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Parameterization of the Box Variety by Theta Functions

Eberhard Freitag & Riccardo Salvati Manni

Introduction

We consider the graded algebra (the generators have weight one)

B = Q[Z1,Z2,Z3,W1,W2,W3,C]
with defining relations

W 2
1 + W 2

2 = Z2
3,

W 2
1 + W 2

3 = Z2
2,

W 2
2 + W 2

3 = Z2
1,

W 2
1 + W 2

2 + W 2
3 = C2.

This is a normal graded algebra. The associated projective variety proj(B) is
called the box variety or variety of cuboids. It is absolutely irreducible. We denote
its complexification by

B := proj(B ⊗Q C).

It is a surface that characterizes cuboids. The variables Wi give the edges of the
cuboid, the variables Zi the diagonals of the faces, and C the long diagonal. There
is an unsolved problem, raised by Euler, whether the box variety contains nontriv-
ial rational points or not. For more details on the box variety, we refer to [vL] and
[ST].

In this note, we describe a parameterization of the box variety by theta func-
tions. This will imply that it is a quotient of the product H/�[8] × H/�[8] of
two modular curves of level 8 by a group of order 8 that comes from the diagonal
action of �[4]. In fact, this parameterization can be defined over the cyclotomic
field K = Q(ζ8) = Q(i,

√
2). We found this parameterization from an observation

of D. Testa that the box variety can be embedded into a certain Siegel modular
variety, which has been described by van Geemen and Nygaard. This background
is not necessary for our note, and we will not describe it here. But we want to
point out that the still unpublished work [ST] is behind the scenes, and we are
very grateful that he explained to us details of this work.

This parameterization can be used to derive quickly known properties and also
some new ones of the box variety. For example, we give in Section 2 a mod-
ular description of the automorphism group. It can be realized as a subgroup of
SL(2,Z)×SL(2,Z). In [ST] and [vL], 140 rational and elliptic curves on the min-
imal model of the box variety that give the generators of the Picard group have
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been described. We describe them in Section 3 in a very simple way as certain
modular curves.

In Section 3, we consider smooth curves in the box variety. We prove an es-
timate that shows how their genus grows with their degree. As a consequence,
smooth rational and elliptic curves have a bounded degree. This can be consid-
ered as a supporting evidence of the conjecture made in [ST] that the 140 curves
described in [vL] exhaust all rational and elliptic curves. This has been proved in
[ST] for degrees ≤ 4.

In the paper [Be], the box variety arises as a member of a whole family hav-
ing the same properties, namely to be complete intersections of 4 quadrics in P6

with an even set of 48 nodes. In this paper, Beauville also describes a certain
smooth two-fold Galois covering X of the box variety. It is unramified outside
the 48 nodes, and it is a minimal surface of general type with q = 4, pg = 7, and
K2 = 32. In Section 4, we give a very simple modular description of it.

In Section 5, we consider a certain involution σ of the box variety B. We use
the modular description to realize the quotient B/σ as a Kummer variety.

In the last section, we consider a certain moduli problem that gives the re-
alization of the box variety as a fine moduli scheme over Q(i) classifying pairs
(E,F ) of elliptic curves with level 4 structures and a compatible isomorphism
E[8] → F [8]. This is closely related to work of Kani and Schanz [KS].

We want to thank A. Beauville, E. Kani, and D. Testa for helpful discussions.
We thank the referee for pointing out a serious gap in the first version of the paper
and for his hint how to overcome this problem.

1. Generalities about Modular Groups

We use the standard notations

�[N ] = kernel(SL(2,Z) −→ SL(2,Z/NZ))

for the principal congruence subgroup of level N of the elliptic modular group
and

�0[N ] =
{
M =

(
a b

c d

)
∈ SL(2,Z); c ≡ 0 modN

}
,

�1[N ] =
{
M =

(
a b

c d

)
∈ SL(2,Z);a ≡ b ≡ 1 modN,c ≡ 0 modN

}
.

We also will use the Igusa groups

�[N,2N ] =
{
M =

(
a b

c d

)
∈ �[N ];ab ≡ cd ≡ 0 mod 2N

}
.

In the following, we define the square root
√

a of a nonzero complex number by
the principal part of the logarithm. This means that the real part is positive if a

is not real and negative and that the imaginary part is positive if a is real and
negative. Let � ⊂ SL(2,Z) be a subgroup of finite index, and let r be an integer.
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By a multiplier system of weight r/2 we understand a map v : � → S1 such that

v(M)
√

cτ + d
r
, M =

(
a b

c d

)
,

is a one-cocycle. Then the space [�, r/2, v] of holomorphic modular forms can
be defined in the usual way. Their transformation law is

f (Mτ) = v(M)
√

cτ + d
r
f (τ).

