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Belyi’s Theorem for Complete
Intersections of General Type

A. Javanpeykar

Abstract. We give a Belyi-type characterization of smooth com-
plete intersections of general type over C that can be defined over Q.
Our proof uses the higher-dimensional analogue of the Shafarevich
boundedness conjecture for families of canonically polarized vari-
eties, finiteness results for maps to varieties of general type, and rigid-
ity theorems for Lefschetz pencils of complete intersections.

1. Introduction

The aim of this paper is to prove a Belyi-type characterization of smooth complete
intersections of general type over C that can be defined over Q. In other words,
we generalize Belyi’s theorem for curves to certain higher-dimensional varieties.
To motivate this, let us briefly discuss applications of Belyi’s theorem for curves.

Belyi’s theorem for curves was famously used by Grothendieck to show that
the action of the absolute Galois group of Q on the set of Galois dessins is faithful
[35, Thm. 4.7.7]. This result started a flurry of activity on dessins d’enfants [32].
Subsequently, the action of the Galois group of Q on the set of connected com-
ponents of the coarse moduli space of surfaces of general type was proven to be
faithful by Bauer, Catanese, and Grunwald [2]; see also the work of Easton and
Vakil [9] and González-Diez and Torres-Teigell [14].

To state our main theorem, let Q → Q be the algebraic closure of Q in C. Let
X be a smooth projective connected curve over C. If X can be defined over Q,
then Belyi [4] proved that there exists a morphism X → P1

C
ramified over at most

three points. Conversely, by classical results of Weil and Grothendieck [15; 19;
42], if there exists a nonconstant morphism X → P1

C
ramified over precisely three

points, then X can be defined over Q. In other words, X can be defined over Q if
and only if X admits a rational function with at most three critical points.

The main result of this paper states that a smooth complete intersection X of
general type over C can be defined over Q if and only if X admits a Lefschetz
function with only three critical points (see Definition 4.1). Here by a Lefschetz
function on X is meant a rational function X ��� P1

C
on X that factors via a

Lefschetz pencil X ��� P1
C

and a rational function P1
C

→ P1
C

on the projective
line.

Theorem 1.1. Let X be a smooth complete intersection of general type over C.
Then the following are equivalent:
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(1) the variety X can be defined over Q, and
(2) there exists a Lefschetz function X ��� P1

C
with at most three critical points.

For two-dimensional varieties, our theorem follows from a result of González-
Diez [13, Thm. 1]. Our restriction to complete intersections is necessary to prove
the rigidity of Lefschetz functions (see Section 2.3). Moreover, our restriction to
varieties of general type allows us to use results from the MMP specific to vari-
eties of general type (see Theorem 2.2). It also allows us to invoke boundedness
results for families of canonically polarized varieties (Theorem 2.4).

To prove Theorem 1.1, we follow closely the strategy of González-Diez. In-
deed, the proof of González-Diez combines (1) the well-known finiteness results
for minimal models of surfaces with (2) boundedness and (3) rigidity theorems
due to Arakelov [1] and Parshin [26; 27] for families of curves. Although the
boundedness of families of canonically polarized varieties has been proven by
Kovács and Lieblich [24], generalizing the strategy of González-Diez to higher-
dimensional varieties of general type poses several technical difficulties, which
we now briefly discuss.

For instance, the rigidity results for families of curves of genus at least two
invoked by González-Diez do not hold in general since they fail for several fam-
ilies of higher-dimensional varieties (see [22, Ex. 3.1]). To remedy the situation,
our novel contribution is a rigidity theorem for certain Lefschetz pencils (Theo-
rem 2.5). In the proof of this result, we use the theory of Higgs bundles [33; 34].

In dimension at least five, the termination of flips is not known currently and
complicates proving the appropriate finiteness results for minimal models of va-
rieties of general type (as used by González-Diez for two-dimensional varieties).
To circumvent these difficulties, we instead use a classical theorem of Kobayashi
and Ochiai [18] to prove a higher-dimensional analogue (Theorem 2.2) of the
finiteness results used by González-Diez.

