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A Coarse Stratification of the Monster Tower

Alex Castro, Susan Jane Colley,
Gary Kennedy, & Corey Shanbrom

Abstract. The monster tower is a tower of spaces over a specified
base; each space in the tower is a parameter space for curvilinear data
up to a specified order. We describe and analyze a natural stratification
of these spaces.

The monster tower, also known in the algebro-geometric literature as the Sem-
ple tower, is a tower of smooth spaces (varieties) over a specified smooth base M .
Each space M(k) in the tower, called a monster space, is a parameter space for
curvilinear data up to order k on M . We will describe a coarse stratification of
each monster space, with each stratum corresponding to a code word created out
of a certain alphabet according to rules that we will specify. These strata param-
eterize curvilinear data “of the same type.” The monster space can be regarded
as an especially nice compactification of the parameter space for curvilinear data
of nonsingular curves on M (as explained in Section 2), with the added points
representing the data of singular curves; in our stratification the nonsingular data
points form a single open dense stratum.

Versions of this coarse stratification have been observed by virtually everyone
who has studied the monster construction. Here we develop the theory in full
generality, beginning with a base space of arbitrary dimension and at all levels.
A finer stratification would result from a thorough analysis of the orbits under
the action of a suitable group acting on the base (whose action can be lifted to
the tower) or, working locally, of the pseudogroup of local diffeomorphisms at
a selected point. Results such as those in Section 5.7 of [12] show that we can
expect there to be infinitely many strata, that is, that there are moduli. However,
we seem to be very far from a full understanding of where and why moduli occur.

In Section 1, we recall the construction of the monster tower and selectively
review prior literature. A brief Section 2 explains curvilinear data and baby mon-
sters. Section 3 introduces code words for labeling the strata, which are explained
in Section 4 via their closures, called intersection loci. Our main Theorem 4.2
gives an explicit description of these loci. To prove the theorem, we use coor-
dinates on charts, as explained in Section 5; after this, the proof in Section 6 is
nearly immediate. Finally, in Section 7, we count the strata.
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1. The Monster Tower

Suppose that M is a smooth manifold, complex manifold, or nonsingular alge-
braic variety over a field of characteristic zero; denote its dimension by m. The
monster tower is a sequence

· · · → M(k) → M(k − 1) → ·· · → M(2) → M(1) → M(0) = M (1.1)

in which each M(k) → M(k − 1) is a fiber bundle with fiber Pm−1. To define it,
we begin with a more general construction.

The general construction begins with a pair (X,B), where X is again a smooth
manifold, complex manifold, or variety, and B is a rank b subbundle of its tan-
gent bundle T X. Let X̃ = PB, and let π : X̃ → X be the projection. Then the
tautological line bundle OB(−1) on X̃ is a subbundle of π∗T X. Let

dπ : T X̃ → π∗T X

denote the derivative map of π . The pullback of OB(−1) by dπ is a subbundle of
T X̃, which we denote by B̃. In other words, a point P of X̃ represents a tangent
direction at a point of X, and B̃ is the subbundle of T X̃ whose fiber at P consists
of vectors mapping (via the derivative of projection) to vectors in that direction;
we call them focal vectors. Note that the relative tangent bundle T (X̃/X) is a
subbundle of B̃; its fiber consists of vectors mapping to zero, sometimes called
vertical vectors. By construction, B̃ is a subbundle of T X̃, and again its rank is b.
Thus we can iterate this construction to obtain a tower of fibrations.

We will eventually apply this construction in several situations. To construct
the monster tower, we simply apply it to the pair (M,T M) and then iterate. We
denote the resulting spaces as in (1.1); M(k) is called the monster space at level
k or simply the kth monster. The bundle constructed at step k of the construc-
tion is called the kth focal bundle and denoted �k ; it is a subbundle of the tan-
gent bundle T M(k). For k ≥ 2, the projectivization of the relative tangent bundle
PT (M(k)/M(k − 1)) gives us a divisor on M(k), which we call the divisor at
infinity and denote by Ik . The pullback of Ik to any higher level is again a divisor,
and for simplicity of notation, we again just denote it by Ik .

