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Reduction of Local Uniformization to the Case of Rank
One Valuations for Rings with Zero Divisors

Josnei Novacoski & Mark Spivakovsky

Abstract. This is a continuation of our previous paper, where it was
proved that to obtain local uniformization for valuations centered on
local domains, it suffices to prove it for rank one valuations. In this
paper, we extend this result to the case of valuations centered on rings
that are not necessarily integral domains and may even contain nilpo-
tents.

1. Introduction

For an algebraic variety X over a field k, the problem of resolution of singulari-
ties is whether there exists a proper birational morphism X′ −→ X such that X′
is regular. The problem of local uniformization can be seen as the local version
of resolution of singularities for an algebraic variety. For a valuation ν of k(X)

having a center on X, the local uniformization problem asks whether there exists
a proper birational morphism X′ −→ X such that the center of ν on X′ is regular.
This problem was introduced by Zariski in the 1940s as an important step to prove
resolution of singularities. Zariski’s approach consists in proving first that every
valuation having a center on the given algebraic variety admits local uniformiza-
tion. Then these local solutions have to be glued to obtain a global resolution of
all singularities.

Zariski [10] succeeded in proving local uniformization for valuations centered
on algebraic varieties over a field of characteristic zero. He used this to prove
resolution of singularities for algebraic surfaces and threefolds over a field of
characteristic zero (see [11]). Abhyankar [1] proved that local uniformization can
be obtained for valuations centered on algebraic surfaces in any characteristic and
used this fact to prove resolution of singularities for surfaces (see [2] and [3]).
He also proved local uniformization and resolution of singularities for threefolds
over fields of characteristic other than 2, 3, and 5 (see [4]). Very recently, Cos-
sart and Piltant [5; 6] proved resolution of singularities (and, in particular, local
uniformization) for threefolds over any field of positive characteristic and in the
arithmetic case. They proved it using the approach of Zariski. However, the prob-
lem of local uniformization remains open for valuations centered on algebraic
varieties of dimension greater than three over fields of positive characteristic.
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Since local uniformization is a local problem, we can work with local rings
instead of algebraic varieties or schemes. A valuation ν centered on a local in-
tegral domain R is said to admit local uniformization if there exists local ring
R(1) dominated by Oν and dominating R such that R(1) is regular. Let N be the
category of all Noetherian local domains, and M ⊆ N be a subcategory of N
that is closed under taking homomorphic images and localizing any finitely gen-
erated birational extension at a prime ideal. We want to know for which subcat-
egories M with these properties, all valuations centered on objects of M admit
local uniformization. In Section 7.8 of [7], Grothendieck proved that any cate-
gory of schemes, closed under passing to closed subschemes and finite radical
extensions, in which resolution of singularities holds, is a subcategory of quasi-
excellent schemes (it is known that the category of quasi-excellent schemes is
closed under all the operations mentioned). He conjectured (see Remark 7.9.6 of
[7]) that resolution of singularities holds in the most general possible context of
quasi-excellent schemes. Translated into our local situation, this conjecture says
that any valuation centered in a quasi-excellent local Noetherian domain admits
local uniformization. For a discussion on quasi-excellent and excellent local rings,
see Section 7.8 of [7]. However, this conjecture is widely open.

In most of the successful cases, including those mentioned before, local uni-
formization was first proved for rank one valuations. Then the general case was
reduced to this a priori weaker one. In [9], we prove that this reduction works
under very general assumptions. Namely, we consider a subcategory M of the
category of all Noetherian local integral domains that are closed under taking ho-
momorphic images and localizing any finitely generated birational extension at
a prime ideal. The main result of [9] is that if every rank one valuation centered
on an object of M admits local uniformization, then all the valuations centered
on objects of M admit local uniformization. The main goal of this paper is to ex-
tend this result to rings that are not necessarily integral domains and, in particular,
may contain nilpotent elements. The importance of nonintegral and nonreduced
schemes in modern algebraic geometry is well known. Even if we were only in-
terested in reduced schemes to start with, we are led to consider nonreduced ones
since they are produced by natural constructions, for example, in deformation
theory.

The motivation behind our work is the following: when trying to prove some
result in local uniformization/resolution of singularities, it is sometimes conve-
nient to expand the category that we are working on. For instance, if we are ex-
pecting to prove local uniformization by induction on the dimension of the vari-
eties and if at some point we have to use deformation of the ring, then we have to
prove local uniformization for every valuation of smaller rank in the category of
“deformed” rings. Hence, it is desirable to have a reduction of local uniformiza-
tion to rank one valuations to a category of rings as large as possible.

Even if deforming singularities does not intervene in the resolution process,
it is desirable to prove simultaneous resolution in families of varieties. There are
situations when flat families with nonreduced fibers appear by natural construc-
tions, even when at the start the scheme we were deforming was reduced. It would
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be nice to be able to extend the notion of simultaneous resolution to this type of
situation. It is therefore natural to try to state and prove resolution of singularities
and local uniformization for nonreduced schemes.

Most of the recent results on resolution, such as the Cossart–Piltant theorem
in dimension three, are stated and proved only for reduced schemes, so local uni-
formization in our sense does not formally follow from them. However, it should
not be too hard to extend the existing results to the nonreduced schemes. We con-
sider the present paper to be a step in this direction.

If R is not reduced, then we cannot expect, in general, to make R(1) regular
by blowings up. The natural extension of our result to the case of rings with zero
divisors is to require (R(1))red to be regular and Nn

(1)/N
n+1
(1) to be an (R(1))red-free

module for every n ∈ N (here N(1) denotes the nilradical of R(1)). For a more
detailed motivation of our main theorem, see Section 2 (particularly, Remarks 2.4
and 2.5). Let N be the category of all Noetherian local rings, and M ⊆ N a
subcategory of N that is closed under taking homomorphic images and localizing
any finitely generated birational extension at a prime ideal. Our main result is the
following:

Theorem 1.1. Assume that for every Noetherian local ring R in Ob(M), ev-
ery rank one valuation centered on R admits local uniformization. Then all the
valuations centered on objects of M admit local uniformization.

