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Lefschetz Fibrations on Knot Surgery 4-Manifolds Via
Stallings Twist

Jongil Park & Ki-Heon Yun

Abstract. In this paper, we construct a family of simply connected
minimal symplectic 4-manifolds that admit arbitrarily many noniso-
morphic Lefschetz fibration structures with the same genus fiber. We
obtain these families by performing knot surgery on an elliptic surface
E(2) using connected sums of n copies of fibered knots, which in turn
are obtained by Stallings twist from the square knot. Thus, all of these
4-manifolds are homotopy E(2) surfaces. We show that they admit 2n

mutually nonisomorphic Lefschetz fibration structures of fiber genus
(4n+1) by comparing their monodromy groups that are induced from
the corresponding monodromy factorizations.

1. Introduction

Since it was known that any closed symplectic 4-manifold admits a Lefschetz pen-
cil [Don99] and that a Lefschetz fibration structure can be obtained from a Lef-
schetz pencil by blowing-up the base loci, the study of Lefschetz fibrations has
become an important research theme for understanding symplectic 4-manifolds
topologically. In fact, Lefschetz pencils and Lefschetz fibrations have long been
studied extensively by algebraic geometers and topologists in the complex cat-
egory, and these notions can be extended to the symplectic category. It is also
well known that an isomorphism class of Lefschetz fibrations over S2 is com-
pletely characterized by monodromy factorization, an ordered sequence of right-
handed Dehn twists whose product becomes the identity in the surface mapping
class group corresponding to the generic fiber, up to Hurwitz equivalence and
global conjugation equivalence. Note that the Hurwitz equivalence problem of
monodromy factorizations provides a very interesting but challenging question
in topology. For example, one aim for researchers in this field is to answer the
following questions:

Is the Hurwitz problem for mapping class group factorizations decidable? Do interest-
ing criteria exist that can be used to conclude that two given factorizations are equiva-
lent, or inequivalent, up to Hurwitz moves and global conjugation? [Aur06]

On the other hand, since the introduction of gauge theory, in particular
Seiberg–Witten theory, topologists and geometers working on 4-manifolds have
developed various techniques, and many fruitful and remarkable results have been
obtained regarding the topology of 4-manifolds over the last 30 years. Among
these, a knot surgery technique introduced by R. Fintushel and R. Stern turned
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out to be one of most effective techniques for modifying smooth structures with-
out changing the topological type of a given 4-manifold. Fintushel–Stern’s knot
surgery 4-manifold XK is defined as follows [FS98]. Suppose that X is a simply
connected smooth 4-manifold containing an embedded torus T of square 0 and
π1(X \ T ) = 1. Then, for any knot K ⊂ S3, we can construct a new 4-manifold,
called a knot surgery 4-manifold, given by

XK = X�T =TmS1 × MK = [X \ (T × D2)] ∪ [S1 × (S3 \ N(K))].
This is constructed by taking a fiber sum along a torus T in X and Tm = S1 × m

in S1 ×MK , with the requirement that in the second expression the two pieces are
glued together in such a way that the homology class [pt ×∂D2] is identified with
[pt × l], where MK is the 3-manifold obtained by performing a 0-framed surgery
along K , and m and l are the meridian and longitude of K , respectively. Then, Fin-
tushel and Stern proved that under a mild condition on X and T , the knot surgery
4-manifold XK is homeomorphic, but not diffeomorphic, to a given X. Further-
more, if X is a simply connected elliptic surface E(2), T is a generic elliptic fiber,
and K is a fibered knot in S3, then it is known that the knot surgery 4-manifold
E(2)K admits not only a symplectic structure, but also a genus 2g(K) + 1 Lef-
schetz fibration structure [FS04]. Moreover, E(2)K is minimal [Sti99; Ush06].

In this paper, we continue to investigate inequivalent Lefschetz fibration struc-
tures on the knot surgery 4-manifold E(2)K , and we answer the following ques-
tion proposed by Smith [Smi98]:

Does the diffeomorphism type of a smooth 4-manifold determine the equivalence class
of a Lefschetz fibration by curves of some given genus?

Regarding this question, Smith first showed that (T 2 × �2)�9CP
2

admits two
nonisomorphic genus 9 Lefschetz fibrations by using the divisibility of the second
integral homology class of the fiber [Smi98]. We have also studied Lefschetz
fibration structures on E(2)K using several families of fibered knots K , such as
2-bridge knots and Kanenobu knots, and have obtained some fruitful results. For
example, we have constructed a family of knot surgery 4-manifolds that admit
two nonisomorphic Lefschetz fibration structures [PY09; PY11].

