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Hypercommutative Algebras and Cyclic Cohomology

Benjamin C. Ward

Abstract. We introduce a chain model for the Deligne–Mumford op-
erad formed by homotopically trivializing the circle in a chain model
for the framed little disks. We then show that under degeneration of
the Hochschild to cyclic cohomology spectral sequence, a known ac-
tion of the framed little disks on Hochschild cochains lifts to an action
of this new chain model. We thus establish homotopy hypercommu-
tative algebra structures on both Hochschild and cyclic cochain com-
plexes, and we interpret the gravity brackets on cyclic cohomology as
obstructions to degeneration of this spectral sequence. Our results are
given in the language of deformation complexes of cyclic operads.

Introduction

A differential graded Batalin–Vilkovisky (BV) algebra enhanced with a homotopy
trivialization of the �-operator is equivalent to a hypercommutative (HyCom) al-
gebra [DCV13; KMS13; DC14]. This relationship may be described in the lan-
guage of operads, where BV and HyCom algebras are represented respectively
by the homology operads of genus 0 moduli spaces of surfaces with boundary
[Get94a] and by the Deligne–Mumford compactification of the moduli space of
surfaces with punctures [Get95]. In practice, BV algebras often arise as the ho-
mology or cohomology of a geometric, topological, or algebraic object, and the
chain level structure can only be expected to be BV up to homotopy. For exam-
ple, this is the case when studying Hochschild cochain operations via the cyclic
Deligne conjecture [Kau08]. More generally, this is the case when considering the
deformation complex of a cyclic operad O with A∞ multiplication μ. We denote
such a deformation complex CH∗(O,μ).

On the other hand, the results of [War16] show that the complex of cyclic in-
variants associated with such data carries a compatible structure of an algebra
over a model of the open moduli space of punctured Riemann spheres. This com-
plex of invariants is a generalization of Connes’ C∗

λ-complex and will be denoted
C∗

λ(O,μ). Its cohomology HC∗(O,μ) generalizes the notion of the cyclic coho-
mology of a cyclic k-module. It is natural to ask for conditions under which this
action of the open moduli space lifts to an action of an operad of chains on the
Deligne–Mumford compactification.

In a BV algebra, the �-operator corresponds to an action of the circle at
a boundary component. In the homotopy theory of S1-spaces, trivialization
of the circle action corresponds to degeneration of the Hochschild to cyclic
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(co)homology spectral sequence arising from the associated cyclic object. Thus
it is reasonable to expect that an analog of this degeneration will permit such a
lifting. We prove the following result (see Theorem 4.3).

Theorem. Let μ : A∞ → O be a map of cyclic operads. Let CH∗(O,μ) and
C∗

λ(O,μ) be the associated deformation and cyclic deformation complexes of μ.
If the morphism μ is cyclically degenerate (Definition 3.4), then the homotopy
BV algebra structure on CH∗(O,μ) lifts to a compatible homotopy hypercommu-
tative algebra. Moreover, C∗

λ(O,μ) carries the structure of a HyCom∞-algebra
for which the inclusion C∗

λ(O,μ) → CH∗(O,μ) extends to an ∞-morphism of
HyCom∞-algebras.

Examples of the complexes CH∗(O,μ) and C∗
λ(O,μ) include Hochschild and

cyclic cochain complexes of Frobenius or cyclic A∞-algebras/categories, singular
and equivariant cochains of S1-spaces, complexes computing string topology, and
homology and S1-equivariant homology of the loop space of a closed oriented
manifold; see [War16] for these and other examples.

Formulating precise conditions under which the Hochschild to cyclic spectral
sequence degenerates is a question of active study [KS09]. This question is of
particular interest when studying homological mirror symmetry and categorical
models of quantum cohomology [BK98; Man99], which provided an expectation
that the known BV/gravity structure should lift under degeneration. Our result
further says that, under degeneration and if the chain level structure can be seen
as cyclic, the lifting can be performed at the chain level. Pursuing this chain level
structure in such geometric examples, with an eye toward a chain level lift of
Gromov–Witten invariants, should be an interesting avenue for future study.