The proof of Theorem 1.1 consists of three main steps. The first step is to prove
that given a local ring R and a valuation ν centered in R, there exists a local
blowing up π : R −→ R(1) such that R(1) has only one associated prime ideal.
The local blowing up π is constructed by first constructing a blowing up X −→
SpecR such that X has no embedded components and is locally irreducible as a
topological space and then setting R(1) = OX,ξ where ξ is the center of ν on X.
Then we consider a decomposition ν = ν1 ◦ ν2 of ν such that rk(ν1) < rk(ν) and
rk(ν2) < rk(ν). Using induction, we can assume that both ν1 and ν2 admit local
uniformization. The second main step consists in using this to prove that there
exists a local blowing up R(1) −→ R(2) such that (R(2))red is regular. The third
and final step is to prove that there exists a further local blowing up R(2) −→ R(3)

such that (R(3))red is regular and Nn
(3)/N

n+1
(3) is an (R(3))red-free module for every

n ∈N (here N(3) denotes the nilradical of R(3)).
This paper is organized as follows. In Section 2 we present the basic definitions

and results that will be used in the sequel. Sections 3, 4, and 5 are dedicated to
prove the results related to the first, second, and third steps, respectively. In the
last section we present a proof of our main theorem.

2. Preliminaries

Let R be a Noetherian commutative ring with unity, and � an ordered Abelian
group. Set �∞ := � ∪ {∞} and extend the addition and order from � to �∞ as
usual.
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Definition 2.1. A valuation ν on R is a mapping ν : R −→ �∞ with the follow-
ing properties:

(V1) ν(ab) = ν(a) + ν(b) for every a, b ∈ R;
(V2) ν(a + b) ≥ min{ν(a), ν(b)} for every a, b ∈ R;
(V3) ν(1) = 0 and ν(0) = ∞;
(V4) The support of ν, which is defined by supp(ν) := {a ∈ R | ν(a) = ∞}, is a

minimal prime ideal of R.

Take a multiplicative system S of R such that supp(ν) ⊆ R \S. Then the extension
(which we call again ν) of ν to RS given by ν(a/s) := ν(a) − ν(s) is again a
valuation. From now on, we will freely make such extensions of ν to RS without
mentioning it explicitly.

A valuation ν on R is said to have a center if ν(a) ≥ 0 for every a ∈ R. In this
case the center of ν on R is defined by Cν(R) := {a ∈ R | ν(a) > 0}. Moreover,
if R is a local ring with unique maximal ideal m (in which case we say “the local
ring (R,m)”), then a valuation ν on R is said to be centered at R if ν(a) ≥ 0
for every a ∈ R and ν(a) > 0 for every a ∈ m. We observe that if ν is a valuation
having a center on R, then ν is centered on RCν (R). The value group of ν, denoted
by νR, is defined as the subgroup of � generated by {ν(a) | a ∈ R}. The rank of
ν is the number of proper convex subgroups of νR.

Let us denote the nilradical of R by N :

N = Nil(R) := {a ∈ R | al = 0 for some l ∈ N}.
For b ∈ R \ N , we consider the canonical map � : R −→ Rb given by �(a) =

a/1. Let

J (b) := ker� =
∞⋃
i=1

annR(bi). (1)

We have a natural embedding R/J (b) ⊆ Rb .
Assume, in addition, that b ∈ R \ supp(ν). Take a1, . . . , ar ∈ R such that

ν(ai) ≥ ν(b) for each i,1 ≤ i ≤ r.

Consider the subring R′ := R/J (b)[a1/b, . . . , ar/b] of Rb . Then the restriction
of ν to R′ has a center Cν(R

′) in R′. We set R(1) := R′
Cν (R′).

Definition 2.2. The canonical map R −→ R(1) is called the local blowing up
of R with respect to ν along the ideal (b, a1, . . . , ar ). For a valuation μ having
a center on R, we say that R −→ R(1) is μ-compatible if b /∈ Cμ(R) and ai ∈
Cμ(R) for every i, 1 ≤ i ≤ r .

Lemma 2.3. The composition of finitely many local blowings up is again a local
blowing up. Moreover, if each of these local blowings up is μ-compatible, then
their composition is again μ-compatible.

Proof. It suffices to prove that, for two local blowings up π : R −→ R(1) and
π ′ : R(1) −→ R(2) with respect to ν, there exists a local blowing up R −→ R(3)
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with respect to ν such that R(3) � R(2). We write

R(1) = R′
Cν (R′) for R′ = R/J (b)[a1/b, . . . , ar/b]

for some a1, . . . , ar , b ∈ R and

R(2) = R
′(1)

Cν (R′(1))
for R′(1) = R(1)/J (β)[α1/β, . . . , αs/β]

for some α1, . . . , αs, β ∈ R(1). Then there exist ar+1, . . . , ar+s , b
′ ∈ R such that

αi/β = π(ar+i )/π(b′) for each i, 1 ≤ i ≤ s. Consider the local blowing up

R −→ R(3)

given by

R(3) = R′′
Cν (R′′)

for R′′ = R/J (bb′)[a1b
′/bb′, . . . , arb

′/bb′, ar+1b/bb′, . . . , ar+sb/bb′].
It is straightforward to prove that R(2) � R(3). �

In view of Lemma 2.3, we will freely use the fact that the composition of finitely
many local blowings up is itself a local blowing up without mentioning it explic-
itly.