In this paper, we show that for each integer n > 0, some instances of E(2)K
admit (at least) 2n nonisomorphic Lefschetz fibration structures, which is a sig-
nificant extension of our previous result mentioned. To find such examples, we
first perform a knot surgery on E(2) using a connected sum of n copies of
genus 2 fibered knots, which are obtained by Stallings twist from the square knot
31�3∗

1. Then, we consider the corresponding monodromy factorizations and mon-
odromy groups. Because two Hurwitz equivalent monodromy factorizations yield
the same monodromy group, we prove that these monodromy groups (and there-
fore the corresponding monodromy factorizations) are mutually distinct by using
a graph method developed by Humphries [Hum79], which is a key step in the
proof. We finally conclude that the corresponding Lefschetz fibration structures
are mutually nonisomorphic to each other. The main result of this paper is the
following.
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Figure 1 Square knot K0 = 31�3∗
1 and Stallings twist knot Kn

Theorem 1.1. For each integer n > 0 and (m1,m2, . . . ,mn) ∈ Zn, a knot surgery
4-manifold

E(2)Km1 �Km2 �···�Kmn

admits (at least) 2n nonisomorphic genus (4n + 1) Lefschetz fibrations over S2.
Here, Kmi

(1 ≤ i ≤ n) denotes a fibered knot obtained by performing |mi |
left/right handed full twists on the square knot, as in Figure 1.

Remark 1.2. Recently, Baykur [Bay14] obtained a similar result for nonmini-
mal cases, that is, he proved that for any closed symplectic 4-manifold X that is
not a rational or ruled surface and any integer n > 0, there are n nonisomorphic
Lefschetz pencils of the same genus on a blowup of X.

The remainder of this paper is organized as follows. We first review generali-
ties such as some definitions and basic facts regarding Lefschetz fibrations and
Humphries’ graph method. In Section 3, we explain how to construct a family of
knot surgery 4-manifolds, and then we show that each E(2)Kn admits (at least)
two distinct corresponding monodromy groups (Proposition 3.2). In addition, we
prove by induction that E(2)Km1�Km2 �···�Kmn

admits (at least) 2n mutually distinct
corresponding monodromy groups (Theorem 3.3).



484 Jongil Park & Ki-Heon Yun

2. Preliminaries

In this section, we briefly review some basic facts about Lefschetz fibrations, mon-
odromy factorizations, and Humphries’ graph method on the mapping class group
of surfaces.

2.1. Lefschetz Fibration

Definition 2.1. Let X be a compact, oriented smooth 4-manifold. A Lefschetz
fibration is a proper smooth map π : X → B , where B is a compact connected
oriented surface and π−1(∂B) = ∂X, such that

(1) the set of critical points C = {p1,p2, . . . , pn} of π is nonempty and lies in
int(X), and π is injective on C;

(2) for each pi and bi := π(pi), there are local complex coordinate charts agree-
ing with the orientations of X and B such that π can be expressed as
π(z1, z2) = z2

1 + z2
2.

Because each singular point in a Lefschetz fibration is related to a right-handed
Dehn twist, it follows that if X is a Lefschetz fibration over S2 with a generic fiber
F of genus g, then it gives a sequence of right-handed Dehn twists whose product
becomes the identity element in the mapping class group Mg of F . This ordered
sequence of right-handed Dehn twists is called a monodromy factorization of the
Lefschetz fibration. Note that a monodromy factorization is well defined up to
Hurwitz equivalence and global conjugation equivalence [Kas80; Mat96; GS99].

Definition 2.2. Two monodromy factorizations W1 and W2 are called Hurwitz
equivalent if W1 can be changed to W2 in finitely many steps using the following
two operations:

(1) Hurwitz move: tcn · · · · · tci+1 · tci
· · · · · tc1 ∼ tcn · · · · · tci+1(tci

) · tci+1 · · · · · tc1 ;
(2) inverse Hurwitz move: tcn · · · · · tci+1 · tci

· · · · · tc1 ∼ tcn · · · · · tci
· t−1

ci
(tci+1) ·

· · · · tc1 .

This relation results from the choice of a Hurwitz system, a set of arcs that connect
the base point b0 to bi .

Furthermore, a choice of a generic fiber also provides an additional equivalence
relation. Two monodromy factorizations W1 and W2 are called global conjugation
equivalent if W2 = f (W1) for some f ∈Mg .

Definition 2.3. Two Lefschetz fibrations f1 : X1 → B1 and f2 : X2 → B2

are called isomorphic if there exist orientation-preserving diffeomorphisms H :
X1 → X2 and h : B1 → B2 such that the following diagram commutes:

X1
H−−−−→ X2

f1

⏐⏐�
⏐⏐�f2

B1
h−−−−→ B2

(2.1)
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Figure 2 Vanishing cycles on η1,g for g = 2

Definition 2.4. Let π : X → S2 be a Lefschetz fibration, and let F be a fixed
generic fiber of the Lefschetz fibration that is a closed surface of genus g. Suppose
that W = wn · · · · ·w2 ·w1 is a monodromy factorization of the Lefschetz fibration
corresponding to F . Then, the monodromy group GF (W) ⊂ Mg is defined to be
a subgroup of Mg generated by {w1,w2, . . . ,wn}.
Lemma 2.5 [Yun08]. If two monodromy factorizations W1 and W2 give iso-
morphic Lefschetz fibrations over S2 with respect to chosen generic fibers F1

and F2, respectively, that are homeomorphic to F , then the monodromy groups
GF1(W1) and GF2(W2) are conjugate to each other as subgroups of the map-
ping class group Mg . Moreover, if a generic fiber F = F1 = F2 is fixed, then
GF (W1) = GF (W2).