The earliest instance of the construction seems to be Gherardelli’s paper [8].
The tower was explained by Semple [13; 14], and in the algebro-geometric liter-
ature, it bears his name. Two of the present authors used it to study problems of
enumerative geometry in [4; 5; 6], and it was treated in greater generality in [10].
Demailly [7] used it to study positivity questions for hyperbolic varieties.

Working independently, a group of differential geometers studied the same
construction using different techniques, language, and motivation. In this strand
of literature the general construction is called Cartan prolongation, and the re-
sulting tower is called the monster tower. The tower with base R

2 was discovered
by Montgomery and Zhitomirskii [11] in their study of singular Goursat distri-
butions. They discovered connections with singular plane curves and the control-
theoretic problem of a car pulling many trailers. Their detailed study of the mon-
ster tower with base R2 appears as the monograph [12]. Subsequent investigations
of the monster tower with bases R

2,R3, and C
3 appear in [1; 2; 3; 15]. These
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efforts were generally aimed at understanding the action of the diffeomorphism
group on the tower: constructing invariants and counting and classifying orbits.

The equivalence of the two towers was first noticed by Castro in 2010. The
present contribution represents the first collaboration between the two groups,
and an effort to improve and standardize language and notation, most notably in
the coding system presented in Section 3.

2. Curvilinear Data and Baby Monsters

Here we informally recall the concept of curvilinear data; for further information,
see the works cited at the end of the previous section.

Again, let M be a smooth manifold, complex manifold, or nonsingular alge-
braic variety of dimension m. Suppose that we have two smooth curves C1 and C2
passing through a point and that we have a system of local coordinates x1, . . . , xm

based there. For each curve, assume that the restriction of the differential dx1 does
not vanish at the point. We say that the curves have the same curvilinear data up
to order k at the point if the values of all derivatives djxi/dx

j

1 agree up to or-
der k. These are (m− 1)k conditions, and we can check that they are independent
of local coordinates.

Thus a nonsingular curvilinear datum is a point in a manifold or smooth vari-
ety of dimension m + (m − 1)k, and there is a tower of such manifolds over the
base M , with fiber a projective space P

m−1 at the first level, and then affine space
fibers Am−1 thereafter. At the first level the manifold is exactly M(1), the projec-
tivization of the tangent bundle T M . With each point of the curve C in M , we
can associate the point of M(1) recording its tangent direction, and in this way,
we obtain a copy of C inside M(1), called the lift of C and denoted by C(1); the
process of passing from C to C(1) is again called prolongation.

We can lift again to obtain a curve C(2) inside the projectivization of the tan-
gent bundle T M(2). Observe that a tangent vector at a point of C(1) is a focal
vector; thus, in fact, C(2) lies entirely inside the smaller space M(2). Proceed-
ing similarly, we obtain a copy C(k) of C inside the monster space M(k), called
its kth lift or kth prolongation. At every stage, these focal vectors are nonver-
tical vectors; thus C(k) avoids the divisor at infinity I (k) and all pullbacks of
prior divisors at infinity C(2), . . . ,C(k − 1). Conversely, given any point of M(k)

away from all divisors at infinity, there is a recipe for finding a curve C̃ passing
through this point and then, by a process of integration, producing a curve C on
M for which C(k) = C̃. Thus the monster spaces M(k) are spaces that naturally
compactify the spaces of nonsingular curvilinear data. As the reader undoubtedly
suspects, a point on a divisor at infinity represents the data of some sort of singu-
lar curves; the process of lifting is essentially repeated Nash blowup, performed
simultaneously at every point of the curve. The added points are also called curvi-
linear data, dropping the modifier “nonsingular.” This is explained more carefully
in the cited literature.