In proving this result, we start with a chain model for the framed little disks
given in [War12], which we denote fM. Alternatively, we could use cellular chains
on Cacti [Vor05; Kau05]. These chain models have �2 = 0 and thus are sus-
ceptible to the language of mixed complexes. Combining the constructions of
[KMS13] and formality of the Deligne–Mumford (cyclic) operad [GSNPR05]
yields the following:

Theorem. Homotopically trivializing the �-operator in fM gives a chain model
for the hypercommutative operad.

This chain model is denoted fMhS1 and is, to an extent, combinatorially tractable.
For example, the fundamental class of M4 is represented by a union of fourteen
2-cells. The combinatorics of fMhS1 are based on planar trees with three types of
vertices; see Section 5. Table 1 summarizes the chain models for moduli spaces
that act on such deformation complexes. (Note that the assumption that O is cyclic
is not needed in the first row.)

In this paper, we assume familiarity with operads and cyclic operads, refer-
ences for which include [GK95; MSS02; LV12]. We also assume familiarity with
moduli space operads in genus 0 and their homology, references for which include
[Get94a; Get95; KSV95].
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Table 1

Moduli Algebras’ Chain Acts on / Combin-
Space name Model theorem atorics

points in Gersten- M of [KS00] CH∗(O,μ). black and white
the plane: haber (minimal operad) A∞-Deligne (or b/w) planar
D2 conjecture rooted trees

surfaces with BV fM CH∗(O,μ). b/w planar
boundary: of [War12] cyclic A∞- rooted trees
fD2 ∼ M̂∗ Deligne conj. with spines

surfaces with gravity M� C∗
λ(O,μ) b/w planar

punctures: of [War16] S1-equivariant non-rooted
M∗ Deligne Conj. trees

Deligne–Mumford HyCom fMhS1 CH∗(O,μ). b/w/gray
compactification: or formal Theorem 4.1 under degen. planar rooted
M∗ Frob. mfd Theorem 4.3 trees w/spines

1. The Model Categorical Framework

Let Ops be the category of reduced operads valued in the category of differential
graded (DG) vector spaces over a field k of characteristic 0. Reduced means that
we restrict attention to arities n ≥ 1. The category Ops is a model category such
that forgetting to symmetric sequences creates weak equivalences and fibrations
[BM03]. The reduced assumption will be needed to ensure that this model cate-
gory is left proper: a pushout of a weak equivalence along a cofibration is a weak
equivalence (see [BB13, Theorem 0.1]).

We consider an associative algebra to be an operad concentrated in arity 1.
Here we may consider either unital associative algebras or operads without units.
For an associative algebra A, we define A-Ops to be the undercategory A ↘Ops.
Note we often abuse notation by writing, for example, Q ∈ A-Ops and not A

α→
Q ∈ A-Ops. Note that the undercategory of a left proper model category is a left
proper model category where forgetting to the original category creates all three
classes of distinguished morphisms.

Let f : A → B be a morphism between DG associative algebras A and B . We
define �f : B-Ops → A-Ops to be the functor induced by composition with f .
The subscript notation will be suppressed when appropriate. Note that � preserves
weak equivalences and fibrations, and since � is a right adjoint, it is a right Quillen
functor. The left adjoint L can be realized as a left Kan extension or as a pushout
of operads Q ← A → B .

Lemma 1.1. If f is a quasi-isomorphism, the Quillen adjunction (L,�) is a
Quillen equivalence.
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Proof. If A → O is a cofibrant object in A-Ops, then the map A → O is a cofi-
bration in Ops. Using left properness of this category, we know that the pushout
of f along this cofibration is a weak equivalence O ∼→ LO in Ops. In particular,
O → �LO is a weak equivalence in A-Ops. This, along with the fact that � re-
flects weak equivalences, proves the claim via the standard theory (see [Hov99,
Cor. 1.3.16]). �

We now consider the special case of an inclusion ι : A ↪→ A ⊕ B between DG
associative algebras A and A ⊕ B . We define Tι : A-Ops → (A ⊕ B)-Ops to be
the trivial extension by 0. It is again immediately clear from the model structure
on the undercategories that T preserves weak equivalences and fibrations, and
since T is a right adjoint, it is a right Quillen functor. We define its left adjoint �

on a morphism ε : A ⊕ B →P by taking the quotient P/(ε(B)).
In particular, for such an inclusion, we have a pair of adjunctions:

A-Ops
L

T

(A ⊕ B)-Ops

�

�

We will typically be concerned with the inclusions k ↪→ H ∗(S1) and k ↪→

H∗(BS1).