Remark 2.6. If a generic fiber F = F1 = F2 is fixed, then we can also prove that
GF (W1) = GF (W2) using Humphries’ graph method (Corollary 2.14).

Note that a monodromy factorization of E(2)K was originally studied by Fin-
tushel and Stern [FS04], and the second author also found an explicit monodromy
factorization of E(2)K [Yun08] using a factorization of the identity element in
the mapping class group discovered by Matsumoto [Mat96], Cadavid [Cad98],
Korkmaz [Kor01], and Gurtas [Gur04].

Lemma 2.7 [Kor01]. Let M(2, g) be the desingularization of a double cover of
�g × S2 branched over 4({pt.} × S2) ∪ 2(�g × {pt.}). Then, M(2, g) admits a
monodromy factorization η2

1,g , with

η1,g = tB0 · tB1 · tB2 · · · · · tB2g
· tB2g+1 · t2

bg+1
· t2

b′
g+1

,

where Bj , bg+1, and b′
g+1 are simple closed curves on �2g+1, as in Figure 2.

Theorem 2.8 [FS04]. Let K ⊂ S3 be a fibered knot of genus g. Then, E(2)K
admits a monodromy factorization of the form

�K(η2
1,g) · η2

1,g,
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where η1,g is as in Lemma 2.7, and

�K = φK ⊕ id ⊕ id : �g��1��g → �g��1��g

is an extension of a monodromy φK of the fibered knot K such that

S3 \ N(K) = (�1
g × [0,1])/((x,1) ∼ (φK(x),0)),

where �1
g is an oriented surface of genus g = g(K) with one boundary compo-

nent.

Note that Fintushel and Stern’s construction of a Lefschetz fibration structure on
E(2)K gives an explicit method for obtaining the monodromy factorization of
E(2)K using a monodromy map of the corresponding fibered knot K .

Now, we will explain how to obtain a monodromy map explicitly. Let L ⊂ S3

be a fibered link. Then it admits a fibration structure over S1 given by

S3 \ N(L) ≈ (�L × [0,1])/(x,1)∼(φL(x),0).

We denote this fibration structure by (�L,φL).

Lemma 2.9 [Har82; Bon83; GK90]. Every fibered link in S3 is related to the
unknot by a sequence of Hopf plumbings, deplumbings, and twistings.

(0) The left-handed Hopf band has monodromy map tc , and the right-handed
Hopf band has monodromy map t−1

c , where c is the core simple closed curve
of each Hopf band.

(1) If (�L,φL) is a fibration structure of a fibered link L and L′ is the link that is
obtained by plumbing the positive (left-handed) Hopf band H+ to �L, then
L′ = ∂�L′ has a fibration structure (�L′ , tc ◦ φL), where c is the core circle
of the Hopf band. If we perform negative (right-handed) Hopf band plumbing,
then the monodromy map becomes t−1

c ◦ φL.
(2) Let (�L,φL) be a fibration structure of a fibered link L and suppose that

there is an embedded circle c in �L that is unknotted in S3. Furthermore,
suppose that lk(c, c+) = 0, where c+ is a push off of c in the chosen normal
direction of �L. Then, a (±1)-Dehn surgery along c+ yields a new fibration
structure (�L′ , t±1

c ◦ φL). This operation is called Stallings twist.

Remark 2.10. Note that the notation used in Lemma 2.9 is different from that of
Harer, who employed the left-handed Dehn twist as the standard Dehn twist. In
addition, there are more complicated conditions included in (2) in Harer’s article,
but we only require the stated condition in our construction.

2.2. Humphries’ Graph Method

Let �b
g be an oriented compact surface with genus g and b boundary components.

When b = 0, we simply denote this as �g .

Definition 2.11 [Hum79]. Suppose that {γ1, γ2, . . . , γ2g} is a set of sim-
ple closed curves on �g that generates H1(�g;Z2). Let us define the graph

(γ1, γ2, . . . , γ2g) as follows:
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• a vertex for each simple closed curve γi (1 ≤ i ≤ 2g);
• an edge between γi and γj if i2(γi, γj ) = 1, where i2(γi, γj ) is the modulo 2

intersection number between two curves γi and γj ;
• we assume that there is no intersection between any two edges.

Then, for any simple closed curve γ on �g , we can express the homology class

of γ = ∑2g

i=1 εiγi (εi = 0,1) as an element of H1(�g;Z2). By denoting γ :=⋃
εi=1 γi , where γi is the union of the closures of all half-edges with one end

vertex γi , we define χ
(γ ) := χ
(γ ) as the modulo 2 Euler number.

Let Mb
g be the mapping class group of an oriented surface �b

g . For a simple closed
curve c on �b

g , tc denotes the right-handed Dehn twist along c, and tc1 · tc2 means

tc1 ◦ tc2 . We also use the notation f (tc) = f ◦ tc ◦f −1 for f ∈ Mb
g , which is equal

to tf (c).
Humphries [Hum79] showed that the minimal number of Dehn twist genera-

tors of the mapping class group Mg or M1
g with g ≥ 2 is 2g+1, using symplectic

transvection and the modulo 2 Euler number of a graph. Furthermore, he proved
the following.

