An au-
tomorphism φ ∈ Aut(T ) is called type-preserving if it preserves hyperbolic (resp.
parabolic) elements. Denote by A(T ) < Aut(T ) the group of type-preserving au-
tomorphisms. By [MH75, Thm. 1] there are isomorphisms

A(T ) � Mod(�,∗) and A(T )/ Inn(T ) � Mod(�),

where ∗ ∈ � is a basepoint, and Mod(�,∗) is the group of isotopy classes of
diffeomorphisms of � that fix ∗. Similarly, we can define A(T̂ ), and we have
isomorphisms A(T̂ ) � Mod(�̂,∗) and A(T̂ )/ Inn(T ) � Mod(�̂).

Consider the group

Modμ(�,∗) = {φ ∈A(T ) : φ(T̂ ) = T̂ and q ◦ φ = q}.
By definition, we have a homomorphism Modμ(�,∗) → A(T̂ ). Transferring
from group theory to topology, we have the following diagram:

1 T̂ Mod(�̂,∗) Mod(�̂) 1

1 T Mod(�,∗) Mod(�) 1

Modμ(�,∗)Modμ(�,∗) ∩ T

p

r

The top and bottom rows are instances of the Birman exact sequence [FM12,
Section 4.2]. Note that the subgroup Modμ(�,∗) < A(T ) � Mod(�,∗) is finite
index because T has finitely many subgroups of index |G| (permuted by A(T )),
the stabilizer of T̂ acts on G = T/T̂ , and the group Aut(G) is finite.

By the argument in [Mor01, Lemma 4.13], there is a finite-index subgroup
� < Modμ(�,∗) such that � ∩ T = {e}, so � ↪→ Mod(�); furthermore, since
Modμ(�,∗) < Mod(�,∗) is finite index and p is surjective, � is finite index
in Mod(�). By construction we have finite-index subgroups � < Modμ(�) <
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Mod(�) with a homomorphism r : � → ModG(�̂). This completes the proof.
�

2.4. Invariants of (S,G)-Bundles

We describe the main invariants we will consider: the MMM classes κi , Euler
classes ez, and Chern classes of the Hodge (eigen)bundles ci,q . These are viewed
as elements in H ∗(ModG(S, z);Q). The relation between these classes will be
the focus of Sections 3 and 4.

Fix an (S, z)-bundle π : M → B . Let TπM → M be the vertical tangent bun-
dle, and denote e = e(TπM) ∈ H 2(M) its Euler class. The ith MMM class of
the bundle π is defined as κi(π) := π!(e2i+1) ∈ H 2i (B), where π! : H ∗(M) →
H ∗(B) is the Gysin (or pushforward) homomorphism. For more information, see
[Mor01, Ch. 4].

Since the structure group Diff(S, z) of π : M → B has fixed points, π admits
a section σz : B → M for each z ∈ z. The Euler class ez(π) ∈ H 2(B) associated
with z ∈ z is defined as the image of e under σ ∗

z : H ∗(M) → H ∗(B).
The cohomology classes κi(π), ez(π) ∈ H ∗(B) are characteristic classes of

(S, z)-bundles (i.e. they are natural with respect to bundle pullbacks). By the the-
ory of classifying spaces, we can view these characteristic classes as elements
κi, ez ∈ H ∗(Mod(S, z)). It is well known (see [Mor87]) that κi is nonzero in
H ∗(Mod(Sg, z);Q) if g � i and {ez : z ∈ z} are linearly independent for all g ≥ 2.

These characteristic classes are invariants of (S,G) bundles since
ModG(S, z) < Mod(S, z).

Proposition 7. Assume that S/G has genus at least 2. Then the restriction of

H ∗(Mod(S, z);Q) → H ∗(ModG(S, z);Q)

to the subalgebra generated by {ez : z ∈ z} is injective.

Proof. The proposition would be obvious if ModG(S, z) < Mod(S, z) was finite
index, since for a finite index subgroup 
′ < 
, the induced map H ∗(
;Q) →
H ∗(
′;Q) is injective (use the transfer map). Unfortunately, ModG(S, z) <

Mod(S, z) is infinite index. Nevertheless, ModG(S, z) has the same rational co-
homology as Modμ(S̄, z̄) because of the exact sequence (3); this follows eas-
ily from examining the associated spectral sequence, since H ∗(G;Q) is trivial.
By Proposition 6, Modμ(S̄, z̄) < Mod(S̄, z̄) is finite index. So the subalgebra of
H ∗(Mod(S̄, z̄);Q) generated by {ez̄ : z̄ ∈ z̄} injects into H ∗(Modμ(S̄, z̄);Q). The
proposition now follows by observing that for z ∈ z, the subspace Q{ez} is the im-
age of the subspace Q{eμ(z)} ⊂ H ∗(Modμ(S̄, z̄);Q) under H ∗(Modμ(S̄, z̄)) →
H ∗(ModG(S, z)). To see this, fix an (S,G)-bundle M → B . Note that M/G → B

is an (S̄, z̄)-bundle. We can interpret ez and eμ(z) as the Euler classes of the normal
bundles of σz(B) ⊂ M and σμ(z)(B) ⊂ M/G, respectively. Since M → M/G is
a branched cover that sends σz(B) diffeomorphically to σμ(z)(B), the two normal
bundles have proportional Euler classes; see [Mor01, Prop. 4.12]. �
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Aside. Our original interest in studying H ∗(SpG
2g(Z);Q) → H ∗(ModG(S, z);Q)

was to determine if the isomorphism H ∗(Modμ(S̄, z̄);Q) � H ∗(ModG(S, z);Q)

produced any cohomology in the cokernel of the injection H ∗(Mod(S̄, z̄);Q) ↪→
H ∗(Modμ(S̄, z̄);Q). Unfortunately, this is not the case (at least stably) by The-
orem 4 and the proof of Theorem 1 – as mentioned in the introduction; to-
gether they show that, in the stable range, the image of α∗ : Hk(SpG

2g(Z);Q) →
Hk(ModG(S, z);Q) is contained in the subalgebra generated by the odd MMM
classes and the Euler classes.

Hodge Bundle and Eigenbundles. For an (S, z)-bundle π : M → B , the Hodge
bundle is the vector bundle E → B where the fiber over b ∈ B is H1(Sb;R),
where Sb = π−1(b). With this definition, E is a real vector bundle, but if π is
equipped with a fiberwise complex structure (possible if B is paracompact for
example), then E → B is isomorphic to the realification of the complex vector
bundle whose fiber over b is the space of holomorphic 1-forms on Sb . If π is an
(S,G)-bundle, then the G action on M induces a G action on E that covers the
trivial action on B . Then we may decompose E = ⊕

qm=1 Eq . Fiberwise, this is
the decomposition of the CG module H1(Sb;R) into isotypic components. The
Chern classes ci(Eq) ∈ H 2i (B) are characteristic classes of (S,G)-bundles, and
so we can view them as elements ci,q ∈ H 2i (ModG(S, z);Q).