Remark 1.2. We may view the categories A-Ops and so on as categories of
monoidal functors [KW17], in which case these adjunctions suggest a formal
analogy with Verdier duality, which could be further explored.

The functors T and � preserve weak equivalences between fibrant objects (and
hence all objects). The functors L and � preserve weak equivalences between
cofibrant objects, and so cofibrant replacement will yield a well-defined func-
tor on the homotopy category. Let �̃(Q) := �(qQ) and similarly for L, where
q means a choice of cofibrant replacement in the undercategory. Then we have
adjunctions (L̃f ,�f ) and (�̃ι, Tι) between the respective homotopy categories
corresponding to any morphism f and any inclusion ι. We may now record the
following technical lemma for future use.

Lemma 1.3. Let A
ι

↪→ A⊕B
f−→ A⊕C be a sequence of morphisms of associa-

tive DG algebras where f is of the form f = idA ⊕ f̄ and where ι is the inclusion.
If f is a weak equivalence, then for every Q ∈ (A ⊕ C)-Ops, there is a zig-zag of
weak equivalences of A-Ops connecting

�̃f ◦ι(Q) ∼ �̃ι(�Q).

Proof. We continue to write q for cofibrant replacement in any of these undercat-
egories.
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Since (Lf ,�f ) is a Quillen equivalence, we know that the composite
Lq�qQ → L�qQ → qQ is a weak equivalence. Moreover, L preserves cofi-
brant objects (since cofibrations are closed under pushout), and so this composite
is a weak equivalence between cofibrant objects. Hence the induced map

�f ◦ι(Lq�qQ)
∼→ �f ◦ι(qQ)

is a weak equivalence.
The assumptions here imply that �f ◦ Tf ◦ι = Tι, and so by adjointness we

know that �f ◦ι ◦ Lf
∼= �ι. Therefore �f ◦ι(Lq�qQ) ∼= �ι(q�qQ), and so we

have

�̃ι(�Q) = �(q�Q)
∼←− �ι(q�qQ) ∼= �f ◦ι(Lq�qQ)

∼→ �f ◦ι(qQ) = �̃f ◦ι(Q). �

2. Trivializing �

In this section we revisit the literature on mixed complexes, BV algebras, and
trivializing � to extract what will be needed. We primarily follow [KMS13], with
influence from [DCV13] and [DSV15].

A mixed complex (A,d,�) is a chain complex (A,�) and a cochain complex
(A,d) such that d�+�d = 0. Here the degrees have been chosen to be consistent
with the example of Hochschild cohomology, but this is merely our convention.
Given a mixed complex, let (EndA, ∂) be the cochain complex of endomorphisms
of (A,d). The cycle � is homologically trivial if there is β1 of degree −2 such
that ∂(β1) = �. Given such β1, we then encounter the cycle β1 ◦ �. This cycle
will be homologically trivial if there is β2 of degree −4 such that ∂(β2) = β1 ◦�.
Given such β2, we encounter the cycle β2 ◦ � and so on. We are thus led to the
following definition.

Definition 2.1. Let (A,d,�) be a mixed complex. A trivialization of � is a
sequence {βi}i≥0 ∈ End(A,d) with β0 = idA such that ∂(βi) = βi−1 ◦ �. In partic-
ular, |βi | = −2i.