Remark 2.4. If b ∈ N , then Rb is the zero ring (i.e., the one-element ring in which
0 = 1). If b ∈ supp(ν) \ N , then the ring Rb and the homomorphism � : R → Rb

are well defined, but there do not exist a localization R(1) of Rb and a valuation
ν(1) centered in R(1) whose restriction to R is ν. This is why in the definition of
local blowing up we limit ourselves to the case b /∈ supp(ν).

Remark 2.5. The ring Rsupp(ν) has only one associated prime ideal. If Rsupp(ν)

contains nonzero nilpotent elements, then so does every local blowing up R(1) of
R. Therefore in this case there is no hope of making R(1) regular; the best we can
ask is for (R(1))red to be regular. Furthermore, it is both natural and possible to
look for some form of “constant” or “uniform” behavior of the nilradical of R(1)

along Spec(R(1))red. The intuitive idea of uniform behavior of a module along a
scheme in algebraic geometry is often embodied in the concept of flatness. There-
fore, in order to define local uniformization for rings with nilpotents, it is natural
to ask that the nilradical of R(1) become a flat (R(1))red-module. In fact, we can
do slightly better and require not only the nilradical itself but all of the succes-
sive quotients of its powers to be flat. A finitely generated module over a local
ring is flat if and only if it is free. These considerations motivate the following
definitions.

Definition 2.6. Assume that Rred is regular. We say that SpecR is normally flat
along SpecRred if Nn/Nn+1 is an Rred-free module for every n ∈N.

Since R is a Noetherian ring, there exists n0 ∈ N such that Nn = (0) for every
n > n0. Hence, the condition in Definition 2.6 is equivalent to the freeness of
each of the finite collection modules N/N2, . . . ,Nn0/Nn0+1 = Nn0 .



282 Josnei Novacoski & Mark Spivakovsky

Definition 2.7. For a local ring R, a valuation ν centered on R is said to admit
local uniformization if there exists a local blowing up R −→ R(1) with respect
to ν such that R

(1)
red is regular and SpecR(1) is normally flat along SpecR

(1)
red.

Let ν = ν1 ◦ ν2 be a fixed decomposition of ν. For simplicity of notation, we set
p := Cν1(R), and for a local blowing up R −→ R(1), we set

p(1) := Cν1(R
(1)). (2)

We need to guarantee that the main properties of Rp and R/p are preserved under
ν1-compatible local blowings up. More precisely, we have to prove the following:

Proposition 2.8. Let π : R −→ R(1) be a ν1-compatible local blowing up. Then
the canonical maps Rp −→ R

(1)

p(1) and R/p −→ R(1)/p(1) induced by π are iso-
morphisms.

To prove Proposition 2.8, we need the following basic lemma.

Lemma 2.9. Let S be a multiplicative system of R contained in R \ Cν(R). Then
the canonical map � : RCν (R) −→ (RS)Cν (RS) given by �(a/b) = (a/1)/(b/1) is
an isomorphism.

Proof. For an element (a/b)/(c/d) ∈ (RS)Cν (RS), we have

ν(b) = ν(c) = ν(d) = 0.

Consequently, ν(bc) = 0 and ad/bc ∈ RCν (R). Then

(a/b)/(c/d) = (ad/1)/(bc/1) = �(ad/bc).

Suppose that �(a/b) = 0. This means that there exists c/d ∈ RS \Cν(RS) such
that ac/d = 0 in RS . Thus, there exists s ∈ S such that sac = 0. Moreover, since
c/d /∈ Cν(RS), we also have c /∈ Cν(R). This and the fact that s ∈ S ⊆ R \ Cν(R)

imply that sc /∈ Cν(R). Hence, a/b = 0 in RCν (R), which is what we wanted to
prove. �
Proof of Proposition 2.8. Applying Lemma 2.9 to R (with S = {1, b, b2, . . .}) and
R′ (with S′ = R′ \Cν(R

′)) and the valuation ν1, we obtain that the canonical maps
Rp −→ (Rb)Cν1 (Rb) and R′

Cν1 (R′) −→ R
(1)

p(1) are isomorphisms. Hence, to prove

the first assertion, it suffices to show that the canonical map (Rb)Cν1 (Rb) ←−
R′
Cν1 (R′) is an isomorphism.

Since R′ ⊆ Rb and Cν1(R
′) = R′ ∩ Cν1(Rb), we have that R′

Cν1 (R′) −→
(Rb)Cν1 (Rb) is injective. On the other hand, any element (a/bn)/(c/bm) in
(Rb)Cν1 (Rb) can be written as (abm/1)/(cbn/1), which is the image of abm/cbn.
Hence the map

R′
Cν1 (R′) −→ (Rb)Cν1 (Rb)

is surjective and consequently an isomorphism.
Set R0 = R/J (b) and consider the induced map R0 −→ R(1). Since the canon-

ical map R −→ R0 is surjective, to prove the surjectivity of R −→ R(1)/p(1), it
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suffices to show that R0 −→ R(1)/p(1) is surjective. For an element α ∈ R(1),
we write α = p/q where p = P(a1/b, . . . , ar/b) and q = Q(a1/b, . . . , ar/b) for
some

P(X1, . . . ,Xr),Q(X1, . . . ,Xr) ∈ R0[X1, . . . ,Xr ].
Set p0 = P(0, . . . ,0) and q0 = Q(0, . . . ,0). Then

p1 := p − p0 =
r∑

i=1

ai/b · Pi(a1/b, . . . , ar/b)

and

q1 := q − q0 =
r∑

i=1

ai/b · Qi(a1/b, . . . , ar/b)

for some Pi,Qi ∈ R0[X1, . . . ,Xr ], 1 ≤ i ≤ r . Since ν1(ai/b) > 0, we obtain that
ν1(p1) > 0 and ν1(q1) > 0. This implies that

ν1(q0) = 0, (3)

ν1(q0q) = 0, (4)

and
ν1(q0p1 − p0q1) > 0. (5)

Therefore,
p/q − p0/q0 = (q0p1 − p0q1)/q0q ∈ p(1).