Remark. The classes ci,q can be interpreted as the Chern classes of the “univer-
sal” Hodge bundle E = ⊕

Eq over an appropriate moduli space MG(S, z) (which
is an orbifold Eilenberg–Maclane space for ModG(S, z)). We will not need the
moduli space here, so we will not elaborate further on this point.

3. The Index Formula

In this section G � Z/mZ, and for convenience, we identify G � {z ∈ C× :
qm = 1}.

The goal of this section is to prove Theorem 4 by deriving the index formula
(1). To the author’s knowledge, this derivation (of a families version of the G-
index theorem for the signature operator) is not detailed in the literature, although
it can be obtained by combining the contents of [AS68b; AS68a; AS68c; AS71].
Since these references are quite accessible, we will be brief and refer the reader
to these papers for more detail.

The index formula (1) is an equality between certain classes in H ∗(ModG(S,

z);Q). To prove it, it suffices to show that this equation holds for every (S,G)-
bundle π : M → B where the base B is a finite complex. Fix such a bundle and
introduce a G-invariant fiberwise Riemannian metric. Denoting Sb = π−1(b) for
b ∈ B , we have the de Rham complex �∗

C
(Sb), its exterior derivative d , the ad-

joint d∗ of d (defined using the Hodge star operator �), and a self-adjoint elliptic
operator D = d + d∗. The operator τ : �

p

C
→ �

2−p

C
defined by τ = ip(p−1)+1�

satisfies τ 2 = 1 and Dτ = −τD, so D restricts to operators D± : �± → �∓ on
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the ±1 eigenspaces �± of τ . The operators D+ and D− are mutually adjoint,
and ker(D±) is the ±1 eigenspace H∗(Sb;C)± of τ acting on harmonic forms
H∗(Sb;C).

The collection D+
b : �+(Sb) → �−(Sb) for b ∈ B defines a family of G-

invariant differential operators on S. The (analytic) index of the family D+ =
{D+

b } is defined as ind(D+) = E+ − E− ∈ KG(B), where E± is the (equivari-
ant K-theory class of the) bundle whose fiber over b ∈ B is H∗(Sb;C)±. It is
not hard to see that the contribution of H0(Sb;C) and H2(Sb;C) to the index is
zero [AS68c, Section 6]. Furthermore, the bundles

⋃
b∈B H1(Sb;C)+ → B and⋃

b∈B H1(Sb;C)− → B are conjugate because H1(Sb;C)+ and H1(Sb;C)− are
conjugate vector spaces. Combining this with the fact that H1(Sb;C)+ can be
identified with the space of holomorphic 1-forms on Sb (with respect to the com-
plex structure determined by the conformal class of the metric), the index is given
by

ind(D+) = E − Ē ∈ KG(B),

where E → B is the Hodge bundle (Section 2.4).
The index theorem gives a topological description of the index: associated with

D+ is a symbol class σ ∈ KG(TπM), where TπM → M is the vertical (co)tangent
bundle1 of π : M → B (and KG(·) denotes equivariant K-theory with compact
supports). In [AS68c] (see also [Sha78, p. 40] and [LM89, pp. 236, 264]) it is
shown that

σ = �+ − �− = (1 + L̄) − (1 + L) = L̄ − L ∈ KG(TπM),

where L is the pullback of TπM → M along TπM → M . The Thom isomorphism
K(M) → K(TπM) is given by multiplication by the Thom class u ∈ K(TπM),
and in this case u = 1 − L. Note that (1 + L̄)(1 − L) = L̄ − L. Thus, under the
inverse Thom isomorphism K(T ∗

π M) → K(M), we have

σ = L̄ − L = (1 + L̄)(1 − L) �→ 1 + T ∗
π M.

The topological index is defined as t-ind = π!(σ ), where π! : KG(M) → KG(B)

is the pushforward in K-theory. By the index theorem, ind(D+) = t-ind, so

E − Ē = π!(1 + T ∗
π ). (4)

We want to understand (4) on the level of ordinary cohomology, that is, under
the map

chg : KG(B) � K(B) ⊗ R(G)
1⊗χg−−−→ K(B) ⊗C

ch−→ H ∗(B) ⊗C, (5)

where R(G) is the representation ring, and χg : R(G) → C is the ring homomor-
phism that sends a representation V to its character χg(V ) at g ∈ G.

The image of the left-hand side of (4) under (5) is easily expressed. In K(B)⊗
R(G), we have

E =
∑

qm=1

Eq ⊗ ρq and Ē =
∑

qm=1

Ēq ⊗ ρq̄,

1The tangent and cotangent bundles are isomorphic.
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where q̄ denotes the complex conjugate of q ∈ C, and ρq is the CG module
C[x]/(x − q). It follows that

chg(E − Ē) =
∑

qm=1

(ch(Eq) − ch(Ēq̄ )) · χg(ρq). (6)

Observe that for g = e2πir/m, we have χg(ρq) = qr .
In the remainder of the section we compute chg(π!(1+T ∗

π )). The pushforward
π! in K-theory is difficult to understand directly, so we want to commute ch and
π! and to compute π! in ordinary cohomology. This can be done after passing to
the fixed point set Mg using the Atiyah–Segal localization theorem [AS68a].

Atiyah–Segal Localization Theorem

The character homomorphism χg : R(G) → C factors through the localization
R(G)g at the (prime) ideal ker(χg). Denoting by KG(M)g the localization of the
R(G) module KG(M), there is a commutative diagram

KG(M)g KG(Mg)g

KG(B)g KG(B)g

i∗/e

p!π!

Here i∗ is induced by i : Mg ↪→ M , the map p is the restriction π |Mg , and e = 1−
T ∗

π ∈ K(Mg) is the Thom class (in K-theory) of the normal bundle of Mg ↪→ M .
The top arrow is an isomorphism by [Seg68, Prop. 4.1]. Dividing by the Euler
class makes the diagram commute (compare [LM89, p. 261]).

In the diagram, σ = 1 + T ∗
π ∈ KG(M)(g) maps to (1 + T ∗

π )/(1 − T ∗
π ) ∈

KG(Mg)g . Now we can compute chg ◦p!((1+T ∗
π )/(1−T ∗

π )) using the following
diagram:

KG(Mg)g K(Mg) ⊗C H ∗(Mg) ⊗C

KG(B)g K(B) ⊗C H ∗(B) ⊗C

χg ch

χg ch

pK
! pK

! pH
!