We write (k�〈β∗〉, ∂) for the DG associative algebra that encodes the unary op-
erations on a trivialized mixed complex. Explicitly, k�〈β∗〉 := k[�]〈β1, β2, . . . 〉,
the free graded associative algebra on {βi} over the graded commutative algebra
k[�]. The differential takes ∂(βi) = βi−1� and ∂(�) = 0, and the degrees of el-
ements are as before. In particular, � being of odd degree implies �2 = 0. This
complex may be interpreted as a noncommutative analog of ES1; see Section 5.
The operations ∂(βi) correspond to differentials in the Hochschild to cyclic coho-
mology spectral sequence; see Section 3.

We write A[[z]] := A ⊗ k[[z]], meaning the completed tensor product.

Lemma 2.2. Let z be a variable of degree 2, and let (A,d,�) be a mixed com-
plex. A trivialization of � is equivalent to a z-linear isomorphism of complexes
(A[[z]], d + z�) ∼= (A[[z]], d).
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Proof. If {βi} are such a trivialization of �, then define a z-linear map F : (A ⊗
k[[z]], d + z�) → (A ⊗ k[[z]], d) by F(a) = ∑

i βi(a)zi for a ∈ A. This is a DG
map, and its leading term is invertible. Conversely, given such an isomorphism,
we may extract the sequence {βi(a)} as the coefficients of F(a). �

Remark 2.3. The papers [KMS13; DCV13; DSV15] consider various equivalent
forms of the data in Definition 2.1. For example, [KMS13] consider exponential
coordinates for a trivialization, that is, elements φi in the algebra k�〈β∗〉 related to
βi via β1 = φ1, β2 = φ2 +φ2

1/2, β3 = φ3 +(φ2φ1 +φ1φ2)/2+φ3
1/6, etc. Note that

in [KMS13], the notation �i is used in place of our βi . These data are equivalent
to what [DCV13] call “Hodge-to-de Rham degeneration data”, see Theorem 2.1
in [DSV15]. Note that these data are weaker than the classical dd̄-condition of
[DGMS75], which will not in general be satisfied in the examples we consider.

2.1. The KMS Model for �̃

In this section, we consider the adjunction (�,T ) with respect to the inclusion
k → H ∗(S1). We further use the shorthand notation S1-Ops := H ∗(S1)-Ops, so
we have � : S1-Ops � Ops : T .

If Q is an S1-operad with operator �Q, then we define the S1-operad W(Q)

by

W(Q) := (Q � k�〈β∗〉, dW(Q) := dQ + ∂� − ∂�Q). (2.1)

Here � means the free product, ∂�Q(βi) = βi−1�Q and is zero on other gen-
erators, and similarly for ∂�. This is viewed as an S1-operad via � (not �Q).
We define �KMS(Q) := �(W(Q)). Viewing k�〈β∗〉 as a noncommutative analog
of ES1, we expect that quotienting by the � action in W(Q) will be homotopy
invariant. Indeed, [KMS13] shows the following:

Theorem 2.4 [KMS13]. As derived functors, �KMS ∼= �̃.

Corollary 2.5. Suppose Q is an S1-operad, and suppose (A,d) is a Q-algebra
via a unary square-zero operator �Q. A trivialization of �Q in (A,d,�Q) per-
mits the lifting of (A,d) from a Q-algebra to a �KMS(Q)-algebra.

Proof. Define the map Hom(�(Q),EndA) → Hom(W(Q), T EndA) as follows.
Given �(Q) → EndA, we define a map of S1-operads W(Q) → T EndA by
mapping Q via said morphism, sending � �→ 0 and sending βi to the coef-
ficients of the degeneration, as in Lemma 2.2. Then Hom(�KMS(Q),EndA) ∼=
Hom(W(Q), T EndA) by adjointness, hence the claim. �

Note that although there is a zig-zag of morphisms of DG operads

Q ∼← W(Q) → �KMS(Q),

when we speak of lifting a Q-algebra to a �KMS(Q)-algebra, we use the corollary
(i.e., inclusion), which is not the same as composition in the diagram.
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3. Cyclic Cohomology Operations

In this section, we give an overview of the mixed complex associated to a mul-
tiplicative cyclic operad, its associated spectral sequence, and the accompanying
homotopy BV and gravity structures. The material on cyclic operads and asso-
ciated complexes comes primarily from [War16, Sections 2–4]. The material on
spectral sequences associated to mixed complexes can be found in [Lod98].