It remains to prove that p0/q0 ∈ R0. Since ν1(q1) > 0, also ν(q1) > 0. Hence
ν(q0) = ν(q−q1) = 0, and consequently q0 is a unit in R0. Therefore p0/q0 ∈ R0.

To finish our proof, it suffices to show that the kernel of R −→ R(1)/p(1) is p.
This follows immediately from the definition of p and p(1) as the centers of ν1 on
R and R(1). �

Lemmas 2.10 and 2.11 are generalizations of Lemma 2.18 and Corollary 2.20 of
[9], respectively. The proofs presented there can be adapted to our more general
case. We include the proofs here for convenience of the reader.

Lemma 2.10. For each local blowing up Rp −→ R̃(1) with respect to ν1, there

exists a local blowing up R −→ R(1) with respect to ν such that R̃(1) � R
(1)

p(1) .

Proof. We consider the local blowing up Rp −→ R̃(1) given by

R̃(1) = R̃′
Cν1 (R̃′) for R̃′ = Rp/J (β)[α1/β, . . . , αr/β].

Choose a1, . . . , ar , b ∈ R such that for each i, 1 ≤ i ≤ r , we have �(ai)/�(b) =
αi/β where � : R −→ Rp is the canonical map. If ν(ai) < ν(b) for some i, 1 ≤
i ≤ r , then we have ν1(αi) = ν1(β). Choose i so as to minimize the value ν(ai)

or, in other words, so that ν(ai) ≤ ν(aj ) for all j ∈ {1, . . . , r}. Set

R̃′′ := Rp/J (αi)

[
α1

αi

, . . . ,
αi−1

αi

,
β

αi

,
αi+1

αi

, . . . ,
αr

αi

]
.
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Then R(1) � R̃′′
Cν1 (R̃′′). Hence, after a suitable permutation of the set {a1, . . . ,

ar , b}, we may assume that ν(ai) ≥ ν(b) for every i, 1 ≤ i ≤ r . Consider the local
blowing up

R(1) = R′
Cν (R′) for R′ = R/J (b)[a1/b, . . . , ar/b]

with respect to ν. It is straightforward to prove that R
(1)

p(1) � R̃(1). �

Lemma 2.11. For each local blowing up R/p −→ R
(1)

with respect to ν2, there

exists a local blowing up R −→ R(1) with respect to ν such that R(1)/p(1) � R
(1)

and Rp � R
(1)

p(1) .

Proof. For an element a ∈ R, we denote its image under the canonical map

R −→ R/p

by a. Then

R
(1) = R

′
Cν2 (R

′
)

with R
′ = (R/p)/J (b)[a1/b, . . . , ar/b]

for some a1, . . . , ar , b ∈ R \ p. Since ν2(ai) ≥ ν2(b), we have ν(ai) ≥ ν(b) for
every i, 1 ≤ i ≤ r . Then we can consider the local blowing up

R(1) = R′
Cν (R′) with R′ = R/J (b)[a1/b, . . . , ar/b]

with respect to ν. It is again straightforward to prove that R(1)/p(1) � R
(1)

and
Rp � R

(1)

p(1) . �

3. Associated Prime Ideals of R

Let R be a Noetherian ring. The main results of this section are the following.

Proposition 3.1. There exists a blowing up X −→ SpecR such that X has no
embedded components and is locally irreducible as a topological space.

Let R be a local Noetherian ring, and ν a valuation centered in R.

Corollary 3.2. There exists a local blowing up R −→ R(1) with respect to ν

such that Nil(R(1)) is the only associated prime of R(1).

We start with the following lemma.

Lemma 3.3. Let R be a Noetherian ring, not necessarily local. Let N = Nil(R).
Fix a finite collection of elements a1, . . . , ar ∈ R, b ∈ R \ N , and J (b) as in (1).
Let

R′ = R/J (b)[a1/b, . . . , ar/b] ⊆ Rb.

Then, for every c′ ∈ R′, the ideal annR′(c′) can be written as annR′(c/1) for some
c ∈ R. Moreover, if annR′(c′) is prime, then annR(bn0c) is a prime ideal of R for
some n0 ∈N.
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Proof. Choose c ∈ R such that c′ = c/bl for some l ∈ N. Fix a′ ∈ R′ and write
a′ = a/bm for some m ∈ N and a ∈ R. Then we have

a′ ∈ annR′(c′) ⇐⇒ acbn = 0 for some n ∈ N ⇐⇒ a′ ∈ annR′(c/1).

Now assume that annR′(c′) is prime and set R0 := R/J (b). Then

annR0(c/1) = annR′(c′) ∩ R0

is also prime. Moreover,

π−1(annR0(c/1)) =
∞⋃

n=1

annR(bnc), (6)

where π : R −→ R/J (b) is the canonical epimorphism. Indeed,

a ∈ π−1(annR0(c/1)) ⇐⇒ ac/1 = 0 in Rb

⇐⇒ bnac = 0 in R for some n ∈N

⇐⇒ a ∈ ⋃∞
n=1 annR(bnc).

Since R is Noetherian and

annR(bc) ⊆ annR(b2c) ⊆ · · · ⊆ annR(bnc) ⊆ · · · ,

we have

annR(bn0c) =
∞⋃

n=1

annR(bnc) for some n0 ∈ N. (7)

By (6) and (7) we conclude that annR(bn0c) is a prime ideal of R. �

Corollary 3.4. Keep the notation of Lemma 3.3. The natural map

SpecR′ −→ SpecR

induces a bijection between Ass(R′) and the set of associated primes of Ass(R)

not containing b.