If g = 1, then the right square does not commute, but the failure to commute
is the defect formula ch[π!(σ (D))] = πH

! [ch(σ (D)) · Td(Tπ )], where Td is the
Todd class (this formula is also called the Grothendieck–Riemann–Roch compu-
tation). Since σ(D) = 1+T ∗

π , we have ch(σ (D)) = 1+ e−x , where x = e(TπM).
Combining this with Td(Tπ ) = x/(1 − e−x) (see [AS68c, p. 555]), this recovers
(2).

If g = e2πir/m 
= 1, then the right square commutes because p : Mg → B is
a covering map. To express the class ch ◦ χg((1 + T ∗

π )/(1 − T ∗
π )) in H(Mg) ⊗
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C, note that the character of χg(T
∗
π ) will vary on different components of Mg .

Decompose Mg = ⊔
Mj , so that e2πi/m ∈ G acts on Tπ |Mj

by rotation by θj =
2πj
m

. Let xj denote the restriction of e(TπM) to Mj . Then, on Mj , we have

ch◦χg

(
1 + T ∗

π |Mj

1 − T ∗
π |Mj

)
= 1 + e−irθj e−xj

1 − e−irθj e−xj
= e(xj +irθj )/2 + e−(xj +irθ)/2

e(xj +irθj )/2 − e−(xj +irθj )/2

= coth

(
xj + irθj

2

)
.

Combining these terms for all j , denoting εj = p!(xj ), and combining with
(6) give the desired index formula∑

qm=1

[ch(Eq) − ch(Ēq̄ )] · qr =
∑

1≤j≤m−1
Mj 
=∅

coth

(
εj + irθj

2

)
.

Remark. We record here for later use the first two terms of the Taylor series of
coth(

x+iϕ
2 ) at x = 0:

coth

(
x + iϕ

2

)
≈ −i cot(ϕ/2) + 1

2
csc2(ϕ/2)x. (7)

Remarks.

(1) This discussion works generally when S is replaced by an orientable manifold
of even dimension; for more details, see [AS68c] and [ERW15].

(2) In the case B = pt and G = {e} (i.e., the nonfamilies, nonequivariant version
of the index theorem), ind(D+) ∈ K(pt) = Z is equal to dimH+ − dimH−,
which is zero because the ±1-eigenspaces of τ acting on H1(S;C) are con-
jugate (as complex vector spaces), so in particular they have the same dimen-
sion. However, in the families and/or equivariant case, ind(D+) is nontrivial
in general.

4. Computing α∗ : H 2(SpG
2g(Z);Q) → H 2(ModG(S, z);Q)

In this section we prove Theorem 1. We proceed as follows.

• Step 1: We define classes xq ∈ H 2(SpG
2g(Z);Q) such that

H 2(SpG
2g(Z);Q) � Q{xq : qm = 1, Im(q) ≥ 0},

using results of Borel [Bor74]. For our computation, in order to be in the stable
range, we require S/G to have genus h ≥ 6.

• Step 2: We show that c1,q = α∗(xq) = c1,q̄ in H 2(ModG(S, z)), where c1,q is
the class defined in Section 2.4. This involves comparing two complex struc-
tures on the Hodge bundle of an (S,G)-bundle.

• Step 3: The index formulas (1) and (2) give a system of linear equations relating
κ1, e1, . . . , em−1 ∈ H 2(ModG(S, z);Q) classes to the classes α∗(xq). Upon in-
vestigating this linear system, the result will follow from some character theory
and a result about circulant matrices.
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4.1. The Arithmetic Group SpG
2g(Z)

In this section we compute H 2(SpG
2g(Z);Q). This involves working out some

of the general theory of arithmetic groups in the special case SpG
2g(Z). Specifi-

cally, we (i) use restriction of scalars to show that SpG
2g(Z) is a lattice in a group

G = Sp2h(R) × Sp2h′(R) × ∏
q SU(aq, bq), (ii) use Borel–Matsushima to relate

Hj(SpG
2g(Z);Q) to the cohomology of a product of Grassmannians in some range

0 ≤ j ≤ N , and (iii) determine the range N by giving a lower bound to the Q-rank
of the irreducible factors of SpG

2g(Z). To those familiar with arithmetic groups
and their cohomology, (i) and (ii) are routine exercises. Our proof of (iii) uses the
topology of the branched cover S → S/G to find isotropic subspaces in subrep-
resentations of H1(S;Q).

Restriction of Scalars. The group SpG
2g(Z) acts by G-module maps on H =

H1(S;Q), so it preserves the decomposition

H =
⊕
k|m

Hk (8)

into isotypic components for the irreducible representations of G over Q. Recall-
ing that the simple QG-modules are isomorphic to Q(ζk), where ζk = e2πi/k and
k | m, the group Hk is defined as Q(ζk) ⊗QG H . As we explain further, (8) leads
to a decomposition SpG

2g(Z) =̇ ∏
k|m �k into irreducible lattices (here =̇ means

commensurable). Furthermore, we identify �k and determine the real semisimple
Lie group Gk that contains �k as a lattice.

Fix k | m. For simplicity, denote ζ = ζk and � = �k . The representation
V = Hk is naturally a vector space over Q(ζ ), and the intersection form ω on
H determines a form β : V × V → Q(ζ ) given by

β(u, v) = −i

k∑
j=1

ω(u, tj v) · ζ j . (9)

Compare [GLLM15, Section 3.1]. If k = 1,2, then β is symplectic, the group G =
Sp(V ) preserving β is an algebraic group defined over Q, and �

.= G(Z). For k ≥
3, β is Hermitian with respect to the involution τ(ζ ) = ζ−1 on Q(ζ ), the group
G = SU(V ,β) of Q(ζ )-linear automorphisms preserving β with determinant 1
is an algebraic group defined over F = Q(ζ + ζ−1) (the maximal real subfield
of Q(ζ )), and �

.= G(O), where O ⊂ F is the ring of integers. For a similar
discussion, see [Loo97].

Restriction of scalars applied to G = SU(V ,β) gives an algebraic group G′
defined over Q such that G′(Z) is commensurable with G(O). To define G′, define
an embedding σq : F → R by ζ + ζ−1 �→ q + q−1 for each primitive kth root
of unity q with Im(q) > 0, and denote Gσ = SU(V ,σq ◦ β). By the restriction
of scalars construction, G′ = ∏

Gσ is an algebraic group over Q, the Z-points
G′

Z
are a lattice in G′, and GO =̇ G′

Z
. Hence � is a lattice in G′. Furthermore,
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for each σq , the real points of Gσq are SU(aq, bq) for some aq, bq ≥ 0 [Mor15,
Prop. 18.5.7].

In addition, we remark that � < G′ is irreducible: By [Mor15, Section 5.3,
Ex. 4], � is irreducible if and only if G′ is a Q-simple group. It is a basic property
of restriction of scalars that G′ is Q-simple if G is F -simple [Mar91, Section 1.7],
and the latter is well known; see [PR94, Section 2.3.4].