3.1. Deformation Complexes and Mixed Complexes from Cyclic Operads

Let O be a unital cyclic operad valued in DG vector spaces graded cohomologi-
cally. We define O∗ := ∏

n �sO(n), where � is the degree shift operator, and s

is the operadic suspension. This vector space has a natural Lie bracket {−,−}, for
which a Maurer–Cartan element is equivalent to a morphism μ : A∞ → O. Given
this data, we form a differential in the usual way: dμ := dO + {μ,−}, where dO
is the original (aritywise) differential in O.

Definition 3.1. Let μ : A∞ → O be a map of cyclic operads. Define CH∗(O,μ)

to be the complex (O∗, dμ). This complex is called the deformation complex of μ.

The complex CH∗(O,μ) can be endowed with a square zero operator � of degree
−1 analogous to the construction of Connes’ B operator; explicitly, � := Ns0(1−
t), where s0 is the extra degeneracy (via the unit), t is the aritywise cyclic operator,
and N is the aritywise sum �it

i . This operator is square zero and commutes with
dμ, and so (O∗, dμ,�) is a mixed complex. See [War16, Section 3.2], for the
details of this construction.

With this mixed complex we will associate a bicomplex with vertical dif-
ferential dμ (pointing up) and horizontal differential � (pointing right) and fil-
ter this bicomplex by columns. We would like this filtration to be exhaustive,
so for simplicity, we impose the following assumption: the complex O∗ is sup-
ported in nonnegative degrees. This will be the case if O(n) is contained in de-
grees ≥ −n. Of course, there are weaker boundedness conditions under which
this filtration is exhaustive. In this case, we may form the bicomplex in the
first quadrant. We filter this bicomplex by columns and construct the associated
spectral sequence. The 0-page has E

pq

0 = �2pOq−p = ∏∞
q=0 �q+2pO(n)q−p−n,

the 1-page has E
pq

1 = �2pHq−p(O∗, d) = �2pHHq−p(O,μ), and the 2-page
has E

pq

2 = Hp(�2∗HHq−∗(O,μ), [�]). In particular, the 1-page differential is
d1 := [�].

If [�] = 0 on HH, then there exists a chain operation of degree −2 whose
boundary is �, from which we can build the 2-page differential. Explicitly, in the
notation of the previous section, d2 = �β1. Likewise, d2 is zero if there exists
a chain operation of degree −4 whose boundary is �β1, and we may explicitly
calculate d3 = �(β2 − β2

1 ). Continuing in this vein, we see that the existence of
the βi is necessary and sufficient for degeneration:
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Lemma 3.2 [DSV15, Proposition 1.5]. Degeneration in this spectral sequence at
the 1-page is equivalent to a trivialization of � in the sense of Definition 2.1.

This spectral sequence converges to the product total complex ToT of the orig-
inal bicomplex. The homology of the total complex is the cyclic cohomology
of the pair (O,μ) and is denoted HC∗(O,μ). The lemma is a general state-
ment about mixed complexes, but here we have additional structure allowing
us to compute HC∗(O,μ) in two ways, via the total complex (O∗[[z]], d +
z�), where deg(z) = 2, or by the product complex of invariants C∗

λ(O,μ) :=
(
∏

n O(n)Zn+1 , dμ). The complex C∗
λ(O,μ) may also be called the cyclic defor-

mation complex of μ, and it computes HC∗(O,μ) by the following lemma.

Lemma 3.3. Inclusion C∗
λ(O,μ) ↪→ (O∗[[z]], d + z�) is a quasi-isomorphism.

Proof. This follows from Proposition 2.16 of [War16] and a standard argument
of “killing contractible complexes”, as in [Lod98, Section 2.4.3]. �

In the case that the spectral sequence associated with the mixed complex
(O∗, dμ,�) degenerates at the 1-page, we have HC∗(O,μ) ∼= HH∗(O,μ)[[z]].
This happens precisely when there is a trivialization of �, so we make the fol-
lowing definition.