Corollary 3.5. Keep the notation of Lemma 3.3. Let S ⊂ R′ be a multiplicative
set. Put R(1) = R′

S . If N is the only associated prime ideal of R, then Nil(R(1)) is
the only associated prime ideal of R(1).

Proof. By Theorem 6.2 of [8] we have Ass(R(1)) = Ass(R′) ∩ Spec(R(1)). This
and Lemma 3.3 guarantee that |Ass(R(1))| ≤ |Ass(R)| = 1. Consequently, R(1)

has only one associated prime ideal, say q. The primary decomposition theorem
now gives us that q = Nil(R(1)), which is what we wanted to prove. �

Corollary 3.6. Assume, in addition, that R is local and ν is a valuation centered
in R. For a local blowing up R −→ R(1), if N is the only associated prime ideal
of R, then Nil(R(1)) is the only associated prime ideal of R(1).

We will use Corollary 3.6 throughout this paper without always mentioning it
explicitly.
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Proof of Proposition 3.1. Let (0) = ⋂n
j=1 Qj be a primary decomposition of (0)

in R such that the ideals Pj := √
Qj are pairwise distinct. Recalling the Qj , if

necessary, we may assume that there is s ≤ n such that P1, . . . ,Ps are the minimal
primes of R, whereas Ps+1, . . . ,Pn are the embedded components of SpecR.

Let

J :=
( n∏

j=s+1

Pj

) s∑
j=1

( ⋂
1≤i≤s

i �=j

Qi

)
.

Note that if s = 1, then
∑s

j=1(
⋂

1≤i≤s
i �=j

Qi) = R and J = ∏n
j=2 Pj .

Clearly J �⊂ N . Let X be the blowing up of SpecR along the ideal J . We
claim that X satisfies the conclusion of the proposition. The scheme X is a union
of finitely many affine charts of the form SpecR′, where R′ is as in Lemma 3.3.
It suffices to check the conclusion of the proposition with X replaced by SpecR′.
Moreover, the ideal

∑s
j=1(

⋂
1≤i≤s
i �=j

Qi) has a set of generators each of which is

contained in (
⋂

1≤i≤s
i �=j

Qi) for some j ∈ {1, . . . , s}, say, in
⋂

2≤i≤s Qi . Therefore,

we may assume, in addition, that b ∈ (
∏n

j=s+1 Pj )(
⋂

2≤i≤s Qi).
By Corollary 3.4, R′ has a unique associated prime ideal Q′, and the natural

preimage of Q′ is Q1. This completes the proof. �

Remark 3.7. If I is the only associated prime ideal of R, then for every b /∈ N ,
we have J (b) = (0). In this case we do not need to mention the ideal J (b) in the
definition of a local blowing up. We will use this throughout this paper without
mentioning it explicitly.

4. Making Rred Regular

Let R be a local ring, and ν a valuation centered on R. Assume that ν = ν1 ◦ ν2
and denote by p the center of ν1 on R. As usual, we denote by N the nilradical
of R, and for a local blowing up R −→ R(1) (as in Definition 2.2), we denote
the nilradical of R(1) by N(1). Also, as usual, p(1) is the center of ν1 in R(1) as
in (2). Assume that N is the only associated prime ideal of R. The main goal of
this section is to prove the following proposition.

Proposition 4.1. Assume that (Rp)red and R/p are regular. Then there exists a
ν1-compatible local blowing up R −→ R(1) such that (R(1))red is regular. More-
over, for every local blowing up R(1) −→ R(2) along an ideal (b, a1, . . . , ar ) with
b /∈ p(1) and a1, . . . , ar ∈ N(1), we have that (R(2))red is regular.

To prove Proposition 4.1, we need a few lemmas.

Lemma 4.2. Assume that (Rp)red is regular. Then there exists a ν1-compatible
local blowing up R −→ R(1) such that the R(1)/p(1)-module p(1)/((p(1))2 +
N(1)) is free. Moreover, if y

(1)
1 , . . . , y

(1)
r are elements of p(1) whose images in
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p(1)/((p(1))2 + N(1)) form a basis of p(1)/((p(1))2 + N(1)), then their images in

(R
(1)

p(1) )red form a regular system of parameters of (R
(1)

p(1) )red.

Lemma 4.3. Let π : R −→ R(1) be a local blowing up along an ideal (b, a1,

. . . , ar ) with b /∈ p and a1, . . . , ar ∈ N . If p/(p2 + N) is a free R/p-module, then

p(1)/((p(1))2 + N(1))

is a free R(1)/p(1)-module.

Lemma 4.4. Take y1, . . . , yr ∈ p and x1, . . . , xt ∈ m \ p whose images form a
regular system of parameters of (Rp)red and R/p, respectively. If p/(p2 + N) is
an R/p-free module with basis y1 + (p2 + N), . . . , yr + (p2 + N), then Rred is
regular.

Proof of Proposition 4.1, assuming Lemmas 4.2, 4.3, and 4.4. We apply Lem-
ma 4.2 to obtain a ν1-compatible local blowing up R −→ R(1) and y

(1)
1 , . . . , y

(1)
r ∈

R(1) such that their images in p(1)/((p(1))2 + N(1)) form an (R(1))red- basis and

their images in (R
(1)

p(1) )red form a regular system of parameters. Moreover, by

Proposition 2.8, R(1)/p(1) is regular. Also, by Lemma 4.3 and Proposition 2.8, for
every local blowing up R(1) −→ R(2) along an ideal (b, a1, . . . , ar ) with b /∈ p(1)

and a1, . . . , ar ∈ N(1), the hypotheses of Lemma 4.4 are satisfied for R(2). Hence,
we obtain that (R(1))red and (R(2))red are regular. �

We now proceed with the proofs of Lemmas 4.2, 4.3, and 4.4.