There are two basic multiplier systems. The theta multiplier system vϑ is a multi-
plier system of weight 1/2 on the theta group

�ϑ := �[1,2].
It can be defined as the multiplier system of the theta function

ϑ(τ) =
∞∑

m=−∞
eπ in2τ .

The theta group is generated by
(

1 2
0 1

)
and

(
0 −1
1 0

)
. From the theta inversion for-

mula ϑ(−1/τ) = √
τ/iϑ(τ) we get

vϑ

(
1 2
0 1

)
= 1, vϑ

(
0 −1
1 0

)
= e−π i/4.

We also have to consider the theta function of the second kind �(τ) := ϑ(2τ).
This is a modular form for �0[4]. We denote its multiplier system by v�. Both
multiplier systems vϑ and v� agree on �[8]. This follows from classical theta
transformation formulae. Details have been worked out in [Kl] or [vGN].

For given �, r0, and v, we can consider the graded algebra

A(�, r0, v) :=
∑
r∈Z

[�, rr0, v
r ].

If it is clear which (r0, v) has to be considered, we will simply write A(�) for this
algebra. This is a finitely generated algebra of Krull dimension 2. We know (see
[Fr2]) that the associated projective curve proj(A(�)) is the Satake compactifica-
tion

H/� = H∗/� where H∗ = H∪Q∪ {∞}.
We have to consider more generally subgroups of finite index � ⊂ SL(2,Z) ×
SL(2,Z). A multiplier system v of weight r/2 now means a function v : � → S1

such that
v(M1,M2)

√
c1τ + d1

r√
c2τ + d2

r

is a one-cocycle. The spaces of modular forms [�, r/2, v] (now functions of two
variables) and the algebras A(�) = A(�, r0, v) are defined in the obvious way.

Let N be a divisor of the natural number N ′. In this paper, the group

	(N,N ′) = {(M1,M2) ∈ �[N ] × �[N ],M1 ≡ M2 modN ′}
plays an important role. It is generated by �[N ′] × �[N ′] and the diagonally
embedded �[N ].
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2. A Parameterization of the Box Variety by Theta Functions

We make use of the Jacobi theta functions

ϑa,b(z) =
∞∑

n=−∞
eπ i((n+a/2)2z+b(n+a/2)).

Here (a, b) is one of the three pairs (0,0), (1,0), (0,1). These three functions
are modular forms of weight 1/2 with respect to the three conjugate groups of
the theta group contained in SL(2,Z). The multiplier systems agree on the group
�[4,8] with vϑ . We also consider the two theta functions of the second kind
ϑ00(2τ) and ϑ10(2τ). They are modular forms for the two conjugated groups of
�0[4]. Their multiplier systems agree on �[2,4] with v�.

So we see that the five functions

ϑ00(z), ϑ10(z), ϑ01(z), ϑ00(2z), ϑ10(2z)

have the same multiplier system on �[8]. Hence, they are contained in the ring

A(�[8]) :=
⊕
r∈Z

[�[8], r/2, vr
ϑ ].

It is not difficult to show the following result. The details have been worked out
in the Heidelberg Diplomarbeit [Br].

Theorem 2.1. We have

A(�[8]) = C[ϑ00(z),ϑ10(z),ϑ01(z),ϑ00(2z),ϑ10(2z)].
Defining relations are the classical theta relations

ϑ00(z)
2 = ϑ00(2z)2 + ϑ10(2z)2,

ϑ01(z)
2 = ϑ00(2z)2 − ϑ10(2z)2,

ϑ10(z)
2 = 2ϑ00(2z)ϑ10(2z).

A quick way to see this is to use the fact that the defined variety is a smooth
complete intersection. From this it follows easily that the ring defined by these re-
lations is a normal ring of Krull dimension 2. Hence, the relations are defining re-
lations. We can compute the Hilbert polynomial and compare it with well-known
dimension formulae for spaces of modular forms.

Since the multiplier system vϑ is defined on the theta group �ϑ , we can define
an action of the theta group on A(�[8]) by the formula

f |M(τ) = vϑ(M)−r
√

cz + d
−r

f (Mz).

This is an action from the right, f |(M1M2) = (f |M1)|M2. We describe it by
means of matrices. For this, we have to use the action of GL(n,C) on a com-
plex vector space V with basis e1, . . . , en from the right. It is defined by Aei =∑

aij ej . If we write an element of V in the form
∑

xiei , then this means that the
row x = (x1, . . . , xn) has to be multiplied from the right by the matrix A. Standard
theta transformation formulas give the following result.
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Lemma 2.2. The matrix
(

1 2
0 1

)
acts with respect to the basis

ϑ00(z), ϑ10(z), ϑ01(z), ϑ00(2z), ϑ10(2z)

through the diagonal matrix with the diagonal entries

1, i,1,1,−1.