Definition 3.4. We say that a morphism of cyclic operads μ : A∞ → O is
cyclically degenerate if there exists a trivialization of � in the mixed complex
(O∗, dμ,�).

3.2. Operations on CH and Cλ

In the case that μ : A∞ → O is simply a map of operads (not cyclic), the clas-
sical Deligne conjecture says that CH∗(O,μ) is an algebra over a chain model
for the little disks operad. In the A∞ case, this chain operad was constructed by
Kontsevich and Soibelman [KS00] and was denoted M for minimal operad. It is
an insertion operad of planar 2-colored trees.

If we now recall the cyclic structure of μ : A∞ → O, then we may upgrade
the complex CH∗(O,μ) to an algebra over a chain model for the framed little
disks. In the cyclic A∞ setting, this operad was constructed in [War12], where it
was denoted T S∞. In hindsight, this ∞ notation might be confusing, so we will
instead use the notation fM for “framed minimal operad”. For details, see [War12],
but the important properties of the chain operad fM are:

(1) There exists a zig-zag of quasi-isomorphisms of operads between fM and sin-
gular chains on the framed little disks.

(2) In particular, there exists a zig-zag of DG operads: fM
∼← BV∞

∼→ BV .
(3) The DG operad fM acts on CH∗(O,μ) for any such μ : A∞ →O recovering

the known BV structure on cohomology.
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(4) The DG operad fM is constructed as an insertion operad of planar 2-colored
trees along with marked points on the boundaries of vertices, which are called
spines.

We could instead consider the chain model provided by cellular chains on nor-
malized cacti [Vor05; Kau05], which has all these properties and requires that the
multiplication be associative.

Since the invariants C∗
λ(O,μ) form a dμ-closed subspace of CH∗(O,μ),

we can ask which of the operations in fM restrict to this complex. In other
words, which operations preserve the property of t-invariance? This question
was answered in [War16], and the answer forms a suboperad M� ⊂ fM whose
homology is the homology operad of the punctured Riemann spheres, called
the gravity operad in [Get94b]. In particular, this endows the cyclic cohomol-
ogy HC∗(O,μ) with the structure of a gravity algebra, and the natural map
HC∗(O,μ) → HH∗(O,μ) is a map of gravity algebras. It is natural to ask when
this structure lifts to the compactification, and this question is answered in the
next section.

4. Collecting Results

We now collect our main results. We continue to write � (with suppressed sub-
script) in place of �k↪→H ∗(S1). We define fMhS1 := �KMS(fM).

Theorem 4.1. The DG operad fMhS1 is a chain model for the hypercommutative
operad. Explicitly, there exists a zig-zag of weak equivalences of DG operads
fMhS1

∼← · · · ∼→ S∗(M∗+1).

Proof. Here S∗ denotes singular chains with coefficients in the field k. Us-
ing formality of the Deligne–Mumford operad M∗+1 (see [GSNPR05, Corol-
lary 7.2.1]), we know that there exists a zig-zag of weak equivalences connecting
HyCom ∼ S∗(M∗+1). From [KMS13] we know that there is a weak equivalence
HyCom

∼→ �KMS(BV). So it remains to show that there is a zig-zag of weak
equivalences �̃(BV) ∼ �̃(fM).

The algebra H ∗(S1) has a Koszul resolution given by taking the cobar con-
struction 
 of the coalgebra H∗(BS1). Let ι : k ↪→ 
H∗(BS1) be an inclusion,
and let f : 
H∗(BS1) → H ∗(S1) be the standard weak equivalence. Then, since
f ◦ι is the standard injection k ↪→ H ∗(S1), we endeavor to show that �̃f ◦ι(BV) ∼
�̃f ◦ι(fM). Note that fM is equivalent to BV in the category under 
H∗(BS1).