Conventions

The base field is an algebraically closed field k of characteristic zero.
A variety over a field k is an integral quasi-projective scheme over k. A curve

is a one-dimensional variety. A smooth projective variety X is of general type if
the Kodaira dimension of (the canonical bundle of) X equals dimX. A projective
variety X is of general type if, for some (hence any) desingularization X′ → X

with X′ projective, the smooth projective variety X′ is of general type.
The group of automorphisms of the field of complex numbers C is denoted by

Aut(C).

2. Finiteness Results

In this section, we first establish a finiteness result for varieties of general type
dominated birationally by a fixed variety; see Theorem 2.2. To prove this finite-
ness result, we will use basic results in the minimal model program such as Mori’s
cone theorem.
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Next, we state a finiteness result (due to Kovács and Lieblich) for the number
of deformation types of a family of canonically polarized varieties over a fixed
base space; see Theorem 2.4. This theorem has a long history going back to Sha-
farevich, and we refer to [23] for a discussion of this.

Finally, following the strategy of Viehweg and Zuo [40] and Yi Zhang [43], we
prove a rigidity theorem for certain Lefschetz fibrations; see Theorem 2.5.

2.1. An Application of the Minimal Model Program

Our first finiteness result (Theorem 2.2) concerns varieties of general type domi-
nated birationally by a fixed variety.

Lemma 2.1. Let X be a smooth projective variety. Let H be an ample line bundle
on X, and c a real number. Then, there are only finitely many numerical equiva-
lence classes [L] ∈ N1(X) of big and nef line bundles L on X such that

LdimX−1 · H ≤ c.

Proof. Write n = dimX. Replacing H by a positive multiple if necessary, we may
and do assume that H − KX is ample. Let L be a big and nef line bundle on X

such that Ln−1 · H ≤ c. Since the line bundle H − KX + L is ample,

(H + L)n−1 · KX < (H + L)n =
n∑

i=0

(
n

i

)
Hi · Ln−i . (2.1)

By the Hodge index theorem [3, Prop. 2.5.1], for all i = 1, . . . , n, the inequality

Hi · Ln−i ≤ (H · Ln−1)i

holds. Since Ln ≤ H · Ln−1, by (2.1) we conclude that

(H + L)n−1 · KX ≤ H · Ln−1 +
n∑

i=1

(
n

i

)
(H · Ln−1)i

≤ c +
n∑

i=1

(
n

i

)
ci

= c

(
cn + c − 2

c − 1

)
.

Matsusaka’s big theorem [20] and this inequality imply that there exists a pos-
itive integer N = N(c,n), depending only on c and n, such that N(H + L) is
very ample. Thus, there is an integer d (depending only on c, H , and n) such that
N(H +L) defines a closed immersion f : X → Pd with f ∗OPd (1) = N(H +L).
Therefore, the set of numerical equivalence classes of N(H + L), as L runs
through all big and nef line bundles on X such that Ln−1 · H ≤ c, is finite. This
concludes the proof of the lemma. �

As an application of Lemma 2.1, we now prove a finiteness statement concerning
varieties of general type dominated birationally by a fixed variety.
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Theorem 2.2. Let Y be a smooth projective variety. Let n be a positive integer, D

an ample line bundle on Pn
k , and d an integer. Then the set of isomorphism classes

of smooth projective varieties of general type X such that there exists a (proper
surjective) birational morphism Y → X and a closed immersion f : X → Pn

k of
D-degree d is finite.

Proof. To prove the theorem, we may and do assume that Y is of general type.
Moreover, to ease the notation, we let O(1) := OPn

k
(1).

Since f ∗O(1) is ample on X, by Mori’s cone theorem ([7, Thm. 6.1] or [21,
Thm. 3.7]), the line bundle KX + (dimY +2)f ∗O(1) is ample (since dimY +2 =
dimX + 2 > dimX + 1). Write L = (dimY + 2)f ∗O(1).