The matrix
(

0 −1
1 0

)
acts with respect to this basis through the matrix⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1/

√
2 1/

√
2

0 0 0 1/
√

2 −1/
√

2

⎞
⎟⎟⎟⎟⎠ .

We are interested in the action of �[4] on A(�[8]). The factor group �[4]/�[8]
is isomorphic to (Z/2Z)3. It is generated by the images of the matrices

T =
(

1 4
0 1

)
, T ′ =

(
1 0
4 1

)
, R =

(
5 8
8 13

)
.

From Lemma 2.2 we get the following result.

Lemma 2.3. The generators T , T ′, R of �[4]/�[8] act on A(�[8]) by means of
the diagonal matrices

T −→ diag(1,−1,1,1,1),

T ′ −→ diag(1,1,−1,1,1),

R −→ diag(1,1,1,−1,−1).

Now we consider modular forms of two variables. We consider the ring A(�[8]×
�[8]) of modular forms of integral or half integral weight r/2 with respect to the
multiplier system (vϑ(M1)vϑ(M2))

r . It is easy to show, using Theorem 2.1 and a
standard argument of Krull (compare the proof of III, 1.41 in [Fr2]), that

A(�[8] × �[8]) = C[f (z)g(w)],
f, g ∈ {ϑ00(·),ϑ10(·),ϑ01(·),ϑ00(2·),ϑ10(2·)}.

We want to determine the subring A(	(4,8)) of modular forms with respect to
the group 	(4,8). This is the ring of invariants with respect to the diagonal action
of �[4] by means of the action

f (z,w) −→ vϑ(M)−2r
√

cz + d
−r√

cw + d
−r

f (Mz,Mw).

By Lemma 2.3 it is obvious that the forms

ϑ00(z)ϑ00(w),

ϑ10(z)ϑ10(w),

ϑ01(z)ϑ01(w),

ϑ00(2z)ϑ00(2w),

ϑ00(2z)ϑ10(2w),
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ϑ10(2z)ϑ00(2w),

ϑ10(2z)ϑ10(2w)

are invariant under the action of the quotient �[4]/�[8]. Moreover, since the ac-
tion of the group is twisting by a character, we can show that they generate the
invariant ring. In fact, the action of the group A(�[8] × �[8]) depends on the
multipliers and eventually on a sign.

Theorem 2.4. There is an isomorphism

B ⊗Q C
∼−→ A(	(4,8)),

which is given by

Z1 −→ ϑ01(z)ϑ01(w),

Z2 −→ ϑ00(z)ϑ00(w),

Z3 −→ ϑ10(z)ϑ10(w),

C −→ ϑ00(2z)ϑ00(2w) + ϑ10(2z)ϑ10(2w),

W1 −→ ϑ10(2z)ϑ00(2w) + ϑ00(2z)ϑ10(2w),

W2 −→ i(ϑ10(2z)ϑ00(2w) − ϑ00(2z)ϑ10(2w)),

W3 −→ ϑ00(2z)ϑ00(2w) − ϑ10(2z)ϑ10(2w).

Hence, the complexified box variety is B ∼=H×H/	(4,8).

Proof. The classical theta relations given in Theorem 2.1 show that this is a homo-
morphism. Obviously, it is surjective. Since A(	(4,8)) is an integral domain of
Krull dimension three and since B also has dimension three, this homomorphism
must be an isomorphism. �

The modular picture can be used to recover known properties of the box variety.
We mention some of them.

First, we describe the automorphism group of the box variety. The group
	(4,8) is a normal subgroup of 	(1,2). The index is 768. Hence, the quotient
	(1,2)/	(4,8) is a subgroup of order 768 of the automorphism group. The in-
volution (z,w) → (w, z) gives an extra automorphism. Both together generate a
subgroup of order 1,536 of the automorphism group. By [ST] the order of the
automorphism group is 1,536. Hence, we described the full automorphism group.