Inside the monster space M(k), suppose that there is a submanifold X for
which the intersection of its tangent bundle T X with the focal bundle �k (inside
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the tangent bundle of M(k) restricted to X) has constant rank. Then we can ap-
ply the monster prolongation construction to the pair (X,T X ∩ �k); we call the
resulting tower the baby monster tower associated with X.

Here are three basic examples:

1. If C is a smooth curve in M and T C is its tangent bundle, then applying the
baby monster construction to the pair (C,T C) produces a tower of copies of
C, namely the lifts C(k) in M(k), as just explained.

2. If X is the fiber over a point of M(k − 1), then T X is already a subbundle of
�k . The resulting tower is what Castro and Montgomery [3] have also called
a baby monster. (Thus our terminology generalizes theirs.)

3. If X is the divisor at infinity Ik on M(k), then the intersection of T X and �k is
transverse; thus T X ∩�k has rank m− 1. This tower is described by Lejeune-
Jalabert [10, p. 1287]. Denote the spaces in this tower by Ik[n], beginning with
Ik[0] = Ik ; thus Ik[n] is a subspace of M(k + n) of codimension n + 1. We
use the same notation to denote the full inverse image of Ik[n] in any higher
monster space in the tower.

3. Code Words

We now introduce the code words to be used for labeling strata; the strata them-
selves are described later. The alphabet for our code consists of all symbols VA,
where A is a finite subset of the integers strictly greater than 1. To avoid a cum-
bersome notation, we write, for example, abc or a, b, c rather than {a, b, c}, and
always arrange the elements of A in increasing order. Although this is an infi-
nite alphabet, the rules for creating a valid word will imply that there are only
finitely many words of each specified length. To be consistent with prior usage,
we use R instead of V∅. (The symbols R and V are chosen to suggest “regular”
and “vertical.”) The rules for creating a code word are as follows:

(1) The first symbol must be R.
(2) Immediately following the symbol VA, we may put any symbol VB , where

either B is a subset of A, or B is a subset of A∪ {j} with j being the position
of the symbol.

(3) The cardinality of A is less than m.

Note that j cannot appear in a subscript prior to position j . Also note that rule
(3) is the only rule to use the specified value for m. The diagram in Figure 1
shows the code words of lengths 1, 2, and 3, assuming that m ≥ 3. If m > 3, then
there are twenty-four valid code words of length four. If, however, m = 3, then
RV2V23V234 is not a valid code word, since it violates rule (3).

Given a code word VA1VA2VA3 · · ·VAk
, for each j = 2,3, . . . , k, let nj de-

note the number of times that j appears as a subscript. (If it does, then its first
appearance is in position j , and its last appearance is in position j + nj − 1.)
For example, for the code word RV2V23V23V25V5V5V5, we have n2 = 4, n3 = 2,
n4 = 0, and n5 = 4. We note that nj ≤ k + 1 − j ; the base dimension m adds
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RRR

RR RRV3

R RV2R

RV2 RV2V2

RV2V3

RV2V23

Figure 1 Code words up to length 3

further restrictions. From a valid set of values for n2 through nk we can recover
the code word.

In [3] and [2], an alternative coding system was developed for the case m = 3,
called RVT coding. In this system, we work with the seven-symbol alphabet
{R,V,T1, T2,L1,L2,L3}, which corresponds to the seven cases considered by
Semple [13, p. 151]. The rules for creating a code word are as follows:

• The first symbol must be R.
• The next symbol after R can be either R or V .
• The next symbol after V or T1 can be R, V , T1, or L1.
• The next symbol after T2 can be R, V , T2, or L3.
• The next symbol after L1, L2, or L3 can be any symbol.