Varying over all k, we find that

SpG
2g(Z) =̇ Sp(H1)Z × Sp(H2)Z ×

∏
k|m

2<k≤ m
2

SU(Hk,βk)Ok
(10)

is a lattice in

SpG
2g(R) = Sp2h(R) × Sp2h′(R) ×

∏
qm=1

Im(q)>0

SU(aq, bq). (11)

The second factor on the right-hand side of (10) and (11) appears only when m is
even.

Remark. In Section 5 we describe how to determine the integers aq , bq using the
Chevalley–Weil formula and the degree-0 term in the index formula (1).

Borel–Matsushima. In this section we recall the Borel–Matsushima description
of Hj(�;Q) when � = �k is an irreducible factor of SpG

2g(Z) as in (10). In what
follows we will only use the case j = 2. For � � Sp2n(Z), it is well known that
H 2(Sp2n(Z);Q) � Q when n ≥ 3 (see [ERW15, Thm. 3.4] or [Put12, Thm. 5.3]).
Thus we focus on the Hermitian case k > 2.

Proposition 8. Let G be an algebraic group defined over a field F whose asso-
ciated real semisimple Lie group G(R) is a product of unitary groups SU(aq, bq)

for q in some set Q. For a lattice �
.= G(OF ), the map

ϕ : B� →
∏

B SU(aq, bq) ∼
∏

BS(U(aq) × U(bq)) →
∏

BU(aq) (12)

induces an isomorphism on Hj(−;Q) for 0 ≤ j ≤ �(rkF (�) − 1)/2�, where
rkF (�) ≡ rkF (G) is the F -rank.

Focusing on degree 2, since H 2(BU(p);Q) = Q{c1} for p ≥ 1, combining with
the computation for H 2(Sp2h(Z);Q) mentioned before, we have

Corollary 9. Let SpG
2g(Z) < SpG

2g(R) be as in (10) and (11). Assume that
h,h′ ≥ 3 and aq, bq ≥ 1. If 2 ≤ min2<k≤m/2�(rkFk

(�k) − 1)/2�, then

H 2(SpG
2g(Z);Q) = Q{xq : qm = 1, Im(q) ≥ 0}, (13)

where x1 and x−1 are pulled back from SpG
2g(Z) → Sp2h(R) and SpG

2g(Z) →
Sp2h′(R), respectively, and xq is pulled back from SpG

2g(Z) → SU(aq, bq) ∼
S(U(aq) × U(bq)) → U(aq).
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Proof of Proposition 8. The map on cohomology induced by (12) can be real-
ized more geometrically as follows (compare [Bor74, Prop. 7.5] and [Gia09, Sec-
tion 3.2]). The cohomology H ∗(�;Q) can be identified with the cohomology of
the complex �∗(X)� of �-invariant differential forms on the symmetric space
X = G(R)/K , where K < G(R) is a maximal compact subgroup. A first ap-
proximation to the cohomology of �∗(X)� is the cohomology of the subalgebra
�∗(X)G(R) of G(R)-invariant forms, which can be identified with the cohomol-
ogy H ∗(XU ;Q) of the compact dual symmetric space

XU =
∏

SU(aq + bq)/S(U(aq) × U(bq)) �
∏

Graq (C
aq+bq ).

According to Borel [Bor81, Thm. 4.4(ii)], the inclusion �∗(X)G(R) → �∗(X)�

induces an isomorphism Hj(XU ;R) → Hj(�\X;R) for 0 ≤ j ≤ min{c(G),

m(G(R))}. In our case, c(G) ≥ �(rkF (G) − 1)/2� by [Bor74, Section 9(3)], and
m(G(R)) ≥ rkR(G(R))/2 by [Mat62, Thm. 2] (see also [Bor74, Section 9.4]).
Since F -rank is always less than or equal to R-rank, we get an isomorphism for
0 ≤ j ≤ �(rkF (G) − 1)/2�.

Furthermore, the obvious map Gra(Ca+b) → Gra(C∞) � BU(a) induces
a map XU → ∏

BU(aq) that is a cohomology isomorphism in degrees 0 ≤
j ≤ 2 minbq . See [Hat02, Ex. 4.53]. Note that no bq can be smaller than
mink{rkFk

(�k)} because the F -rank for a unitary group is equal to the maximal
dimension of an isotropic subspace [Mor15, Ch. 9].

In summary the map H ∗(
∏

BU(aq)) → H ∗(XU) → H ∗(�) induces an iso-
morphism in degrees 0 ≤ j ≤ �(rkF (G) − 1)/2�, as desired. �
F -Rank and Covers. To apply Proposition 8, we need to compute the F -rank of
our lattice �k < SU(Hk,βk) or at least bound it from below.

Proposition 10. Let S be a surface with a G = Z/mZ action, and let h be the
genus of S/G. Take �k < SU(Hk,βk) as before (for any k | m, k ≥ 3). Then
rkFk

(�k) ≥ h − 1.

Proof. By [Mor15, Ch. 9], the Fk-rank of SU(Hk,βk) is the maximal dimension
of a βk-isotropic subspace of Hk (as a vector space over Fk). By the definition
of βk , to prove the proposition, it suffices to exhibit an (h − 1)-dimensional ω-
isotropic subspace of H1(S;Q) (as a vector space over Q).

Denote S̄ = S/G and let μ : S → S̄ be the quotient map. After replacing the
fixed points z = Fixed(G) ⊂ S and μ(z) with boundary components, the map
π induces a covering map � → �̄ between surfaces with boundary. Associated
with this cover is a surjective homomorphism ρ : π1(�̄) → H1(�̄;Z) → Z/mZ.
By the Poincaré duality, there exists primitive c ∈ H1(�̄, ∂�̄;Z) so that ρ(γ ) =
[γ ] · c mod m.

Case 1. If ∂�̄ = ∅ (i.e. S̄ = �̄), then the homology class c is represented by
a simple closed curve α ⊂ �̄. The complement �̄ \ α contains a subsurface N of
genus (h− 1) that lifts to � = S (because it is disjoint from our representative for
c). Furthermore, H1(N;Q) contains an (h − 1)-dimensional isotropic subspace
that lifts to an (h − 1)-dimensional isotropic subspace of H1(S;Q), as desired.
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Figure 1 Decomposing �̄ = �h,1 ∪�0,r+1. The blue and red curves
generate A and A′, respectively

Case 2. Assume that �̄ has r ≥ 1 boundary components. We can express �̄ =
�h,1 ∪ �0,r+1 as the union of a genus-h surface with one boundary component
with a genus-0 surface with (r + 1) boundary components b0, . . . , br , where the
boundary component of �h,1 is glued to b0. See Figure 1.