Now we describe the singularities. It is known by [ST] that the box variety
has 48 singularities, which all are nodes. In the modular picture, they correspond
to some zero-dimensional cusps. These are the images of the points (a, b) where
a, b ∈ Q ∪ {∞}. There are two types of such points. It may happen that (a, b)

is the fixed point of a pair (M1,M2) of parabolic elements. The typical case is
(∞,∞) and A = B = (

1 4
0 1

)
. The group 	(1,2) acts transitively on them. There

are pairs that do not have this property. The precise picture is as follows.
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Proposition 2.5. The box variety H×H/	(4,8) contains 96 zero-dimensional
cusps. They decompose into two orbits of 48 cusps under 	(1,2). The orbit con-
taining the image of (∞,∞) defines the singular locus.

A slightly different way to see this is to consider the Galois coverings

H/�[8] ×H/�[8] −→ H×H/	(4,8) −→H/�[2] ×H/�[2].
The covering group of the first cover is G = 	(4,8)/�[8]×�[8] ∼= (Z/2Z)3. The
singular points of the box variety are the images of the fixed points of G. They
agree with the fibers of three zero-dimensional cusps of H/�[2]×H/�[2], which
are of the form (a, a). They can be represented by (∞,∞), (0,0), and (1,1). In
the typical case (∞,∞), we can take p = e2π iz/8 and q = e2π iw/8 as uniformiz-
ing parameters of H/�[8] × H/�[8]. The stabilizer in G is generated by the
translation (z,w) → (z + 4,w + 4), which acts by (p, q) → −(p, q). Hence, the
singularity appears as quotient singularity of the type (C×C)/±, which actually
is a node.

We denote by B̃ the minimal resolution of the 48 nodes. The exceptional divi-
sor is the union of 48 lines.

Next we describe the holomorphic differential forms on B̃. The modular curve
H/�[8] has genus 5. The differentials

ω1(z) = ϑ00(z)
2ϑ01(z)ϑ10(z) dz,

ω2(z) = ϑ00(z)ϑ01(z)
2ϑ10(z) dz,

ω3(z) = ϑ00(z)ϑ01(z)ϑ10(z)
2 dz,

ω4(z) = ϑ00(2z)ϑ00(z)ϑ01(z)ϑ10(z) dz,

ω5(z) = ϑ10(2z)ϑ00(z)ϑ01(z)ϑ10(z) dz

are holomorphic on H/�[8] since the defining modular forms are cusp forms of
weight two. Moreover, they are independent since they transform with different
multipliers with respect to the group �[4]. A simple computation gives that ψ1 =
ω1(z)∧ω1(w), ψ2 = ω2(z)∧ω2(w), ψ3 = ω3(z)∧ω3(w), ψ4 = ω4(z)∧ω4(w),
ψ5 = ω4(z) ∧ ω5(w), ψ6 = ω5(z) ∧ ω4(w), ψ7 = ω5(z) ∧ ω5(w) are 	(4,8)-
invariant holomorphic differential forms on B. We can check that they extend
holomorphically to the desingularization B̃. In this way, we can recover the result
of [ST] that the minimal resolution of the box variety has geometric genus 7. We
can also derive from this picture that the box variety is of general type.

In the paper [ST], the structure of the Picard group of B̃ has been determined.
It is a free Abelian group of rank 64. Stoll and Testa proved that certain 140 curves
defined already in [vL] generate this group. There are 80 rational and 60 elliptic
curves. Of the 80 rational curves, 48 are the exceptional curves described before,
whereas the remaining 32 have the following easy modular description.

Proposition 2.6. The equations w = Mz + k, where M runs through a system
of representatives of �[4]/�[8] and k ∈ {0,2,4,6}, define 32 smooth rational
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curves in the box variety. Their union is the zero set of the modular form

ϑ00(z)
4ϑ01(w)4 − ϑ01(z)

4ϑ00(w)4 (= 4iW1W2W3C).

Proof. We observe that the diagonal w = z is in the zero set of the modular form.
The same is true for all conjugated curves. In this way, we see that the modular
form in the proposition vanishes at the described 32 curves. Moreover, the zero
set of each of W1, W2, W3, C consists of eight rational curves, as we can easily
verify by means of the defining equations of the box variety. �

Next, we describe the elliptic curves. Part of them is in the Satake boundary. The
Satake boundary is the union of the images of H∗ ∪ {a} and {a} ∪ H∗, where
a ∈Q∪ {∞}. It is easy to work out the structure.

Proposition 2.7. The Satake boundary consists of 12 (smooth) elliptic curves.
Each of them contains eight singular and eight smooth zero-dimensional cusps.
The whole Satake boundary is the zero set of the modular form

ϑ00(z)ϑ10(z)ϑ01(z)ϑ00(w)ϑ10(w)ϑ01(w) (= Z1Z2Z3).