Lemma 2.12 [Hum79; PY11]. Assume that g ≥ 2. Let 
 = 
(γ1, γ2, . . . , γ2g)

be a graph corresponding to a set of simple closed curves {γ1, γ2, . . . , γ2g} that
generates H1(�g;Z2). Suppose that G
 is a subgroup of Mg generated by

{tα|α is a nonseparating simple closed curve on �g such that χ
(α) = 1}.
Then, G
 is a nontrivial proper subgroup of Mg . Moreover, if β is a nonseparat-
ing simple closed curve on �g with χ
(β) = 0, then tβ /∈ G
 .

Corollary 2.13 [Hum79; PY11]. For any nonseparating simple closed curves
c and γ on �g , we have that

(1) if χ
(c) = 1, then χ
(tc(γ )) ≡ χ
(γ ) (mod 2);
(2) if χ
(c) = 0, then χ
(tc(γ )) ≡ χ
(γ ) + i2(c, γ ) (mod 2).

Corollary 2.14. Assume that two genus g Lefschetz fibrations over S2 have
monodromy factorizations ξ1 and ξ2 with respect to a fixed generic fiber F . If there
exists a graph 
 as in Definition 2.11 such that GF (ξ1) ≤ G
 and GF (ξ2) � G
 ,
then ξ1 is not isomorphic to ξ2 as a genus g Lefschetz fibration over S2.

Proof. Note that the monodromy group is an invariant subgroup of the mapping
class group under Hurwitz equivalences. Therefore, we must consider the role of
global conjugation equivalences. Because we consider a Lefschetz fibration with
a fixed generic fiber F , its monodromy factorization is completely determined by
the Hurwitz system. However, even in such a case with fixed generic fiber and
a fixed given Hurwitz system, there exists the possibility of global conjugation
resulting from a cyclic permutation of monodromy factorization.

Let ξ be a monodromy factorization of a Lefschetz fibration with respect to a
fixed generic fiber F and a fixed Hurwitz system. Then, its monodromy factoriza-
tion can be determined up to a global conjugation by using a map ψ ∈ GF (ξ), and
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this global conjugation can be realized as a sequence of Hurwitz moves, inverse
Hurwitz moves, and cyclic permutation. Even though a monodromy factoriza-
tion is determined up to global conjugations by using the elements in GF (ξ),
its monodromy group is well defined, and it does not depend on ψ ∈ GF (ξ) by
Definition 2.4 and Corollary 2.13.

More precisely, GF (ξ1) ≤ G
 implies that

{χ
(c)|c is a nonseparating s.c.c. on F such that tc ∈ GF (ξ1)} = {1}.
This implies that for any ψ ∈ GF (ξ1),

{χ
(c)|c is a nonseparating s.c.c. on F such that tc ∈ GF (ψ(ξ1))} = {1}
by Corollary 2.13. On the other hand, GF (ξ2) � G
 implies that

{χ
(c)|c is a nonseparating s.c.c. on F such that tc ∈ GF (ξ2)} = {0,1}.
Therefore, we conclude that ψ(ξ1) � ξ2 for any ψ ∈ GF (ξ1). �

3. Nonisomorphic Lefschetz Fibrations

As mentioned in the Introduction, we have previously studied nonisomorphic Lef-
schetz fibration structures on knot surgery 4-manifolds E(n)K for the 2-bridge
knot case [PY09] and Kanenobu knot case [PY11], and we proved that these admit
at least two nonisomorphic Lefschetz fibration structures in both cases. Recently,
Baykur [Bay14] obtained a similar result regarding Lefschetz fibration structures
on nonminimal symplectic 4-manifolds. In this section, we construct a family
of simply connected minimal symplectic 4-manifolds E(2)K , each of which ad-
mits arbitrarily many nonisomorphic Lefschetz fibration structures with the same
genus fiber. To obtain these families, we first construct a family of connected sums
of fibered knots obtained by Stallings twist from the square knot 31�3∗

1 as follows.

3.1. Square Knot as a Building Block

Let K0 be the square knot 31�3∗
1, which is a connected sum of a right-handed

trefoil knot and a left-handed trefoil knot, and let Kn be the knot obtained by
Stallings twist from K0 as shown in Figure 1. Here, the n in the box indicates n

left-handed full twists when n is a positive integer and |n| right-handed full twists
when n is a negative integer. Then, it is well known that Kn is a genus 2 fibered
knot and has the Alexander polynomial �Kn = (t2 − t + 1)2 [Sta78].

3.2. Main Construction

Since two Hurwitz equivalent monodromy factorizations yield the same mon-
odromy group, the monodromy group sometimes provides sufficient information
to distinguish some pairs of Lefschetz fibration structures. For example, we suc-
cessfully distinguished some Lefschetz fibration structures on E(2)K for a family
of Kanenobu knots, up to parity [PY11]. The main tool used in the proof was
Humphries’ graph method. In this paper, we use Humphries’ graph method again
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Figure 3 Curves for homology basis of H1(�2g+1;Z2)

to show that the corresponding monodromy groups appearing in the main theorem
are mutually distinct. For this, we start with the following lemma.