This leads by (relative) Mayer–Vietoris to a direct sum decomposition
H1(�̄, ∂�̄) = A ⊕ A′, where A � H1(�h,1) is spanned by curves on �h,1, and
A′ � Zr−1 is spanned by arcs on �0,r+1 between distinct pairs of the boundary
components b1, . . . , br .

Now the class c ∈ H1(�̄, ∂�̄) can be expressed as c = ka + a′, where a ∈
A � H1(�h,1) is primitive, k ∈ Z, and a′ ∈ A′ is represented by arcs supported
in �0,r+1 ⊂ �̄. Since a ∈ H1(�h,1) is primitive, we can represent it by a simple
closed curve α [MP78, Thm. 1].

Similar to Case 1, the complement of α in �h,1 ⊂ �̄ contains a subsurface N

of genus h−1 that lifts to � ⊂ S (because it is disjoint from our representative for
c) and contributes an (h − 1)-dimensional isotropic subspace to H1(S;Q). This
completes the proof. �

Since �(rkFk
(�k) − 1)/2� ≥ �(h − 2)/2� ≥ 2 for h ≥ 6, this is the bound that

appears in Theorem 1.

4.2. Relating H ∗(SpG
2g(Z);Q) with Chern Classes of the Hodge Bundle

To study the image of α∗ : H 2(SpG
2g(Z)) → H 2(ModG(S, z)), we want to relate

the classes α∗(xq) ∈ H 2(ModG(S, z)) to the Chern classes c1,q ∈ H 2(ModG(S,

z)) defined in Section 2.4. We will see that

c1,q = α∗(xq) = c1,q̄ (14)

for qm = 1 with Im(q) > 0. This relation can be obtained by comparing two maps
from B ModG(S, z) to the product of unitary groups. For the first map, consider
the composition

B ModG(S, z) → B SpG
2g(Z) → B Sp2g(R)

∼−→ BU(g) (15)
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and note that it factors through BU(g)G → BU(g). The group U(g)G is a product
of unitary groups, one for each qm = 1. The map B ModG(S, z) → B SpG

2g(Z) →
BU(g)G classifies the Hodge eigenbundles (for the universal bundle).

The second map

B ModG(S, z) → B SpG
2g(Z) → B SpG

2g(R)

∼ BU(h) × BU(h′) ×
∏

qm=1
Im(q)>0

BS(U(aq) × U(bq)) (16)

is obtained using (11). On the bundle level this map is obtained by starting with
an (S,G)-bundle M → B , taking the associated real vector bundle H1(S;R) →
E → B , decomposing E according to the decomposition of H1(S;R) as a G-
representation over R, and giving this bundle a complex structure induced from
the action of G (the Hermitian forms (9) on subrepresentations of H1(S;Q) give
H1(S;R) a natural complex structure).

The maps (15) and (16) classify the same bundle, but with respect to different
complex structures. From this it follows that the terms in (14) differ by at most
−1. The following proposition settles the difference. Although it suffices to work
with the universal (S,G) bundle, we find it more convenient to work on the level
of individual bundles.

Proposition 11. Let π : M → B be an (S,G)-bundle with Hodge bundle E =⊕
qm=1 Eq → B . Then c1(Eq) = c1(Eq̄) = xq(π) in H 2(B), where xq(π) is the

pullback of the class xq defined in Corollary 9.

Proof of Proposition 11. There are two natural complex structures on the bundle
H1(S;R) → E → B induced from different complex structures on H1(S;R). The
first J is the Hodge star operator �2 = −1 on H 1(S;R), and the second J ′ is
induced by the G action on H 1(S;R) (this depends on a choice of generator
of G). The proposition is proved by comparing J and J ′ and recalling how the
definition of the Chern classes is sensitive to a choice of complex structure (see
Borel–Hirzebruch [BH58, Section 9.1]).

Decompose H 1(S;R) = H(1) ⊕ H(−1) ⊕ ⊕
qm=1

Im(q)>0
H(q, q̄) into isotypic

components for the irreducible representations of G over R. (Recall that the
simple RG modules are the trivial representation V (1), the sign representation
V (−1) (if m is even), and V (q, q̄) = R[t]/(t2 − (q + q̄)t + 1) for qm = 1 such
that Im(q) > 0.)

The complex structure J on H 1(S;R) induces an isomorphism H(q, q̄) �
H 1(S;C)q = H

1,0
q ⊕ H

0,1
q . This decomposition coincides with the decomposi-

tion of H(q, q̄) into positive-definite and negative-definite subspaces for the Her-
mitian form β in (9). Since H 1,0 and H 0,1 are +i and −i eigenspaces for J ,
the same holds for H

1,0
q and H

0,1
q . This identifies the complex structure J on

these two factors. On the other hand, if we view V = H
1,0
q ⊕ H

0,1
q as a real vec-

tor space V (q, q̄)N , then the G action defines another complex structure J ′ such
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that for any v ∈ V , the orientation (v, J ′v) on R{v,J ′v} agrees with the orien-
tation (v, τv), where τ = e2πi/m generates G. From this description it follows
that if Im(q) > 0, then J and J ′ agree on H

1,0
q � H

0,1
q̄ , but differ by −1 on

H
1,0
q̄ � H

0,1
q .

Let c1(Eq) and c′
1(Eq) denote the Chern class defined using J and J ′, re-

spectively [BH58, Section 9.1]. The proposition follows by noting the following
equalities: If Im(q) > 0, then

c1(Eq) = c′
1(Eq) = xq(π) (17)

and
c1(Eq̄) = −c′

1(Eq̄) = c′
1(Eq) = xq(π). (18)

The first equality in (17) and (18) follows because J = J ′ on H
1,0
q and J =

−J ′ on H
1,0
q̄ . The middle equality in (18) holds because the bundle Eq ⊕ Eq̄ →

B is classified by a map B → B SU(aq, bq) ∼ BS(U(aq) × U(bq)) as in (16).
Finally, c′

1(Eq) = xq(π) by (13). �

4.3. Applying the Index Formula

The degree-1 terms of the index formulas (2) and (1) give a system of linear
equations:

c1,1 + c1,−1 + 2
∑

qm=1
Im(q)>0

c1,q = κ1/12, (19)

and for 1 ≤ r ≤ m − 1,

c1,1 + (−1)rc1,−1 +
∑

qm=1
Im(q)>0

(qr + q̄r )c1,q

=
∑

1≤j<m/2

csc2(rθj /2)(εj + εm−j )/4. (20)

The term c1(E−1) appears only when m is even. Note that εj + εm−j is nonzero
only when zj ∪ zm−j 
= ∅; furthermore, our assumption on the point stabilizers
for G acting on S implies that zj ∪ zm−j 
= ∅ only if (j,m) = 1.