Lemma 4.5. Take generators y1, . . . , yr , yr+1, . . . , yr+s of p and b /∈ p. Let

π : R −→ R(1)

be the local blowing up along the ideal (b, y1, . . . , yr ). Set

y
(1)
i = π(yi)/b for 1 ≤ i ≤ r and y

(1)
r+k = π(yr+k) for 1 ≤ k ≤ s.

Then p(1) is generated by y
(1)
1 , . . . , y

(1)
r+s .

Proof. Obviously y
(1)
i ∈ p(1) for every i, 1 ≤ i ≤ r + s. Take an element

p/q ∈ p(1). This implies that p = p(y1/b, . . . , yr/b) for some p(X1, . . . ,Xr) ∈
R[X1, . . . ,Xr ] (see Remark 3.7). If we set p0 = p(0, . . . ,0), then

p = p0 + y1

b
p1 + · · · + yr

b
pr for some p1, . . . , pr ∈ R′.

This implies that p0 ∈ p. Hence, there exist a1, . . . , ar+s ∈ R such that p0 =
a1y1 + · · · + ar+syr+s . Thus

p

q
=

r∑
i=1

π(bai) + pi

q
y

(1)
i +

s∑
k=1

π(ar+k)

q
y

(1)
r+k ∈ (y

(1)
1 , . . . , y

(1)
r+s)R

(1).

This concludes our proof. �
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Proof of Lemma 4.2. Since (Rp)red is regular, there are elements y1, . . . , yr ∈ p

such that their images in (Rp)red form a regular system of parameters. The first
step is to reduce to the case where y1, . . . , yr generate p.

Assume that y1, . . . , yr do not generate p. Choose yr+1, . . . , yr+s ∈ p such
that y1, . . . , yr , yr+1, . . . , yr+s generate p. For each k, 1 ≤ k ≤ s, we can find
bk ∈ R \ p, b1k, . . . , brk ∈ R, and hk ∈ (y1, . . . , yr )

2 such that

bkyr+k + b1ky1 + · · · + brkyr + hk ∈ N.

Consider the local blowing up π : R −→ R(1) along (b1, y1, . . . , yr ). It follows
that

π(b1)(y
(1)
r+1 + π(b11)y

(1)
1 + · · · + π(br1)y

(1)
r + h

(1)
1 ) ∈ N(1)

and

π(bk)y
(1)
r+k + π(b1b1k)y

(1)
1 + · · · + π(b1brk)y

(1)
r + h

(1)
k ∈ N(1) for 2 ≤ k ≤ s,

where y
(1)
i = π(yi)/b1 for 1 ≤ i ≤ r and y

(1)
r+k = π(yr+k) and some h

(1)
k ∈

(y
(1)
1 , . . . , y

(1)
r )2 for 1 ≤ i ≤ s. Since N(1) is prime and π(b1) /∈ N(1), we obtain

that
y

(1)
r+1 + π(b11)y

(1)
1 + · · · + π(br1)y

(1)
r + h

(1)
1 ∈ N(1).

Consequently,

(y
(1)
1 , . . . , y(1)

r , y
(1)
r+1, . . . , y

(1)
r+s)R

(1) = (y
(1)
1 , . . . , y(1)

r , y
(1)
r+2, . . . , y

(1)
r+s)R

(1).

We proceed inductively to obtain a ν1-compatible local blowing up R −→ R(s)

such that

(y
(s)
1 , . . . , y(s)

r , y
(s)
r+1, . . . , y

(s)
r+s)R

(s) = (y
(s)
1 , . . . , y(s)

r )R(s).

By Lemma 4.5 we have p(s) = (y
(s)
1 , . . . , y

(s)
r , y

(s)
r+1, . . . , y

(s)
r+s)R

(s), and by

Lemma 2.8 the images of y
(s)
1 , . . . , y

(s)
r in (R

(s)

p(s) )red form a regular system of

parameters. This means that y
(s)
1 , . . . , y

(s)
r generate p(s). Thus we have reduced

the problem to the case where (y1, . . . , yr ) generate p and will make this assump-
tion from now on.

Now, the only nontrivial fact that remains to be checked is that the images of
y1, . . . , yr in p/p2 + N are R/p-linearly independent. Take a1, . . . , ar ∈ R such
that

a1y1 + · · · + aryr ∈ p2 + N.

Since the images of y1, . . . , yr in (Rp)red form a regular system of parameters,
their images in pRp/(p

2 + N)Rp form an Rp/pRp-basis of pRp/(p
2 + N)Rp.

This implies that a1/1, . . . , ar/1 ∈ pRp and consequently a1, . . . , ar ∈ p.
This completes the proof of the lemma. �

Proof of Lemma 4.3. Take y1, . . . , ys ∈ p such that their images form an R/p-
basis of p/(p2 + N). We claim that the images of π(y1), . . . , π(ys) form an
R(1)/p(1)-basis of p(1)/((p(1))2 + N(1)). Take an element α ∈ p(1). Then α = p/q
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where p,q ∈ R′ := R[a1/b, . . . , ar/b] with ν1(p) > 0 and ν(q) = 0. Set p0 =
p(0, . . . ,0) and write

p = p0 + a1

b
p1 + · · · + ar

b
pr for some p1, . . . , pr ∈ R′.

This implies that p0 ∈ p. By our assumption there exist c1, . . . , cs ∈ p, g ∈ p2, and
h ∈ N such that

p0 = c1y1 + · · · + csyr + g + h.

Consequently,

α = π(c1)

q
π(y1) + · · · + π(cs)

q
π(ys) + π(g)

q
+ π(h)

q
+ a1

b

p1

q
+ · · · + ar

b

pr

q
.

Since a1, . . . , ar , h ∈ N , we have that
π(h)

q
+ a1

b

p1

q
+ · · · + ar

b

pr

q
∈ N(1).