Fix an effective ample divisor H on Y . Then, by Lemma 2.1, to prove the
theorem, it suffices to show that (φ∗L)dimY−1 · H is bounded by a real number
depending only on Y , H , n, D, and d .

To do so, note that since Y is of general type, by [25, Prop. 2.2.7] there exists
a positive integer m with

mKY ≥ H.

Here m depends only on Y and H . It is straightforward to see that

(φ∗L)dimY−1 · H ≤ m(φ∗L)dimY−1 · KY = mLdimY−1 · KX.

Write N = dimY + 2 = dimX + 2. By assumption the real number

mLdimY−1 · KX = mNdimY−1(f ∗O(1))dimY−1 · KX

= mNdimY−1O(1)dimY−1 · (f∗KX)

is (bounded by) a real number depending only on Y , H , n, D, and d . This con-
cludes the proof. �

Remark 2.3. It seems reasonable to suspect that, for X a smooth projective vari-
ety, the set of k-isomorphism classes of smooth projective varieties of general type
Y over k such that there exists a (proper surjective) birational morphism Y → X

is finite. In other words, the conclusion of Theorem 2.2 should hold without the
assumption that the X form a bounded family. Indeed, if dimY ≤ 3, then this is
[36, Thm. 4]. If dimY = 4, then using the current state-of-the-art in the MMP, the
proof of Tsai (given in loc. cit.) also works by the MMP for varieties of general
type (Birkar, Cascini, Hacon, and McKernan [6, Thm. B, p. 11]) and the termina-
tion of flips in dimension four (Hacon, McKernan, and Xu [16, Cor. 1.2]). Thus,
in general, “termination of flips” implies that the conclusion of Theorem 2.2 holds
without the assumption that the X form a bounded family.

2.2. Shafarevich’s Boundedness Conjecture

A smooth projective variety over a field k is canonically polarized if its canonical
bundle ωX/k is ample. If X is canonically polarized, then the Hilbert polynomial
of X is the Hilbert polynomial of ωX/K . Note that canonically polarized varieties
are of general type.
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Let B be a variety over an algebraically closed field k of characteristic zero.
A smooth projective morphism of k-varieties f : Y → B is a family over B if it
has (geometrically) connected fibers. If f1 : Y1 → B and f2 : Y2 → B are families
over B , a morphism from f1 : Y1 → B to f1 : Y2 → B is a morphism of k-varieties
φ : Y1 → Y2 such that f1 = f2 ◦ φ.

If the fibers of a family f : Y → B over B are canonically polarized, then we
say that f is a family of canonically polarized varieties. Moreover, the Hilbert
polynomial of f : Y → B is the Hilbert polynomial of the canonically polarized
variety Yb , where b is some (hence any) closed point of B .

A family f : Y → B over B is trivial if there is a (smooth projective) variety
F over C such that Y is isomorphic to F ×k B over B . A family f : Y → B is
isotrivial if all of its closed fibers are isomorphic. If f : Y → B is a family of
canonically polarized varieties over a smooth curve B , then f is isotrivial if and
only if there exists a finite étale morphism C → B such that Y ×B C → C is a
trivial family over C [17, Lem. 7.3].