Let d = �m/2�, and let 1 ≤ j1, . . . , jn < m/2 be the indices for which
zj ∪ zm−j 
= ∅ (note that n ≤ φ(m)/2). Equations (19) and (20) define a matrix
equation of the form

J

⎛
⎜⎜⎜⎝

c1(Eζ 0)

c1(Eζ 1)
...

c1(Eζd )

⎞
⎟⎟⎟⎠ = K

⎛
⎜⎜⎜⎝

κ1
εj1 + εm−j1

...

εjn + εm−jn

⎞
⎟⎟⎟⎠ .

Here J is a (d + 1) × (d + 1) matrix, and K is a (d + 1) × (n + 1) matrix.
We wish to show that Im[H 2(SpG

2g(Z)) → H 2(ModG(S, z))] = Q{κ1, εj1 +
εm−j1, . . . , εjn + εm−jn}. First, we show that J is invertible, which implies the
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containment ⊆. Then we show rk(K) ≥ n + 1, which implies the other contain-
ment.

Proposition 12. J is invertible.

Proof. A row of J has the form (χg(V0) χg(V1) · · · χg(Vd)) for fixed g ∈ G ⊂
C× with Im(g) ≥ 0, and where Vj = ρζj + ρζ−j for 1 ≤ j < m/2 and Vj = ρζj

for j = 0,m/2.
If the columns of J are dependent, then there are constants a0, . . . , ad such that

a0χg(V0) + · · · + adχg(Vd) = 0

for g ∈ G ⊂ C× with Im(g) ≥ 0. But then this equation holds for all g ∈ G be-
cause χg(Vj ) = χg−1(Vj ). But this is impossible because the characters of irre-
ducible representations of G are linearly independent. �

Proposition 13. rk(K) ≥ n + 1.

Using (19) and (20), note that K = ( 1/12 0
0 K ′

)
, where K ′ is a d ×n matrix. From in-

spection of (20), to prove the proposition, it suffices to show the following propo-
sition.

Proposition 14. Fix m ≥ 2. Let V � Rφ(m)/2 be a real vector space with basis
{e�} for 1 ≤ � < m/2 and gcd(�,m) = 1. Then the vectors

vk =
∑

1≤�<m/2
gcd(�,m)=1

csc2
(

πk�

m

)
e�

1 ≤ k ≤ φ(m)/2 also form a basis for V .

Proof. We will denote Z/mZ by Cm. For simplicity, we start with the case where
m = p is prime. The case where m = pn is a prime power follows easily from
this. Then we explain the general case.

Case 1: m = p is prime. Let q = p−1
2 . Consider the functions fk : (Cp)× → R

defined by fk(x) = csc2( kπ
p

x), and let A = (Ak,�) be the q × q matrix Ak,� =
fk(�) for 1 ≤ k, � ≤ q . To prove the proposition, it is enough to show that A is
invertible.

To this end, define another q × q matrix B as follows. Consider the surjective
homomorphism φ : (Cp)× � Cp−1 → Cq . For 0 ≤ i, j ≤ q − 1, define Bij by
csc2(π

p
· y), where φ(y) = i + j . This is well defined because csc2(x) is an even

function.
Now observe:

(1) A and B are the same matrix, up to permuting rows and columns. Thus it
suffices to show that det(B) 
= 0. We will show the eigenvalues of B are all
nonzero.
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(2) B is a circulant matrix, up to permuting rows and columns (see [Dav79]
for the definition). This is easy to see because B is obtained by taking the
multiplication table for Z/q and applying a fixed function to each entry.
(The multiplication table of a cyclic group is circulant up to permuting the
rows.)

Now the eigenvalues/eigenvectors of a circulant matrix are easily computed
[Dav79]. The eigenvalues have the form λj = c0 + c1ω

j + c2ω
2j + · · · +

cq−1ω
(q−1)j , where ω = e2πi/q and 0 ≤ j ≤ q − 1, and the ci are in bijection

with csc2( kπ
p

), 1 ≤ k ≤ q . If λj = 0, then ωj is a solution to the polynomial

P(x) = c0 + c1x + · · · + cq−1x
q−1 for some j . This is possible if and only if

c0 = c1 = · · · = cq−1, which is not the case.
Case 2: m = pn is a prime power. An important feature of the previous argu-

ment is that when m is prime, (Cm)× � Cφ(m) is cyclic, as is (Cm)×/{±1}, so its
multiplication table is given by a circulant matrix whose determinant is easy to
compute (even after applying a fixed function to each coordinate).

When p is an odd prime, then (Cpn)× � Cφ(pn) is cyclic, so we may repeat the
argument of Case 1.

When p = 2, the group (C2n)× � C2 × C2n−2 is not cyclic. However, the fact
that fk is even implies that it factors through (C2n)×/{±1}, and the subgroup
{±1} < (C2n)× corresponds to the subgroup C2 × {0} < C2 × C2n−2 . This means
that fk : C2 ×C2n−2 → R factors though the cyclic group C2n−2 , and we can again
apply the argument from Case 1.

Case 3: m is arbitrary. In this case we cannot assume that (Cm)× is cyclic,
and in most cases the multiplication table for (Cm)×/{±1} will not be circu-
lant. However, if we write m = p

n1
1 · · ·pnr

r , then using the isomorphism (Cm)× �
(C

p
n1
1

)× × · · · × (Cp
nr
r

)×, the multiplication table for (Cm)×/{±1} may be ex-

pressed as a special kind of block circulant matrix. Having this block circulant
form will allow us to apply the argument of Case 1 iteratively.

We begin by examining what the structure of the multiplication table of a prod-
uct of cyclic groups. Fix a finite group F and a cyclic group Cd = 〈t〉. If the mul-
tiplication table for F is given by a matrix A, then the multiplication table for
F × Cd has the form

⎛
⎜⎜⎜⎝

A tA · · · td−1A

tA t2A · · · A
...

. . .
...

td−1A A · · · td−2A

⎞
⎟⎟⎟⎠ .

This matrix becomes block circulant after permuting the rows. Thus the multi-
plication table of a product of cyclic groups is an iterated block circulant ma-
trix.
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Next, we determine the eigenvalues of a block circulant matrix. Fix d,n ≥ 1,
fix A0, . . . ,Ad−1 ∈ Mn(R), and consider the block circulant matrix

B =

⎛
⎜⎜⎜⎝

A0 A1 · · · Ad−1
Ad−1 A0 · · · Ad−2

...
. . .

...

A1 A2 · · · A0

⎞
⎟⎟⎟⎠ .

Suppose that the matrices Ai share common eigenvectors x0, . . . , xn−1, so that
Aixj = λij xj . Denoting ζ = e2πi/d , the eigenvectors of B are

xkj =

⎛
⎜⎜⎜⎝

xj

ζ kxj

...