The symbol R plays the same role in both the RV T code and our new code.
In the correspondence between the two codes, V , T1, and T2 always correspond
to singly subscripted symbols, but the precise correspondence is conditioned by
prior symbols of the code word; similarly, L1, L2, and L3 correspond to doubly
subscripted symbols. The precise correspondence is explained by these tables, in
which the first row refers to the RV T code, and the second row to our new code.

kth symbol, immediately after R R V

kth symbol, immediately after R R Vk

kth symbol, after V or T1 R V T1 L1
kth symbol, after Vj R Vk Vj Vjk

kth symbol, after T2 R V T2 L3
kth symbol, after Vj R Vk Vj Vjk

kth symbol, after L1, L2, or L3 R V T1 T2 L1 L2 L3
kth symbol, after Vij R Vk Vj Vi Vjk Vij Vik

It is straightforward to use these tables to translate an RV T code word to a new
code word. Here is one example:

RV T1V V T1T1T1L1 ←→ RV2V2V4V5V5V5V5V59.
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In the other direction, when translating the symbol of a new code word imme-
diately following some Vj , we must be careful to choose the correct table. For
example, although RV2V23V2V2 and RV2V2V2V2 end with the same pair of sym-
bols, the final symbols of their corresponding RV T code words differ:

RV2V23V2V2 ←→ RV L1T2T2,

RV2V2V2V2 ←→ RV T1T1T1.

4. Intersection Loci and Strata

We now give a recipe for converting a code word VA1VA2VA3 · · ·VAk
to a de-

scription of an intersection locus. Recall that, for each number j = 2,3, . . . , k,
we let nj denote the number of times that j appears as a subscript. If j never
appears, then set nj = −1. To state Definition 4.1 cleanly, we adopt the following
convention: Ij [−1] is interpreted as the entire monster space M(k).

Definition 4.1. On M(k), the intersection locus corresponding to the code word
W = RVA2VA3 · · ·VAk

is

IW :=
k⋂

j=2

Ij [nj − 1]. (4.1)

Theorem 4.2. For each code word, intersection (4.1) is transverse and nonempty.
The codimension of the intersection locus is the sum of cardinalities |A2| + · · · +
|Ak| or, equivalently, n2 + · · ·+ nk . It contains the intersection locus correspond-
ing to the code word W ′ if and only if each n′

j ≥ nj .

In Section 6, we prove Theorem 4.2 by an explicit calculation using coordinates
to be introduced in Section 5.

Example 4.3. For the code word consisting entirely of Rs, the intersection locus
is M(k) itself.

Example 4.4. Assume that m ≥ 3. On the monster M(8), the codimension-7 in-
tersection locus corresponding to the code word RV2V3V34V35V3RR is the trans-
verse intersection

I2[0] ∩ I3[3] ∩ I4[0] ∩ I5[0],
where Ij [0] means the full inverse image of Ij , and I3[3] denotes the inverse
image of the third space in the baby monster tower over I3.

Using Theorem 4.2, we obtain a natural stratification of the monster space M(k)

as follows: from each intersection locus IW excise all those intersection loci IW ′
that it contains. In fact, it suffices just to excise each locus whose code word W ′
is obtained from W by increasing a single nj by one (ignoring those W ′ that are
not valid code words).
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5. Coordinate Charts

Here we describe a natural system of coordinate charts on the monster spaces.
The notation is basically that of Lejeune-Jalabert [10], except for the conveniently
redundant names. Note that a similar system was developed from the differential
geometry side in [9] (see [12] for more details).

We begin with an open set U on M with coordinates x1, . . . , xm for which,
at each point, the differentials dx1, . . . , dxm form a basis of the cotangent space.
Then over U the monster space M(1) is isomorphic to U × P

m−1, and it is cov-
ered by m charts C(1), . . . ,C(m), each isomorphic to U ×A

m−1. The chart C(p)

represents one-dimensional quotients of the cotangent bundle on which dxp does
not vanish, and the coordinates for the second factor are defined by

xq(p) := dxq

dxp

for q �= p. For convenience, we also define

xp(p) := xp

(i.e., we give a new name to the pullback of this coordinate function). Note that
at each point in this chart the differentials dx1(p), . . . , dxm(p) form a basis for
the dual focal bundle �∨

1 . For this reason, the coordinates xq(p) are called active
coordinates; the active coordinate xp(p) is also called the retained coordinate.