This and the fact that π(g)/q ∈ (p(1))2 imply that the images of π(y1), . . . , π(yr)

generate p(1)/((p(1))2 + N(1)).
Now assume that there exists αi = (ai/b

li )/(ci/b
mi ) ∈ R(1), 1 ≤ i ≤ r , such

that
α1π(y1) + · · · + αrπ(yr) ∈ (p(1))2 + N(1).

Then there exists n ∈N such that

a1b
ny1 + · · · + arb

nyr ∈ p2 + N.

This implies that aib
n ∈ p for every i, 1 ≤ i ≤ r . Since b /∈ p, this implies that

a1, . . . , ar ∈ p. Therefore, α1, . . . , αr ∈ p(1), which concludes our proof. �

Proof of Lemma 4.4. Set p′ = {a+N ∈ Rred | a ∈ p}. Since the images of the yi in
p/(p2 +N) form a basis of p/(p2 +N), we conclude that (y1, . . . , yr )+p2 +N =
p. Applying Nakayama’s lemma (corollary of Theorem 2.2 of [8]), we conclude
that (y1, . . . , yr ) + N = p, and consequently y1 + N, . . . , yr + N generate p′.

Since the images of y1, . . . , yr , x1, . . . , xt in Rred generate m′ = {a+N ∈ Rred |
a ∈ m}, we conclude that r + t ≥ dimRred. Also, since r = dim(Rp)red = ht(p′)
and t = dim(R/p) = ht(m/p) = ht(m′/p′), we have

dim(Rred) = ht(m′) ≥ ht(p′) + ht(m′/p′) = r + t ≥ dim(Rred).

Therefore, r + t = dim(Rred), and hence Rred is regular. �

5. Making Nn/Nn+1 Free

Let R be a local ring, and ν a valuation centered on R. Assume that

ν = ν1 ◦ ν2

and denote by p the center of ν1 on R. As usual, we set N = Nil(R) and Np :=
Nil(Rp). Also, for a local blowing up R −→ R(k), we set N(k) = Nil(R(k)) and

Np(k) := Nil(R(k)

p(k) ). Assume that N is the only associated prime ideal of R. The
main goal of this section is to prove the following proposition.
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Proposition 5.1. Assume that Nn
p/Nn+1

p is an (Rp)red-free module for every

n ∈ N. Then there exists a local blowing up R −→ R(1) with respect to ν along an
ideal (b, a1, . . . , ar ) with b /∈ p and a1, . . . , ar ∈ N such that the (R(1))red-module
Nn

(1)/N
n+1
(1) is free for every n ∈ N.

To prove Proposition 5.1, we need some preliminary results.

Lemma 5.2. Take elements y1, . . . , yr+s ∈ Nn such that their images in Nn/Nn+1

generate Nn/Nn+1 as an Rred-module. Consider the local blowing up π : R −→
R(1) along the ideal (b, y1, . . . , yr ) for some b ∈ R \ N . Set

y
(1)
i = π(yi)/b for 1 ≤ i ≤ r and y

(1)
r+k = π(yr+k) for 1 ≤ k ≤ s.

Then the images of y
(1)
1 , . . . , y

(1)
r+s in Nn

(1)/N
n+1
(1) form a set of generators of this

module.

Proof. Take an element p/q ∈ Nn
(1)

. As in proof of the Lemma 4.5, we can write

p = p0 + y1

b
p1 + · · · + yr

b
pr for some p1, . . . , pr ∈ R′

with p0 ∈ Nn. This means that there exist a1, . . . , ar+s ∈ R such that p0 −a1y1 −
· · · − ar+syr+s = y0 ∈ Nn+1. Consequently,

p

q
−

r∑
i=1

π(bai) + pi

q
y

(1)
i −

r+s∑
i=r+1

π(ai)

q
y

(1)
i = π(y0)

q
∈ Nn+1

(1) .

This concludes our proof. �

Lemma 5.3. Under the same assumptions as in the previous lemma, if the im-
ages of y1, . . . , yr in Nn/Nn+1 are Rred-linearly independent, then the images of
a

(1)
1 , . . . , a

(1)
r in Nn

(1)/N
n+1
(1) are (R(1))red-linearly independent.

Proof. Take elements α1, . . . , αr ∈ R(1) such that

α1y
(1) + · · · + αry

(1) ∈ Nn+1
(1) . (8)

We have to show that α1, . . . , αr ∈ N(1). For each i, 1 ≤ i ≤ r , we write αi =
(ai/b

ri )/(ci/b
si ) for some ai, ci ∈ R and ri , si ∈ N. Then equation (8) implies

that there exist l ∈N and c ∈ R \ p such that

a1b
lcy1 + · · · + arb

lcyr ∈ Nn+1.

Since y1 + Nn+1, . . . , yr + Nn+1 are Rred-linearly independent, this implies that

aib
lc ∈ N for every i,1 ≤ i ≤ r.

Since N is prime (this is a consequence of the fact that it is the only associated
prime ideal of R) and b, c ∈ R \ N , we obtain that a1, . . . , ar ∈ N . Consequently,
α1, . . . , αr ∈ N(1), which concludes our proof. �
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Proof of Proposition 5.1. By assumption we have that Nn
p/Nn+1

p is (Rp)red-free
for every n ∈ N. Hence, by Proposition 2.8, for every ν1-compatible local blow-
ing up R −→ R(1), we have that Nn

p(1)/N
n+1
p(1) is (R

(1)

p(1) )red-free for every n ∈ N.
Therefore, it suffices to show that, for a fixed n ∈ N, there exists a local blowing
up R −→ R(1) along an ideal (b, a1, . . . , ar ) with b /∈ p and a1, . . . , ar ∈ N such
that Nn

(1)/N
n+1
(1) is (R(1))red-free.