ζ k(d−1)xj

⎞
⎟⎟⎟⎠

for 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ n − 1, and the eigenvalues are

ηkj = λ0k + λ1kζ
j + · · · + λm−1,kζ

j (d−1).

These facts are easily checked.
Now the group (Cm)×/{±1} is a product of cyclic groups, so its mul-

tiplication table is an iterated block circulant matrix B0. The matrix A =
(fk(�)) is equivalent to the matrix B obtained by applying csc2( π

m
·) to each

entry of B0. Since all n × n circulant matrices have the same eigenvec-
tors, the above computation applies for computing the eigenvalues of B .
Now, as in Case 1, the eigenvalues are given as degree m − 1 polynomials
P(exp2πi/m) with (nonconstant!) coefficients among the fk(�), so det(B) 
= 0.

�

Since J is invertible and rk(K) ≥ n + 1, we conclude that H 2(SpG
2g(Z)) surjects

to the subspace of H 2(ModG(S, z)) generated by κ1 and {εji
+εm−ji

: 1 ≤ i ≤ n},
which finishes the proof of Theorem 1.

5. Further Application of the Index Formula

5.1. The Real Points of SpG
2g(Z)

We remark on how the degree-0 term of the index formula can be used to deter-
mine the real semisimple Lie group SpG

2g(R) that contains SpG
2g(Z) as a lattice.

Part of the work was already done in Section 4.1; it remains to determine the
numbers aq , bq in equation (11). This computation is an elaboration of a remark
in [McM13, Section 3] and will be used later in this section.
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Chevalley–Weil. First one can use the Chevalley–Weil algorithm to determine the
character χH of H = H1(S;R). Obviously χH (e) = dimH = 2g, and by the Lef-
schetz formula, χH (g) = 2 − # Fix(g) for g 
= e. Since a representation is deter-
mined by its character, this gives the integers nq in the decomposition

H1(S;R) = V (1)n1 ⊕
⊕
qm=1

Im(q)>0

V (q, q̄)nq ⊕ V (−1)n−1 .

Here V (±1) are the trivial/alternating representations, and V (q, q̄) = R[t]/(t2 −
(q + q̄)t + 1).

Hodge Star and Index Formula. The Hodge star gives a complex structure to
H1(S;R), and hence an isomorphism for each q with Im(q) > 0

V (q, q̄)nq � V (q)aq ⊕ V (q̄)bq ,

where V (q) = C[t]/(t − q). The numbers aq , bq can be computed using the
degree-0 term of the index formula (1)∑

qm=1,Im(q)>0

(aq − bq)(qr − q̄r ) = −i
∑

1≤j≤m−1

cot(rθj /2) · |zj |, (21)

where zj are as in the statement of Theorem 4.

Example. Here we consider a closed surface S of genus g = (m−1)(m−2)
2 + mh

with an action of G = Z/mZ with m fixed points. These surfaces arise in Morita’s
m-construction [Mor01, Section 4.3].

An explicit model for S can be obtained as follows. Take m disks, stacked hori-
zontally, and attach m strips between each pair of adjacent levels, as pictured in
Figure 2 (in the case m = 5). This gives a surface of genus (m−1)(m−2)

2 with m

boundary components. The rotation by 2π/m on the disk extends to an action of
Z/mZ on this surface with one fixed point in each disk. Along each boundary
component, we can attach a genus-h surface (with one boundary component) to
obtain a closed surface of genus (m−1)(m−2)

2 + mh with an action of Z/mZ with
m fixed points.

Using Chevalley–Weil, we easily compute the decomposition of H1(S;Q) into
isotypic components (as was discussed in Section 4.1:

H1(S;Q) = Q2h ⊕
⊕
k|m
k≥2

Q(ζk)
2h+m−2.

In this case

SpG
2g(Z) =̇ Sp2g(Z) × Sp2h+m−2(Z) ×

∏
k|m

2<k≤m/2

SU(Hk,βk)Ok
.

The second factor appears only when m is even. Applying (21), we find that∏
k|m

2<k≤m/2
SU(Hk,βk)Ok

is a lattice in G(R) = ∏N
i=0 SU(h + i, h + m − 2 − i),
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Figure 2 Schematic of a genus-6 surface with five boundary compo-
nents and an action of Z/5Z

Figure 3 For m = 7, the group G(R) = SU(h,h+5)×SU(h+1, h+
4) × SU(h + 2, h + 3)

where N = �m−1
2 �. Equivalently, the factors in G(R) are of the form SU(u + vq)

for u,vq ∈ Z2, where u = (h,h + m − 2), and for each qm = 1 with Im(q) > 0,
we define vq = (a,−a), where a is the number of mth roots of unity above the
line from 1 to q in C. See Figure 3 and also [McM13, Figure 1].

5.2. Relation to Hirzebruch’s Signature Formula

Hirzebruch [Hir69] explained how the signature changes in a branched cover.
In this section we derive this result for surface bundles over surfaces from our
viewpoint. For simplicity, we restrict to 2-fold branched covers.

Let M be a closed oriented 4-manifold with a G = Z/2Z action with fixed set
Fix(G) = M0. In this case, Hirzebruch proved that

Sig(M) = 2 Sig(M/G) − Sig(M0 · M0), (22)

where M0 ·M0 is a closed oriented manifold and thus has a signature. This formula
applies in the special case where M is the total space of an (S,G)-bundle over
a surface. Our main observation here is that the terms Sig(M/G), Sig(M0 · M0)

can be understood in terms of cohomology of the arithmetic group SpG
2g(Z) =̇

Sp2h(Z) × Sp2h′(Z).
To illustrate this, consider a G action on a genus-2h surface with two fixed

points z = {z1, z2}. The quotient μ : S → S̄ has genus h. Let z̄ = μ(z). In this
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case SpG
2g(Z) =̇ Sp2h(Z) × Sp2h(Z), and we have a commutative diagram

ModG(S, z) SpG
2g(Z)

Modμ(S̄, z̄) Sp2h(Z)

φ

f

g

ψ

The cohomology H 2(SpG
2g(Z);Q) is generated by {x1, x−1} as in Corollary 9.

Also, H 2(Sp2h(Z);Q) � Q{y1} for h ≥ 3. Let κ1 and κ̄1 be the first MMM
class in the cohomology of ModG(S, z) and Modμ(S̄, z̄), respectively, and let
ei ∈ H 2(ModG(S, z)) be the Euler class at the fixed point zi for i = 1,2.