Let h be a polynomial. If f : Y → B is a family of canonically polarized vari-
eties with Hilbert polynomial h, then a deformation of Y → B (as a family over
B) is a triple (T , t0,ψ), where T is a connected variety over k, t0 is a closed
point of T , and ψ : Y → B ×k T is a family of canonically polarized varieties
with Hilbert polynomial h over B ×k T such that f : Y → B is isomorphic to
the family Yt0 → B ×k {t0} ∼= B over B . If f1 : Y1 → B and f2 : Y2 → B are
families of canonically polarized varieties with Hilbert polynomial h, then f1

and f2 are deformation equivalent (as families of canonically polarized vari-
eties with Hilbert polynomial h over B) if there is a deformation (T , t0,ψ) of
f1 : Y1 → B and a closed point t ∈ T such that f2 : Y2 → B is isomorphic to
the family Yt → B ×k {t} ∼= B . This defines an equivalence relation on the set of
families Y → B of canonically polarized varieties with Hilbert polynomial h. An
equivalence class (with respect to this equivalence relation) is called a deforma-
tion type. With these definitions, the work of Viehweg and Zuo [37; 38; 41] on
Arakelov inequalities (or “weak boundedness”) was used by Kovács and Lieblich
[24] to prove the following analogue of the Shafarevich boundedness conjecture
for families of canonically polarized varieties:

Theorem 2.4 ([24, Thm. 1.6]). Let B be a smooth variety over C, and h a poly-
nomial. Then the set of deformation types of nonisotrivial families of canonically
polarized varieties Y → B over B with Hilbert polynomial h is finite.

Let f : Y → B be a family of canonically polarized varieties. We say that f :
Y → B is rigid if any deformation (T , t0,ψ) of f has the property that, for all
t in T , the family ψt : Y → B × {t} ∼= B is isomorphic to f : Y → B . In other
words, any deformation of the family Y → B is “trivial”. If dimX − dimB = 1,
then f is rigid [1]. If dimX − dimB > 1, then it is easy to construct nonrigid
families; see [22, Ex. 3.1] or [28]. In [40, Thm. 0.3], it is shown that, for all n ≥ 3
and d ≥ n+2, there exist a smooth variety B and a nonrigid family of canonically
polarized varieties X → B whose fibers are degree d hypersurfaces in Pn+1.
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Thus, there are nonrigid families of hypersurfaces (and complete intersec-
tions). We will show in the next section how to prove the rigidity of a Lefschetz
fibration of complete intersections under suitable assumptions.

2.3. Rigidity of Lefschetz Fibrations

Viehweg and Zuo [41] proved the rigidity of certain families of hypersurfaces by
studying the effect of a deformation on the associated variation of Hodge struc-
tures. Their strategy was applied in the context of Lefschetz pencils on Calabi–
Yau varieties in [43, Thm. 4.1]. In this section, we follow the strategy of Viehweg
and Zuo to prove the rigidity of Lefschetz pencils of smooth complete intersec-
tions (Theorem 2.5).

Any smooth projective variety X over k admits a Lefschetz pencil [8, Ex-
posé XVII, Théorème 2.5]. Note that a Lefschetz pencil on X induces a rational
function X ��� P1

k . A flat proper morphism f : Y → P1
k is a Lefschetz fibration if

there exist a Lefschetz pencil X ��� P1
k and a birational morphism Y → X such

that Y → P1
k factors via X ��� P1

k and Y → X is the blow-up of X along the
axes of the Lefschetz pencil. We will consider only Lefschetz pencils of complete
intersections. Let us be more precise.

A type is a collection of integers T = (d1, . . . , dc;n) that satisfy the inequali-
ties n ≥ 1, c ≥ 1, and 2 ≤ d1 ≤ · · · ≤ dc. A complete intersection of type T over
k is a closed subscheme of codimension c in Pn+c

k given as the zero locus of c

homogeneous equations of degrees d1, . . . , dc.
A family of complete intersections is rigid if any deformation of the family (as

a family of complete intersections) is trivial. We now use the theory of Higgs bun-
dles [33; 34] and prove that any Lefschetz pencil of smooth complete intersections
is rigid under suitable assumptions.

Theorem 2.5. Let T be a type such that T 
= (2;n), (2,2;n), (3;2). If f : Y →
P1

k is a Lefschetz fibration of smooth complete intersections of type T , then f is
rigid.