Lemma 3.1. Let B be a subset of H1(�2g+1;Z2) such that

• {B1,B2, . . . ,B2g, ag+1, bg+1} ⊂ B, and
• for every 1 ≤ i ≤ g, one of {ai, ei} is in B, and one of {bi, fi} is also in B,

where ei is a simple closed curve representing the homology class of ai +ag+1,
and fi is a simple closed curve representing the homology class of bi + bg+1,
as in Figure 3.

Then, B is a basis of H1(�2g+1;Z2).

Proof. For every 1 ≤ i ≤ g, we have that either ai ∈ B or ai = ei − ag+1 ∈
Span(B). Similarly, either bi ∈ B or bi = fi −bg+1 ∈ Span(B). In H1(�2g+1;Z2),
we also have that

B2i−1 = B2i + ai + a2g+2−i

and

B2i−1 = ai + ai+1 + · · · + a2g+2−i + bi + b2g+2−i

for 1 ≤ i ≤ g. Therefore,

{a1, b1, a2, b2, . . . , a2g+1, b2g+1} ⊂ Span(B).

Because |B| = 4g + 2 = dimH1(�2g+1;Z2), B is a basis of H1(�2g+1;Z2). �
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Figure 4 Simple closed curves on �2g+1 for g = 2

Now, we are ready to derive our main result. We use a basis B such as in
Lemma 3.1 to find appropriate graphs 
, which is a key step for applying
Humphries’ graph method.

Proposition 3.2. For each integer n ∈ Z, the knot surgery 4-manifold E(2)Kn

admits (at least) two nonisomorphic genus 5 Lefschetz fibrations over S2.

Proof. For (p, q) ∈ Z2, let Kp,q be a family of knots obtained from K0 by per-
forming sign(p) Stallings twists |p| times along c2 and sign(q) Stallings twists
|q| times along d1 in Figure 4 (corresponding to c and d in Figure 1). Then, we
have that

Kp,q ∼ Kp+q,

which can be seen by isotoping the twists on the two strands in Figure 1, and its
monodromy

φKp,q = t
q
d1

◦ t
p
c2 ◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1

can be easily obtained by Lemma 2.9.
Because Kn ∼ Kp,q whenever n = p + q , it follows that

φKp,q = t
q
d1

◦ t
p
c2 ◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1

is the monodromy of Kn and

�Kp,q (η
2
1,2) · η2

1,2

is the monodromy factorization of E(2)Kn . In fact,

φKp,q = t
q
d1

◦ t
p+q
c2 ◦ t

−q
c2 ◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1

= t
q
d1

◦ (t
p+q
c2 ◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1) ◦ t

−q

(t−1
a2 ◦t−1

b2
◦ta1 ◦tb1 )−1(c2)

= t
q
d1

◦ (tnc2
◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1) ◦ t

−q
d1
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because t−1
b1

◦ t−1
a1

◦ tb2 ◦ ta2(c2) = d1. Therefore, we have confirmed that in fact
φKp,q is conjugate to φKp+q .

Let εp ≡ p (mod 2) and εq ≡ q (mod 2) with εp, εq ∈ {0,1}. In order to use
Humphries’ graph method, we want to find a basis Bεp+2εq , indexed by εp + 2εq ,
of H1(�5;Z2) such that

• {B1,B2,B3,B4, b3, a3} ⊂ Bεp+2εq and
• GF (�Kp,q (η

2
1,2) · η2

1,2) ≤ G
(Bεp+2εq ).

In H1(�5;Z2), we obtain

�Kp,q (B0) = B0 + b1 + b2 + a1 + a2,

�Kp,q (B1) = B1 + b1 + b2 + a2 + εpc2 + εqd1,

�Kp,q (B2) = B2 + b2 + a1 + a2 + εpc2,

�Kp,q (B3) = B3 + b2 + εpc2,

�Kp,q (B4) = B4 + a2 + εpc2 + εqd1,

because for every 0 ≤ i ≤ 4, have that

�Kp,q (Bi) = Bi + i2(Bi, b1)b1 + i2(tb1(Bi), a1)a1

+ i2(ta1 ◦ tb1(Bi), b2)b2

+ i2(t
−1
b2

◦ ta1 ◦ tb1(Bi), a2)a2

+ εpi2(t
−1
a2

◦ t−1
b2

◦ ta1 ◦ tb1(Bi), c2)c2

+ εqi2(t
p
c2 ◦ t−1

a2
◦ t−1

b2
◦ ta1 ◦ tb1(Bi), d1)d1.

Because �Kp,q (tBi
) ∈ GF (�Kp,q (η

2
1,2) · η2

1,2) for 0 ≤ i ≤ 4, Corollary 2.13
implies that for each graph 
(Bεp+2εq ),

(a) an even number of elements in {b1, b2, a1, a2} have χ
 = 0,
(b) an even number of elements in {b1, b2, a2, εpc2, εqd1} have χ
 = 0,
(c) an even number of elements in {b2, a1, a2, εpc2} have χ
 = 0,
(d) an even number of elements in {b2, εpc2} have χ
 = 0,
(e) an even number of elements in {a2, εpc2, εqd1} have χ
 = 0.