This is the beginning of a recursive construction of a system of mk charts
C(p1p2 · · ·pk) on M(k). Each chart is isomorphic to

C(p1p2 · · ·pk−1) ×A
m−1,

and there are m active coordinates xq(p1p2 · · ·pk), where 1 ≤ q ≤ m. The re-
tained (active) coordinate is

xpk
(p1p2 · · ·pk) := xpk

(p1p2 · · ·pk−1)

(the pullback of a coordinate from below, given a new name); the others are de-
fined by

xq(p1p2 · · ·pk) := dxq(p1p2 · · ·pk−1)

dxpk
(p1p2 · · ·pk−1)

and serve as affine coordinates for the second factor Am−1. The chart represents
one-dimensional quotients of �∨

k−1 on which the differential of the retained coor-
dinate does not vanish. We easily verify that, at each point, the differentials of the
active coordinates form a basis for �∨

k .
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Thus, for each chart, we have shown how to systematically construct (k + 1)m

coordinate names
x1, . . . , xm,

x1(p1), . . . , xm(p1),

x1(p1p2), . . . , xm(p1p2),

...

x1(p1p2 · · ·pk), . . . , xm(p1p2 · · ·pk).

Because of redundant names, there are in fact m + k(m − 1) distinct coordinates.
For a coordinate with redundant names, there is a shortest name, characterized by
the fact that its subscript differs from the final symbol appearing in parentheses.
(The names x1, . . . , xm are always shortest names.)

Example 5.1. Assuming that m = 3, in chart C(32123) on M(5), we have the
following coordinate names:

x1 x2 x3

x1(3) x2(3) x3(3)

x1(32) x2(32) x3(32)

x1(321) x2(321) x3(321)

x1(3212) x2(3212) x3(3212)

x1(32123) x2(32123) x3(32123)

All names are shortest names except those in the boxes. Here x3(3212) is the
retained active coordinate.

We now identify, in each chart C(p1p2 · · ·pk), the equations for the loci appearing
in Theorem 4.2. The divisor at infinity Ij first appears on M(j). It represents
one-dimensional quotients of �∨

j−1 in which the differential of every coordinate
pulled back from M(j − 2) vanishes. There are two possibilities. If pj−1 = pj ,
then the retained coordinate is pulled back from M(j − 2); thus Ij does not meet
the chart C(p1p2 · · ·pj ). If pj−1 �= pj , then we claim that the differential of every
coordinate pulled back from M(j − 2) vanishes if and only if

xpj−1(p1p2 · · ·pj ) = 0. (5.1)

Indeed, this equation is satisfied if and only if the differential of the previous
retained coordinate vanishes, that is,

dxpj−1(p1p2 · · ·pj−1) = 0,

and in �∨
j−1 the differentials of all inactive coordinates are multiples of this dif-

ferential.
Thus on the divisor at infinity Ij the differential dxpj−1(p1p2 · · ·pj ) vanishes.

When we prolong, there are again two cases. If pj−1 = pj+1, then again Ij [1]
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does not meet the chart C(p1p2 · · ·pj+1). If pj−1 �= pj+1, then when we prolong,
we have

xpj−1(p1p2 · · ·pjpj+1) = 0, (5.2)

so that Ij [1] is defined by both (5.1) and (5.2). Continuing in this manner, we see
that Ij [nj − 1] is defined by the vanishing of nj coordinates

xpj−1(p1p2 · · ·pj ), xpj−1(p1p2 · · ·pj+1), . . . , xpj−1(p1p2 · · ·pj+nj −1),

assuming that the symbol pj−1 does not appear in the string pj · · ·pj+nj −1; if it
does, then Ij [nj − 1] does not meet the chart.