In particular, there is a zig-zag of weak equivalences fM
∼← BV∞

∼→ BV under

H∗(BS1). Therefore �̃ι(�f fM) ∼ �̃ι(�fBV). Applying Lemma 1.3 proves the
claim. �

We let HyCom∞ denote the cobar resolution via the Koszul dual operad Grav,
that is, HyCom∞ := 
Grav∗. Cofibrancy of this operad gives us the following:
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Corollary 4.2. There exists a zig-zag of weak equivalences: fMhS1
∼←

HyCom∞
∼→HyCom.

We now consider the effect that degeneration has upon the algebraic operations
on CH∗(O,μ) and C∗

λ(O,μ) and their cohomologies.

Theorem 4.3. Let μ : A∞ → O be a morphism of cyclic DG operads that is
cyclically degenerate (Definition 3.4). Then:

(1) The fM-algebra structure on CH∗(O,μ) lifts along the inclusion fM → fMhS1

to an fMhS1 -algebra, and hence a HyCom∞-algebra.
(2) There is a HyCom∞-algebra structure on C∗

λ(O,μ) for which the inclu-
sion C∗

λ(O,μ) → CH∗(O,μ) extends to an ∞-morphism between these
HyCom∞-algebra structures.

(3) The gravity structure on HC∗(O,μ) vanishes.

Proof. The first statement follows from Corollaries 2.5 and 4.2.
For the second statement, we first use the obvious inclusion and projection

maps in : (O∗, dμ) � (O∗[[z]], dμ) : π , with π ◦ in = id, to furnish a morphism
of operads End(O∗,dμ) → End(O∗[[z]],dμ). Observe that π is a morphism of fMhS1 -
algebras and hence of HyCom∞-algebras with respect to the induced z-linear
extension.

Under the degeneration hypothesis, we have the commutative diagram

C∗
λ(O,μ)

∼

in
(O∗, dμ)

(O∗[[z]], dμ + �z) ∼= (O∗[[z]], dμ)

π

where the isomorphism is given by applying Lemma 2.2 to the mixed complex
(O∗, dμ,�). Since π is a morphism of HyCom∞-algebras, we can, via a stan-
dard transfer argument (see [BM03, Theorem 3.5], or [LV12, Chapter 10]), endow
C∗

λ(O,μ) with the structure of a HyCom∞-algebra such that the weak equiva-
lence ↓ extends to an ∞-quasi-isomorphism of such. Composition in the diagram
proves statement 2.

For statement 3, we see from [War16] that the gravity bracket gn on
HC∗(O,μ), induced via the chain level action of M�, satisfies the Chas–Sullivan
formula (see [CS99, p. 21])

gn([a1], . . . , [an]) = B(I ([a1]) • · · · • I ([an])), (4.1)

where

· · · → HCm−1(O,μ)
S→ HCm+1(O,μ)

I→ HHm+1(O,μ)

B→ HCm(O,μ) → ·· ·
is the cyclic cohomology long exact sequence, and • is the commutative product.
Since μ is assumed to be cyclically degenerate, we know that on cohomology
B = 0, from which the claim follows. �
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From statement 3 of the theorem we derive the following consequence, which is
a piece with the deformation theoretic interpretation of hypercommutativity (via
the Quantum cup product).

Corollary 4.4. The gravity brackets in EndHC∗(O,μ) are obstructions to μ being
cyclically degenerate.

Remark 4.5. If we consider the usual sequence of operads Grav → BV →
HyCom and note that composition in this sequence is the zero map, then we may
choose to interpret statement 3 of Theorem 4.3 as a lifting statement. Indeed, it
says that under degeneration, the gravity structure on HC∗(O,μ) lifts via this
sequence to a hypercommutative algebra.

It would be interesting to prove a chain level refinement of this lifting statement
asserting that under degeneration, the Grav∞ structure on C∗

λ(O,μ) induced by
M� lifts (up to an ∞-quasi-isomorphism) to the HyCom∞-algebra structure given
in statement 2 of the theorem. A first step in this direction is to show the existence
of a weak equivalence of DG operads Grav∞

∼→ M�, a result which will appear
as part of upcoming joint work with R. Campos.