As a matter of convention, if εp = 0 or εq = 0, then the corresponding c2 or
d1 is omitted from the set. We may assume that χ
(c2) = χ
(d1) = 0 for each
graph 
(Bεp+2εq ) [PY11]. Then, (a)–(e) has a unique solution for each (εp, εq) ∈
{0,1} × {0,1} as follows:

• ta1, ta2 , tb1 , tb2 ∈ G
(B0),• ta1, ta2 , tb1 , tb2 /∈ G
(B1),• tb1, tb2 ∈ G
(B2) and ta1, ta2 /∈ G
(B2),• ta1, ta2 ∈ G
(B3) and tb1, tb2 /∈ G
(B3).

Let ei be a simple closed curve on �5 representing ai + a3 ∈ H1(�5;Z2),
and let fi be a simple closed curve on �5 representing bi + b3 ∈ H1(�5;Z2) for
1 ≤ i ≤ 2, as in Figure 4. Then, by Lemma 3.1 we can select a basis Bj as follows:

• B0 = {B1,B2,B3,B4, b3, a3, a1, a2, b1, b2},
• B1 = {B1,B2,B3,B4, b3, a3, e1, e2, f1, f2},
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• B2 = {B1,B2,B3,B4, b3, a3, e1, e2, b1, b2},
• B3 = {B1,B2,B3,B4, b3, a3, a1, a2, f1, f2}.

Now, we will show that

GF (�Kp,q (η
2
1,2) · η2

1,2) ≤ G
(Bεp+2εq )

for each (p, q) ∈ Z2. To do so, we only need to show that B0,B5 ∈ G
(Bεp+2εq )

for each (εp, εq) ∈ {0,1} × {0,1}. Because B5 = a3 ∈ G
(Bεp+2εq ), it remains to
show that

B0 = B1 + B2 + B3 + B4 + a3 ∈ G
(Bεp+2εq ).

However, this is clear because B0 is isotopic to a disjoint union of five vertices

B0 � B1 ∪ B2 ∪ B3 ∪ B4 ∪ a3

in each graph 
(Bj ) (0 ≤ j ≤ 3), and therefore χ
(Bj )(B0) = 1.
Let us observe that

• χ
(Bj )(c2) = 0 = χ
(Bj )(d1) for 0 ≤ j ≤ 3,

• i2(�Kp,q (B1), c2) = 1 and i2(�Kp,q (B1), d1) = 1 for each (p, q) ∈ Z2,
• i2(�Kp,q (B2), c2) = 1 and i2(�Kp,q (B2), d1) = 0 for each (p, q) ∈ Z2.

This implies that

• �Kp,q (tB1),�Kp,q (tB2) ∈ GF (�Kp,q (η
2
1,2) · η2

1,2) ≤ G
(Bεp+2εq ),
• if (p − r, q − s) ≡ (1,0) or (0,1) (mod 2), then �Kr,s (tB1) /∈ G
(Bεp+2εq ),
• if (p − r, q − s) ≡ (1,1) (mod 2), then �Kr,s (tB2) /∈ G
(Bεp+2εq ).

Therefore, whenever (r, s) �≡ (p, q) (mod 2),

GF (�Kr,s (η
2
1,2) · η2

1,2) �≤ G
(Bεp+2εq ),

and �Kp,q (η
2
1,2) ·η2

1,2 is not isomorphic to �Kr,s (η
2
1,2) ·η2

1,2 as a genus 5 Lefschetz
fibration by Corollary 2.14.

Finally, because (n,0) �≡ (n − 1,1) (mod 2) for each integer n, it is clear that
E(2)Kn admits (at least) two nonisomorphic genus 5 Lefschetz fibration struc-
tures. �

Now, we extend this result on E(2)K to the case of a family of connected sums of
n copies of Stallings twist knots as follows.

Theorem 3.3. For each integer n > 0 and (m1,m2, . . . ,mn) ∈ Zn, the knot
surgery 4-manifold

E(2)Km1 �Km2 �···�Kmn

admits (at least) 2n nonisomorphic genus (4n + 1) Lefschetz fibrations over S2.
Here, Kmi

(1 ≤ i ≤ n) denotes a knot obtained by performing |mi | left/right-
handed full twist on the double knot K0, as in Figure 1.

Proof. Let us decompose each mi as a sum of two integers pi, qi ∈ Z such
that mi = pi + qi . Let εpi

= ε2i−1 ≡ pi (mod 2) and εqi
= ε2i ≡ qi (mod 2),
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c2 c4

d1 d3
�0,0,0,0(B8)

�0,0,0,0(B7)

�0,0,0,0(B6)

�0,0,0,0(B5)�0,0,0,0(B0)

�0,0,0,0(B1)

�0,0,0,0(B2)

�0,0,0,0(B3)

�0,0,0,0(B4)

Figure 5 Simple closed curves �K0�K0 (Bi)

where εpi
, εqi

∈ {0,1} for 1 ≤ i ≤ n and εi ∈ {0,1} for 1 ≤ i ≤ 2n. Because
Km1�Km2� · · · �Kmn is a fibered knot of genus 2n and

Km1�Km2� · · · �Kmn ∼ Kp1,q1�Kp2,q2� · · · �Kpn,qn

whenever mi = pi + qi for 1 ≤ i ≤ n, we obtain a monodromy map

φp1,q1,...,pn,qn :=
n∏

i=1

(t
qi

d2i−1
◦ t

pi
c2i

◦ t−1
a2i

◦ t−1
b2i

◦ ta2i−1 ◦ tb2i−1).