Take elements y1/b1, . . . , yr/br ∈ Nn
p , y1, . . . , yr ∈ R, and b1, . . . , br ∈ R \ p

such that
y1/b1 + Nn+1

p , . . . , yr/br + Nn+1
p

form a basis of Nn
p/Nn+1

p . We observe first that since N is prime and yi/bi ∈ Nn
p ,

we have yi ∈ Nn for each i, 1 ≤ i ≤ r . We claim that if

y1 + Nn+1, . . . , yr + Nn+1

generate Nn/Nn+1 as an Rred-module, then this module is free. Indeed, if there
exist ai + N ∈ Rred such that a1y1 + · · · + aryr ∈ Nn+1, then

a1b1/1 · y1/b1 + · · · + arbr/1 · yr/br = (a1y1 + · · · + aryr)/1 ∈ Nn+1
p .

This implies that, for each i, 1 ≤ i ≤ r , aibi/1 ∈ Np and consequently aibici ∈ N

for some ci ∈ R \ p. Since N is prime and b1c1, . . . , brcr ∈ R \ N , we conclude
that a1, . . . , ar ∈ N , which is what we wanted to prove.

If y1 + Nn+1, . . . , yr + Nn+1 do not generate Nn/Nn+1 (as an Rred-module),
then we take yr+1, . . . , yr+s ∈ Nn such that y1 +Nn+1, . . . , yr+s +Nn+1 generate
Nn/Nn+1. For each k, 1 ≤ k ≤ s, since yr+k ∈ Nn, there exist bk ∈ R \ p such
that

bkyr+k − b1ky1 − · · · − brkyr ∈ Nn+1 (9)

for some b1k, . . . , brk ∈ R. Consider now the local blowing up along the ideal
(b1, y1, . . . , yr ). Set

y
(1)
i := π(yi)/b1 ∈ R(1) for each i,1 ≤ i ≤ r

and
y

(1)
r+k := π(yr+k) ∈ R(1) for each k,1 ≤ k ≤ s.

From equation (9) we obtain that

y
(1)
r+1 − π(b11)y

(1)
1 − · · · − π(br1)y

(1)
r ∈ Nn+1

(1)

and
π(bk)y

(1)
r+k − π(b1b1k)y

(1)
1 − · · · − π(brbrk)y

(1)
r ∈ Nn+1

(1)

for every k, 2 ≤ k ≤ s. Consequently, y
(1)
r+1 + Nn+1

(1) is generated in the (R(1))red-

module Nn
(1)/N

n+1
(1) by y

(1)
1 + Nn+1

(1) , . . . , y
(1)
r + Nn+1

(1) . Moreover, using Lem-

ma 5.2, we obtain that Nn
(1)/N

n+1
(1) is generated as an R

(1)
red-module by the images

of
y

(1)
1 , . . . , y(1)

r , y
(1)
r+2, . . . , y

(1)
r+s .

Also, by Lemma 5.3 the images of y
(1)
1 , . . . , y

(1)
r in Nn

(1)/N
n+1
(1) are (R(1))red-

linearly independent.
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We proceed inductively to obtain a local blowing up R −→ R(s) such that the
(R(s))red-module Nn

(s)/N
n+1
(s) is generated by the images of y

(s)
1 , . . . , y

(s)
r and the

images of y
(s)
1 , . . . , y

(s)
r in Nn

(s)/N
n+1
(s) are (R(s))red-linearly independent. �

6. Proof of the Main Theorem

In this section we present the proof of our main theorem.

Proof of Theorem 1.1. We will prove the assertion by induction on the rank. Since
all rank one valuations admit local uniformization by assumption, we fix n ∈ N

and will prove that if all valuations of rank smaller than n admit local uniformiza-
tion, then also valuations of rank n admit local uniformization.

Let ν be a valuation centered in the local ring R ∈ Ob(M) such that rk(ν) = n.
By Lemma 3.2 there exists a local blowing up R −→ R(1) with respect to ν such
that Nil(R(1)) is the only associated prime ideal of R(1). Hence, replacing R by
R(1), we may assume that the only associated prime ideal of R is Nil(R).

Decompose ν as ν = ν1 ◦ ν2 for valuations ν1 and ν2 with rank smaller
than n. By assumption we know that ν1 and ν2 admit local uniformization. Since
ν1 admits local uniformization, by Lemma 2.10 there exists a local blowing
up R −→ R(1) with respect to ν such that R

(1)

p(1) is regular and Nn
p(1)/N

n+1
p(1) is

(R
(1)

p(1) )red-free for every n ∈ N. Replacing R by R(1), we may assume that (Rp)red

is regular and Nn
p/Nn+1

p is (Rp)red-free for every n ∈N.
Since ν2 admits local uniformization, we can use Lemma 2.11 to obtain that

there exists a local blowing up R −→ R(1) with respect to ν such that (R
(1)

p(1) )red

and R(1)/p(1) are regular and Nn
p(1)/N

n+1
p(1) is (R

(1)

p(1) )red-free for every n ∈ N. Re-

placing R by R(1), we can assume that (Rp)red and R/p are regular and that
Nn
p/Nn+1

p is (Rp)red-free for every n ∈N.
Since (Rp)red and R/p are regular, we apply Proposition 4.1 to obtain a ν1-

compatible local blowing up R −→ R(1) such that (R(1))red is regular. Using
Proposition 2.8, we have that Nn

p(1)/N
n+1
p(1) is a free (R

(1)

p(1) )red-module for ev-

ery n ∈ N. By Proposition 5.1 there exists a p(1)-compatible local blowing up
R(1) −→ R(2) such that Nn

(2)/N
n+1
(2) is an (R(2))red-free module for every n ∈ N.

Moreover, since this local blowing up is along an ideal (b, a1, . . . , ar ) with
b /∈ p(1) and a1, . . . , ar ∈ N(1), we use Proposition 4.1 to obtain that (R(2))red
is regular. This concludes our proof. �
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