Proof. To prove the theorem, we reason by contradiction and assume (without
loss of generality) that k = C. Let B0 ⊂ P1

k be the largest open subscheme such
that f is smooth over B0. Write f 0 : Y0 → B0 for the restriction of f to B0.
Suppose that f is nonrigid. Then f 0 is nonrigid as a family of smooth complete
intersections over B0. In particular, the Higgs bundle (E, θ) associated with the
polarized variation of Hodge structures End(Rn

primf 0∗ C)−1,1 on B0 has a nonzero
flat section σ . (Indeed, by Flenner’s infinitesimal Torelli theorem for smooth com-
plete intersections of type T (see [10, Thm. 3.1]), the differential of the period
map associated to the variation of Hodge structures Rn

primf 0∗ C is injective, that is,
for all b in B0, the morphism

H1(Xb,TXb
) −→

⊕
p+q=n

Hom(Hp,q

prim(Xb),Hp−1,q+1
prim (Xb)) (2.2)
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is everywhere injective. Since f 0 admits a nontrivial deformation, the Kodaira–
Spencer map induces a nonzero flat section of R1f 0∗ Tf0 . The existence of the
nonzero flat section now follows from the injectivity of (2.2) and [31, Cor. 12].)

We now use the existence of a nonzero flat section of the Higgs bundle (E, θ)

to prove the theorem. First, note that the nonzero flat section σ of (E, θ) induces
a splitting of Higgs bundles

(E, θ) = ker(σ ) ⊕ ker(σ )⊥,

where ker(σ )⊥ is the orthogonal complement of ker(σ ) with respect to the polar-
ization on E. Let V be the subvariation of Hodge structures of Rn

primf 0∗ C corre-
sponding to the vanishing cycles. Consider the sub-Higgs bundle

E′ = ker(σ ) ∩V

of V and note that En,0 is contained in E′, so that E′ is nonzero. Moreover, again
by the infinitesimal Torelli theorem for smooth complete intersections of type T ,
the vector bundle En,0 is not in ker(σ ). Therefore, the splitting (E, θ) = kerσ ⊕
ker(σ )⊥ is nontrivial and induces a nontrivial splitting of V. This contradicts the
absolute irreducibility of V [31, Cor. 10.23]. �

Remark 2.6. In [22; 29; 39], the rigidity of a Lefschetz pencil with maximal
Yukawa coupling is proven. Moreover, in [30, Ex. 3 after Thm. 3.8, p. 123], Peters
proved the rigidity of families of hypersurfaces with surjective Kodaira–Spencer
map. Note that Theorem 2.5 does not require any hypothesis on the Yukawa cou-
pling or on the Kodaira–Spencer map.

We will say that a type T = (d1, . . . , dc;n) is of general type if d1 + · · · + dc ≥
n + c + 2. Note that the adjunction formula implies that a smooth complete inter-
section of type T is of general type if and only if T is of general type.

Corollary 2.7. Let T be a type of general type, and let B0 ⊂ B = P1
k be a dense

open. Then the set of B-isomorphism classes of Lefschetz fibrations of complete
intersections of type T over B that are smooth over B0 is finite.

Proof. Since T is of general type, any smooth complete intersection of type T is
canonically polarized. Thus, the corollary follows from the boundedness (Theo-
rem 2.4) of smooth families of canonically polarized varieties over B0 and from
the rigidity (Theorem 2.5) of Lefschetz fibrations over B of complete intersections
of type T . �

Corollary 2.8. Let T be a type and let B0 ⊂ P1
k be a dense open. The set of

varieties of general type X such that X admits a Lefschetz pencil X ��� P1
k of

type T which is defined and smooth over B0 is finite.