Note that we have the following relations in H1(�4n+1;Z2):

B0 =
4n∑

i=1

Bi + a2n+1, B4n+1 = a2n+1,

and from Figure 5, the following hold for 1 ≤ j ≤ n:

�p1,q1,...,pn,qn(B0) = B0 +
n∑

i=1

(a2i−1 + a2i + b2i−1 + b2i ), (3.1)

�p1,q1,...,pn,qn(B4(j−1)+1) = B4(j−1)+1 + b2j−1 + b2j + a2j + ε2j−1c2j

+ ε2j d2j−1

+
n∑

i=j+1

(a2i−1 + a2i + b2i−1 + b2i ), (3.2)

�p1,q1,...,pn,qn(B4(j−1)+2) = B4(j−1)+2 + b2j + a2j−1 + a2j + ε2j−1c2j



494 Jongil Park & Ki-Heon Yun

+
n∑

i=j+1

(a2i−1 + a2i + b2i−1 + b2i ), (3.3)

�p1,q1,...,pn,qn(B4(j−1)+3) = B4(j−1)+3 + b2j + ε2j−1c2j

+
n∑

i=j+1

(a2i−1 + a2i + b2i−1 + b2i ), (3.4)

�p1,q1,...,pn,qn(B4(j−1)+4) = B4(j−1)+4 + a2j + ε2j−1c2j + ε2j d2j−1

+
n∑

i=j+1

(a2i−1 + a2i + b2i−1 + b2i ). (3.5)

Now, for each
∑2n

i=1 εi2i−1 ∈ {0,1, . . . ,22n − 1}, we want to construct a basis
B∑2n

i=1 εi2i−1 of H1(�4n+1;Z2) that satisfies

• {B1,B2, . . . ,B4n, a2n+1, b2n+1} ⊂ B∑2n
i=1 εi2i−1 and

• GF (�p1,q1,...,pn,qn(η
2
1,2n) · η2

1,2n) ≤ G
(B∑2n
i=1 εi2i−1 ).

Note that equations (3.1)–(3.5) and the second condition for B∑2n
i=1 εi2i−1 imply

that (a)–(e) hold for 1 ≤ j ≤ n, and we add one further condition (f) as follows:

(a) an even number of
⋃n

i=1{a2i−1, a2i , b2i−1, b2i} have χ
(B∑2n
i=1 εi2i−1 ) = 0,

(b) an even number of

{b2j−1, b2j , a2j , ε2j−1c2j , ε2j d2j−1} ∪
n⋃

i=j+1

{a2i−1, a2i , b2i−1, b2i}

have χ
(B∑2n
i=1 εi2i−1 ) = 0,

(c) an even number of

{b2j , a2j−1, a2j , ε2j−1c2j } ∪
n⋃

i=j+1

{a2i−1, a2i , b2i−1, b2i}

have χ
(B∑2n
i=1 εi2i−1 ) = 0,

(d) an even number of

{b2j , ε2j−1c2j } ∪
n⋃

i=j+1

{a2i−1, a2i , b2i−1, b2i}

have χ
(B∑2n
i=1 εi2i−1 ) = 0,

(e) an even number of

{a2j , ε2j−1c2j , ε2j d2j−1} ∪
n⋃

i=j+1

{a2i−1, a2i , b2i−1, b2i}

have χ
(B∑2n
i=1 εi2i−1 ) = 0,

(f) χ
(B∑2n
i=1 εi2i−1 )(c2j ) = 0 = χ
(B∑2n

i=1 εi2i−1 )(d2j−1) for 1 ≤ j ≤ n.
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Table 1 The system of conditions

�p1,q1,p2,q2(B0) b1 b2 a1 a2 b3 b4 a3 a4

�p1,q1,p2,q2(B1) b1 b2 a2 εp1c2 εq1d1 b3 b4 a3 a4
�p1,q1,p2,q2(B2) b2 a1 a2 εp1c2 b3 b4 a3 a4
�p1,q1,p2,q2(B3) b2 εp1c2 b3 b4 a3 a4
�p1,q1,p2,q2(B4) a2 εp1c2 εq1d1 b3 b4 a3 a4

�p1,q1,p2,q2(B5) b3 b4 a4 εp2c4 εq2d3
�p1,q1,p2,q2(B6) b4 a3 a4 εp2c4
�p1,q1,p2,q2(B7) b4 εp2c4
�p1,q1,p2,q2(B8) a4 εp2c4 εq2d3

Then, these systems of conditions specify a unique solution, which we can prove
by using induction on n, the number of connected summed Stallings knots. For
example, the case n = 1 was already proved in Proposition 3.2. Now, we will
demonstrate how the inductive step works. Let us consider the following Table 1.