By (2), g∗(y1) = κ̄1/12. Hirzebruch’s formula will come from determining
φ∗(κ̄1). Since the diagram commutes and ψ∗(y1) = x1, we want to compute
f ∗(x1). By the index formulas (19) and (20), we have f ∗(x1 + x−1) = κ1/12
and f ∗(x1 − x−1) = (e1 + e2)/4, so

φ∗(κ̄1) = f ∗(12x1) = 1

2
κ1 + 3

2
(e1 + e2). (23)

To conclude, let M → B be an S bundle with B a surface and with mon-
odromy ρ : π1(B) → ModG(S, z). By Hirzebruch’s signature formula, Sig(M) =
1
3 〈ρ∗(κ1), [B]〉. The fixed set M0 = Fix(G) is a surface, and 〈ρ∗(e1 + e2), [B]〉 =
#(M0 · M0). Then (23) gives

Sig(M/G) = Sig(M)

2
+ #(M0 · M0)

2
.

Since the signature of a 0-manifold is the number of points, this is the same as
Hirzebruch’s formula (22).

5.3. Toledo Invariants of Surface Group Representations

The Toledo invariant τ is an integer invariant of a representation α : π1(�) → H ,
where � is a closed oriented surface (genus ≥ 1), and H is a Hermitian Lie group.
In this section we will be interested in the case H = SU(p, q) with 1 ≤ p ≤ q .
To define τ(α), first construct a smooth α-equivariant map f : �̃ → X, where �̃

is the universal cover of �, and X = SU(p, q)/S(U(p) × U(q)) is the symmetric
space associated with H . The Toledo invariant is defined as

τ(α) = 1

2π

∫
F

f ∗ω,

where ω is the Kähler form of X, and F ⊂ �̃ is a fundamental domain for the
action of π1(�).

Domic and Toledo [DT87] have shown that |τ(α)| ≤ −pχ(�), and Bradlow,
Garcia, Prada, and Gothen [BGPG03] have shown that components of the rep-
resentation variety Hom(π1(�),H)/H are in bijection with the values achieved
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by τ . Here we simply observe that the Atiyah–Kodaira construction gives exam-
ples of surface group representations whose Toledo invariant can be computed
using the index formula.

We will explain this in a special case (see [Mor01, Section 4.3] for a general
discussion of the Atiyah–Kodaira construction). Let G = 〈τ 〉 � Z/7Z, and let S̄ =
S̄h be a closed surface with a free Z/7Z action. The product bundle S̄ × S̄ → S̄

admits seven disjoint sections �1,�τ , . . . ,�τ 6 , where �f denotes the graph of f :
S̄ → S̄. In order to branch over

⋃
�τi , we must first pass to a cover. Let p : � × S̄

be the Z/7Z homology cover (� has genus 72h(h−1)+1). The bundle � × S̄ has
sections �p,�τp, . . . ,�τ 6p and admits a Z/7Z branched cover M → � × S̄ with
branching locus

⋃
�τip . Projecting M → � × S̄ → � defines a bundle with fiber

S, which is a 7-fold branched cover μ : S → S̄ branched along seven points (S
has genus 7h + 15). The homology H1(S;Q) is isomorphic to Q2h ⊕Q(ζ7)

2h+5

as a G-module. In this case, SpG
2g(Z) =̇ Sp2h(Z) × �, where � is an irreducible

lattice in SU(h,h + 5) × SU(h + 1, h + 4) × SU(h + 2, h + 3). Thus we have a
homomorphism

α : π1(�) → � ↪→ SU(h,h + 5) × SU(h + 1, h + 4) × SU(h + 2, h + 3).

Let αi be the representation obtained by projecting to the ith factor, i = 1,2,3.
By the index formula, we obtain the following equations: for ζ = e2πi/7,

c1,1 = aκ1 + 4bε1, c1,ζ = aκ1 + bε1,

c1,ζ 2 = aκ1 − bε1, c1,ζ 3 = aκ1 − 2bε1,

where a = 1
84 and b = 1

7 . Since the signature of M/G = � × S̄ is zero, it follows
that c1,1 = 0, which allows us to express τ(αi) = c1,ζ i in terms of κ1/3, which
computes the signature. Thus the Toledo invariants are given by

τ(α1) = 3

112
σ, τ(α2) = 5

112
σ, τ(α3) = 6

112
σ,

where σ = Sig(M).

Remark. The Toledo invariants of representations obtained in this way will never
have a maximal Toledo invariant. This is because the Gromov norm of the Toledo
class decreases when pulled back the mapping class group [Kot98], so in fact, no
representation π1(�) → SU(p, q) that factors through Mod(S) will be maximal.
However, we could also ask whether these representations are weakly maximal in
the sense of [BSBH+17].

5.4. Cobordism Invariants

Church, Farb, and Thibault [CFT12] show that the odd MMM classes κ2i−1 are
cobordism invariants. This means that for an S bundle M4i → B , the charac-
teristic number κ#

2i−1(M → B) depends only on the cobordism class of M . In
particular, the class κ2i−1 cannot distinguish between different fiberings of a 4i-
manifold M .
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If M → B admits a fiberwise G-action, then we can ask about characteristic
classes c that are G-cobordism invariants, that is, the corresponding characteristic
number c#(M → B) depends only on the G-bordism class of M (for more on the
notion of G-bordsim, see e.g. [CF64, Ch. III]). Consider the case dim(M) = 4.
Of course, κ#

1 (M → B) is also a G-cobordism invariant; we further prove Corol-
lary 3, thus exhibiting more classes that have this property.

Proof of Corollary 3. Let � be a closed surface and fix an (S,G)-bundle M4 →
�. Let E → � be the Hodge bundle with eigenbundles E = ⊕

qm=1 Eq . We aim
to show that the numbers

c#
1(Eq → �) = 〈c1(Eq), [�]〉

depend only on the G-bordism class of M .
Suppose that there is a G-manifold W 5 such that M = ∂W (as G-manifolds).

To prove the corollary, we must show that c#
1(Eq → �) = 0. First, observe that,

by Theorem 1, c#
1(Eq → �) is a linear combination of the signature Sig(M) and

the intersection numbers #(Mτ
j · Mτ

j ), where τ generates Z/mZ, and we decom-

pose the fixed set Mτ = ⋃m−1
j=1 Mτ

j according to the action of τ on the normal
bundle (as in Theorem 4). Now Sig(M) = 0 because M = ∂W , and we claim that
#(Mτ

j · Mτ
j ) = 0 as well. To see the latter, note that Mτ and Wτ are submani-

folds (average a metric so that τ acts by isometries) and Mτ = ∂(Wτ ) because
M = ∂W as G-manifolds. It follows that Mτ · Mτ = ∂(Wτ · Wτ). Since Wτ is
a 3-manifold, Wτ · Wτ is a 1-manifold with boundary, and the boundary points
occur in pairs, which implies that #(Mτ · Mτ) = 0, as desired. �

Remark. It would be interesting to determine precisely which elements of
H ∗(ModG(S, z);Q) are G-cobordism invariants following Church, Crossley, and
Giansiracusa [CCG13].
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