Proof. This follows from Corollary 2.7 and Theorem 2.2. �
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3. Varieties Defined over Q

A morphism of C-varieties f : X → Y can be defined over Q if and only if there
are a morphism f0 : X0 → Y0 of Q-varieties, an isomorphism X

∼−→ X0 ⊗Q C,

and an isomorphism Y
∼−→ Y0 ⊗Q C such that the diagram

X

f

∼
X0 ⊗Q C

f0⊗Q
C

Y
∼

Y0 ⊗Q C

is commutative. A variety X can be defined over Q if there exists a variety X0

over Q and an isomorphism X
∼−→ X0 ⊗Q C. (Note that X can be defined over

Q if and only if the identity morphism idX : X → X can be defined over Q.)
The aim of this section is to state a criterion for a morphism of projective

varieties over C to be defined over Q. We will follow [11; 12; 13]. Let us recall
how Aut(C) acts on the set of isomorphism classes of projective varieties over C.

For σ in Aut(C) and f in C[x0, . . . , xn], let f σ be the polynomial obtained by
acting with σ on its coefficients. This defines an action

Aut(C) ×C[x0, . . . , xn] →C[x0, . . . , xn], (σ, f ) → f σ

of Aut(C) on the ring C[x0, . . . , xn]. If I is an ideal of C[x0, . . . , xn] and σ is an
automorphism of C, then we define the ideal Iσ to be the image of I under σ . In
other words, Iσ consists of the elements f σ where f ∈ I . This induces an action
of Aut(C) acts on the set of isomorphism classes of projective varieties over C.
For X a projective variety, we let Xσ denote (a representative of the isomorphism
class of) its conjugate under the action of σ ∈ Aut(C).

Lemma 3.1 ([13, pp. 60–61]). Let X be a projective variety over C. Then X can
be defined over Q if and only if the set of isomorphism classes of conjugates Xσ

of X (as σ runs over all elements of Aut(C)) is finite.

For a morphism f : X → Y of C-varieties and σ in Aut(C), we let f σ denote
(a representative of the isomorphism class of) its conjugate.

Lemma 3.2 ([13, pp. 60–61]). Let f : X → Y be a morphism of projective vari-
eties over C. Then f can be defined over Q if and only if the set of isomorphism
classes of conjugates f σ of f is finite.

We now combine our analogue (Theorem 2.2) of Tsai’s finiteness result (see Re-
mark 2.3) with the criteria for a variety to be defined over Q and show that if X is
a variety of general type over C that is dominated by a variety that can be defined
over Q, then X can be defined over Q.
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Lemma 3.3. Let X be a projective variety of general type over C. Let f : Y → X

be a birational morphism, where Y is a projective variety that can be defined
over Q. Then X and f can be defined over Q.

Proof. (We follow the proof of [12, Prop. 3.2].) By resolution of singularities
in characteristic zero there exists a surjective morphism f : Y ′ → X, where Y ′
is a smooth projective variety that can be defined over Q. (Indeed, let Y ′ → Y

be a resolution of singularities with a model over Q.) To prove the lemma, it
suffices to show that the set of (isomorphism classes of) conjugates f σ (with
σ ∈ Aut(C)) is finite. To do so, note that by Lemma 3.1 the set of isomorphism
classes of conjugates Yσ is finite. Moreover, by the Kobayashi–Ochiai finiteness
theorem [18], for all σ ∈ Aut(C), the set of surjective morphisms from Yσ to a
fixed variety of general type is finite. Also, since X is projective, there exists a
closed embedding X ⊂ Pn

C
of some degree d . Note that any conjugate Xσ of X

admits a closed embedding Xσ ⊂ Pn
C

of the same degree d .
Therefore, to conclude the proof, it suffices to show that the set of C-

isomorphism classes of smooth projective varieties of general type X over C such
that there exists a birational morphism Y → X′ and a closed immersion X′ ⊂ Pn

C

of degree d is finite. The latter clearly follows from Theorem 2.2 . �

Remark 3.4. The converse to Lemma 3.3 is false. For n ≥ 2, the (total space
of the) blow-up of Pn

C
in a set of points B ⊂ Pn(C) of cardinality > n + 2 with

“transcendental” coordinates cannot be defined over Q.