Then, the last four rows, concerning �p1,q1,p2,q2(Bj ) (5 ≤ j ≤ 8), have a
unique solution for each given (εp2 , εq2) ∈ {0,1} × {0,1}. In each case, an even
number of elements from {b3, b4, a3, a4} have a modulo 2 Euler number 0.
Therefore, this has no effect on the solution of the first four rows, concerning
�p1,q1,p2,q2(Bj ) (1 ≤ j ≤ 4), and the solution has exactly the same pattern as the
solution for

{�p1,q1(B1),�p1,q1(B2),�p1,q1(B3),�p1,q1(B4)}.
Note that the condition for �p1,q1,p2,q2(B0) is automatically satisfied.

Therefore, B∑2n
i=1 εi2i−1 satisfies the following conditions for 1 ≤ i ≤ n:

• If (ε2i−1, ε2i ) ≡ (0,0) (mod 2), then

{ta2i−1, ta2i
, tb2i−1 , tb2i

} ⊂ G
(B∑2n
i=1 εi2i−1 );

• if (ε2i−1, ε2i ) ≡ (1,0) (mod 2), then

ta2i−1 , ta2i
, tb2i−1 , tb2i

/∈ G
(B∑2n
i=1 εi2i−1 );

• if (ε2i−1, ε2i ) ≡ (0,1) (mod 2), then

{tb2i−1 , tb2i
} ⊂ G
(B∑2n

i=1 εi2i−1 ) and ta2i−1 , ta2i
/∈ G
(B∑2n

i=1 εi2i−1 );
• if (ε2i−1, ε2i ) ≡ (1,1) (mod 2), then

{ta2i−1 , ta2i
} ⊂ G
(B∑2n

i=1 εi2i−1 ) and tb2i−1 , tb2i
/∈ G
(B∑2n

i=1 εi2i−1 ).

These observations suggest that we can define B∑2n
i=1 εi2i−1 as follows:

• Start with {B1,B2, . . . ,B4n, a2n+1, b2n+1};
• For 1 ≤ i ≤ n, proceed as follows:

– If (ε2i−1, ε2i ) ≡ (0,0) (mod 2), then add {a2i−1, a2i , b2i−1, b2i} to the set.
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– If (ε2i−1, ε2i ) ≡ (1,0) (mod 2), then add {e2i−1, e2i , f2i−1, f2i} to the set.
– If (ε2i−1, ε2i ) ≡ (0,1) (mod 2), then add {e2i−1, e2i , b2i−1, b2i} to the set.
– If (ε2i−1, ε2i ) ≡ (1,1) (mod 2), then add {a2i−1, a2i , f2i−1, f2i} to the set.

Here,

• ei is a simple closed curve representing ai + a2n+1 in H1(�4n+1;Z2),
• fi is a simple closed curve representing bi + b2n+1 in H1(�4n+1;Z2).

Then, by Lemma 3.1 each resulting set Bi (0 ≤ i ≤ 22n − 1) is a basis of
H1(�4n+1;Z2) satisfying

GF (�p1,q1,...,pn,qn(η
2
1,2n) · η2

1,2n) ≤ G
(B∑2n
i=1 εi2i−1 ).

Now, we will show that if (p1, q1, . . . , pn, qn) �≡ (r1, s1, . . . , rn, sn) (mod 2),
then �p1,q1,...,pn,qn(η

2
1,2n) · η2

1,2n is not isomorphic to �r1,s1,...,rn,sn(η
2
1,2n) · η2

1,2n

as a Lefschetz fibration.
Let us observe that for 1 ≤ j ≤ n,

• i2(�p1,q1,...,pn,qn(B4(j−1)+1), c2j ) = 1 = i2(�p1,q1,...,pn,qn(B4(j−1)+1), d2j−1),
• i2(�p1,q1,...,pn,qn(B4(j−1)+2), c2j ) = 1 and i2(�p1,q1,...,pn,qn(B4(j−1)+2),

d2j−1) = 0,
• χ
(Bi )(c2j ) = 0 = χ
(Bi )(d2j−1) for 0 ≤ i ≤ 22n − 1.

Then, this observation, together with Corollary 2.13, implies that

• if (pj , qj )− (rj , sj ) ≡ (1,0) or (0,1) (mod 2) for some j ∈ {1,2, . . . , n}, then

�r1,s1,...,rn,sn(tB4(j−1)+1) /∈ G
(B∑n
i=1(εpi

+2εqi
)22(i−1) ),

• if (pj , qj ) − (rj , sj ) ≡ (1,1) (mod 2) for some j ∈ {1,2, . . . , n}, then

�r1,s1,...,rn,sn(tB4(j−1)+2) /∈ G
(B∑n
i=1(εpi

+2εqi
)22(i−1) ).

Therefore, the assertion follows from Corollary 2.14. �

Remark 3.4. We can obtain similar results on E(2)K using a family of Kanenobu
knots K with a parity of type (1,0) or (0,1). However, one advantage of Stallings
twist knots compared to Kanenobu knots in the construction of inequivalent Lef-
schetz fibration structures on the same smooth 4-manifold is that it is always pos-
sible to construct a pair of inequivalent Lefschetz fibration structures on E(2)Kn

for the Stallings twist knot Kn.
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