Example 5.2. Suppose m ≥ 3 and consider the code word RV2V2V24R, for which
n2 = 3, n3 = 0, n4 = 1, and n5 = 0. It represents the stratum on M(5) whose
closure is the intersection locus I2[2]∩I4; to obtain the stratum, we need to excise
these smaller intersection loci:

I2[3] ∩ I4, I2[2] ∩ I3 ∩ I4, I2[2] ∩ I4[1], I2[2] ∩ I4 ∩ I5.

This stratum has codimension 4.
Now assume that m = 3. Here are the equations of I2[2] ∩ I4 in the chart

C(32123) using the coordinate names shown in Example 5.1:

x3(32) = 0,

x3(321) = 0,

x3(3212) = 0,

x1(3212) = 0.

The first three equations define I2[2], whereas the fourth defines I4. The follow-
ing table displays the additional equation needed to define each of the excised
intersection loci:

I2[3] ∩ I4 does not meet the chart,

I2[2] ∩ I3 ∩ I4 x2(321) = 0,

I2[2] ∩ I4[1] x1(32123) = 0,

I2[2] ∩ I4 ∩ I5 x2(32123) = 0.

6. Proof of the Main Theorem

We now prove Theorem 4.2. If the intersection locus⋂
j

Ij [nj − 1] (6.1)

meets a chart C(p1p2 · · ·pk), then (as we have explained in Section 5) it is de-
fined by the vanishing of

∑k
j=2 nj coordinates, noting that the names we have

given these coordinates are all shortest names and so there are no repetitions. Thus
the intersection is transverse, and the codimension of the intersection locus is as
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claimed. These explicit equations also make clear the claim about when one inter-
section locus contains another. The stratum for the code word VA1VA2VA3 · · ·VAk

is obtained from (6.1) by removing all the smaller intersection loci.
Finally, we argue that each intersection locus, and hence each stratum, is

nonempty. Indeed, suppose that VA1VA2VA3 · · ·VAk
is a valid code word. Then

the chart C(p1p2 · · ·pk) will meet the intersection locus (6.1) if and only if each
subscript pj avoids a certain subset of the previous subscripts, and this subset has
the cardinality of Aj . Since this cardinality is less than m, we can always choose
such a pj .

7. Counting Code Words

In this section, we explain how to count the number of code words. As before,
fix the dimension of the base space to be m. Let N(k, r) be the number of code
words of length k in which the last subscript has length r . Assume that k ≥ 2 and
that 1 ≤ r ≤ k − 1. Then

N(k, r) =
m−1∑

i=r−1

(
i + 1

r

)
N(k − 1, i).

Indeed, to obtain such a code word, take any code word of length k − 1 in which
the last subscript A has length i ≥ r − 1; then create the new subscript B by
choosing any r symbols from the set A ∪ {k}. Clearly,

N(k,0) =
m−1∑
i=0

N(k − 1, i) = number of code words of length k − 1.

To use these recursive formulas, begin with N(1,0) = 1 and N(1, r) = 0 for
r > 0.

We claim that if k ≤ m, then N(k, r) equals the unsigned Stirling number of
the first kind c(k, r + 1). One way to establish this is to remark that these Stir-
ling numbers satisfy the same recurrence just established for the number of code
words.

Alternatively, we can establish a bijection between the set of code words of
length k and the set of all rooted trees on the vertex set {0,1, . . . , k} in which 0
is the root and the labels increase as we move away from the root (i.e., increas-
ing trees). Given a code word, recall that nj denotes the number of times that
j appears as a subscript. If the code word has length k, then create a tree with
vertices labeled by the integers 1,2, . . . , k + 1, with root at k + 1. For each inte-
ger j = 2, . . . , k, draw an edge connecting j − 1 and j + nj ; also draw an edge
connecting k and k + 1. Note that the degree of the root is r + 1 and that labels
increase as we move toward the root. Replacing each label j by k + 1 − j , we
obtain an increasing tree. The process clearly can be reversed; thus we have the
desired bijection. By Proposition 1.5.5(b) of [16], N(k, r) = c(k, r + 1).
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