Lemma 3.5. Let Y be a smooth complete intersection of general type over C, and
let f : Y → P1

C
be a Lefschetz fibration whose critical points lie in P1(Q). Then

the variety Y and the morphism f can be defined over Q.

Proof. By Lemma 3.1, to prove the corollary, it suffices to show that the set of
conjugates f σ of f under the action of Aut(C) is finite. Let B ⊂ P1(Q) be the
set of critical points of the Lefschetz fibration f : Y → P1

C
. Note that since Y is

a complete intersection, the fibers of f are complete intersections of some type,
say T . Note that T is of general type. Since the set of conjugates Bσ of B is finite
and f σ is a Lefschetz fibration of complete intersections of (the same) type T , it
suffices to show that the set of Lefschetz fibrations of fixed type that are smooth
over a fixed open in P1

C
is finite. The latter clearly follows from Corollary 2.8. �

Remark 3.6. Let X be a complete intersection over C. It follows from [5,
Prop. 2.1.11] that X can be defined over Q as a variety if and only if X can
be defined over Q as a complete intersection.

4. Lefschetz Functions: Proof of Theorem 1.1

Let X be a smooth projective variety over C. If X can be defined over Q, then
there exists a rational function X ��� P1

C
on X whose critical points lie in P1

Q
(Q).

The converse to this statement is false. Indeed, if C and D are smooth projective
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curves of genus at least two such that C can be defined over Q and D cannot be
defined over Q, then X = C × Dn−1 is an n-dimensional variety of general type
that cannot be defined over Q. Nevertheless, there is a rational function on X with
at most three critical points. Explicitly: let π : C → P1

C
be a Belyi morphism, and

X → C → P1
C

the projection followed by π . This explains why we restrict to a
special class of rational functions in Theorem 1.1.

Definition 4.1. A rational function p : X ��� P1
C

is a Lefschetz function (on X)
if there exist a Lefschetz pencil f : X ��� P1

C
and a rational function g : P1

C
→ P1

C

such that p = g ◦ f .

It is clear that Theorem 1.1 follows from the following more general statement.

Theorem 4.2. Let X be a smooth complete intersection of general type over C.
Then the following are equivalent:

(1) the variety X can be defined over Q;
(2) there exists a Lefschetz pencil X ��� P1

C
whose critical points lie in P1(Q);

(3) there exists a Lefschetz function X ��� P1
C

whose critical points lie in P1(Q);
(4) there exists a Lefschetz function X ��� P1

C
with at most three critical points;

(5) there exist a birational morphism Y → X and a Lefschetz fibration Y → B

whose critical points lie in P1(Q).

Proof. The implication (1) �⇒ (2) follows from the existence of a Lefschetz
pencil on a projective variety over Q.

Since any Lefschetz pencil on X is a Lefschetz function, the implication
(2) �⇒ (3) follows.

Note that (3) �⇒ (4) follows from Belyi’s algorithm: for all finite subsets B

of P1(Q), there exists a finite morphism R : P1
Q

→ P1
Q

such that R ramifies only

over {0,1,∞} and R(B) ⊂ {0,1,∞}.
The implication (4) �⇒ (5) follows from the definition of a Lefschetz func-

tion (Definition 4.1).
Now, to prove the theorem, it suffices to prove that (5) �⇒ (1). To do so, let

Y → X be a birational morphism, and let f : Y → P1
C

be a Lefschetz fibration
such that its set B of critical points lies in P1(Q). Then, by Lemma 3.5 the variety
Y can be defined over Q. Finally, by Lemma 3.3 we conclude that X can be
defined over Q. �

Remark 4.3. Since there are only finitely many smooth complete intersections X

of general type over C such that there exists a Lefschetz pencil X ��� P1
C

with at
most three critical points (Corollary 2.8), the analogous statement of Theorem 4.2
in which we replace “Lefschetz function” by “Lefschetz pencil” is false.
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