5. Topology and Combinatorics of the Chain Model fMhS1

The chain models M�, M, and fM may be described using the combinatorics of
trees. We now briefly describe such an interpretation of the chain model fMhS1 . To
begin, we recall that fM is described via rooted, planar, black and white trees with
spines; see Figure 1. In particular, the figure depicts the set of cells that ensure that
the BV equation holds up to homotopy. Here we have suppressed associahedra
labels of black vertices for simplicity; see [War12] for details.

Operadic composition at the βi is free, so a general operation in fMhS1 may
be depicted as a (nonplanar) rooted tree with tails, each of whose vertices are
labeled by an arity appropriate 2-colored planar rooted trees with spines or by βi .
Since the arity of each of the βi is 1, this is the same thing as a (composition
of) planar tree(s) with three types of vertices; the black and white from fM and
the βi ; see Figure 2. To distinguish these new vertices, they will be drawn as gray
rectangles.

In particular, we identify fMhS1(n) with the span of planar black, white, and
gray rooted trees having n white vertices, along with the appropriate vertex la-
bels: white vertices carry labels by {1, . . . , n} and spines, black vertices carry as-
sociahedra cells of appropriate arity as labels, and gray vertices are each labeled
by a natural number. These trees are subject to combinatorial restrictions includ-
ing that all black vertices have at least two incoming edges, and all gray vertices
have exactly one incoming and one outgoing (half) edge (allowed to be the root).
Notice these trees do not carry tails (unmatched half-edges) except the root. Also
notice that the gray vertices do not contribute to the arity.
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Figure 1 The BV equation on a sphere via fM. Here we see one hemi-
sphere and six holes. The seventh hole is the missing hemisphere. If an
fM-algebra lifts to an fMhS1 -algebra, we may fill in the seven holes to
form a ternary cycle corresponding to the fundamental class of M4

Figure 2 A generator of fMhS1 as a 3-colored tree on the right-hand
side. In general, such a correspondence uses the operad composition
in fM and can produce a sum of 3-colored trees if composing at white
vertices of submaximum height

The differential can be described as a sum over the vertices and works as in fM
away from the gray vertices. At gray vertices, the label is reduced by 1, and we
take � of the input. For example,
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Consequently, fMhS1(3) includes the 2-cells needed to fill in the holes in the
sphere corresponding to the BV equation in Figure 1. For example, we fill in the
hole labeled by �(ac)b with

The sum of these fourteen cells represents the fundamental class of M4 in
fMhS1(3). We could similarly describe the fundamental class of M5 by adding
the cells prescribed in [LS07] to the failure of the appropriate 4-ary relation.

To conclude, let us recall that each chain complex fM(n) may be viewed as the
cell complex of a CW complex [War12]. We may also consider such a description
for fMhS1 . Cellularly βn corresponds to an open 2n disk bounded by the 2n − 1
sphere βn−1�, and we may use composition in Cacti to form a CW complex
whose cellular chain complex is

· · · → kβ1�
0→ kβ1

1→ k�
0→ kid.

For example, if we consider Int(β1�) = Int(D2 × I ), then the boundary of the
disk should be attached to a composition in Cacti; recall that this composition adds
the angles [Vor05]. We thus attach the cell D2 × I to the closed pointed 2-disk
via (p,0) �→ p and (p,1) �→ p for p ∈ Int(D2) and (e2πiθ1 , θ2) �→ e2πi(θ1+θ2)

for e2πiθ1 ∈ ∂D2. This 3-skeleton is identified with S3 = {(r1e
iθ1, r2e

iθ2) : r2
1 +

r2
2 = 1} by the map (r1e

iθ1, r2e
iθ2) �→ (r1e

2πi(θ1−θ2), θ2 + r1θ1). In particular, the
cell � is the fiber direction, that is, concatenating this map with projection to
the first factor and then identifying the unit disk mod boundary with C ∪ ∞ via
p �→ p/

√
1 − |p|2, we find (r1e

iθ1, r2e
iθ2) �→ r1/r2e

2πi(θ1−θ2), the Hopf map.
We do not expect that these CW complexes form a topological operad on the

nose, but rather a weak topological operad, due to normalization issues, as in
[Kau05].
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