We do not give the details of the proof, but we explain a typical boundary curve.
We take the image of H∗ × {∞}. This is the modular curve with respect to the
group �1[8] ∩ �[4]. It contains �[8] as a subgroup of index 2. It is not difficult to
work out the structure of the ring of modular forms. Details can be found in [Kl].

Proposition 2.8. The ring A(�1[8] ∩ �[4]) of all modular forms of half integral
weight for the group �1[8] ∩ �[4] with respect to the multiplier system vr

ϑ is
generated by

a = ϑ0,0(z), b = ϑ0,1(z), c = ϑ0,0(2z), d = ϑ1,0(2z).

Defining relations are

a2 = c2 + d2, b2 = c2 − d2.

This is an intersection of two quadrics in P3 and hence an elliptic curve. So this
describes one of the 12 elliptic curves in the Satake boundary of the box variety
of the box variety.

Finally, we describe 48 elliptic curves that are not contained in the boundary.

Proposition 2.9. The equation w = z + 1 describes an elliptic curve in the box
variety, which also can be defined by the equations

W1 = W2, Z1 = Z2,
√

2W1 = Z3,

W 2
3 + Z2

3 − C2 = 0, 2Z2
2 + Z2

3 − 2C2 = 0.

Applying the group 	(1,2), we get 48 elliptic curves.

The 92 curves, given in Propositions 2.6, 2.7, 2.9, coincide with those in [ST],
as can be seen from their description in the box-coordinates. Hence, as has been
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proved in [ST], together with the 48 exceptional curves, they generate the Picard
group.

3. Curves in the Box Variety

We want to study irreducible curves C ⊂ B in the box variety. We have to make
the rather strong assumption that the normalization map C̄ → C is bijective. We
denote by g the genus of C̄. We use the following fact, which has been explained
in [ST] and [Be] and which can be seen from the given explicit description of the
holomorphic 2-forms on B̃: the canonical map (defined by the canonical divisor
on B̃) is the composition of the natural projection B̃ → B and the original em-
bedding B → P6. This shows that the degree d of C in P6 equals the intersection
number of the strict transform of C in B̃ and a canonical divisor on B̃.

Theorem 3.1. Let C ⊂ B be a curve such that the normalization map C̄ → C is
bijective. Let g be the genus of C̄, and d be the degree of C. Then we have the
inequality

d ≤ 176 + 16g.

As a consequence, rational and elliptic curves have bounded degree. This supports
a conjecture in [ST] that the only rational or elliptic curves contained in B are the
140 curves described previously.

Proof of Theorem 3.1. Let k be a natural number. We consider a modular form of
weight 4k for the group 	(4,8). Then we consider the tensor

T = 	(z)k	(w)kf (z,w)(dz dw)8k

in the algebra of symmetric tensors. Since the modular form 	 has weight 12, this
tensor is invariant under 	(4,8). Hence, it defines a meromorphic tensor on B̃.
Using the coordinates p = e2π iz/8, q = e2π iw/8, it is easy to check that this tensor
is holomorphic outside the 48 exceptional curves. In the exceptional curves, it
may have poles. We can lift the curve C̄ to a holomorphic map ϕ : C̄ → B̃. Then
we consider the pulled back tensor ϕ∗T . This is a meromorphic tensor of degree
16k on C̄.

We can assume that C is not the image of H∗ ×{a} or {a}×H∗ for a ∈H∗ since
for these curves the theorem can be seen directly. Then the tensor ϕ∗T vanishes if
and only f vanishes along C as a function. Since the weight k can be made large,
we can choose f that does not vanish along C, and in addition we can get that f

does not vanish at any of the 48 nodes in B.
We assume that C contains one of the nodes, for example, the image of the

cusp (∞,∞). We recall that this point is fixed by the translations. Then we can
consider a parameterization of the curve close to this cusp. So we have a pointed
disk contained in C \ (∞,∞). In [Fr1, Satz 1], it is described how a complex
curve in a Hilbert modular variety can run into a cusp. For this purpose, such a
curve has been described close to the cusp (∞, . . . ,∞) by a holomorphic map
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α : H→ H× · · · ×H. The same argument works in our split case and shows that

α(z) = z(a1, a2) + (�1(q),�2(q)), q = e2π iτ ,

where �i are holomorphic at q = 0. The pair (a1, a2) is contained in the transla-
tion lattice, that is,

a1 ≡ a2 ≡ 0 mod 4, a1 + a2 ≡ 0 mod 8.

The numbers a1, a2 are both positive. This implies a1 + a2 ≥ 8.
We study the poles and zeros of the tensor ϕ∗T . Since its divisor is the 16k-

multiple of a canonical divisor, we have

16(2g − 2)k = #zeros − #poles.

First, we estimate the number of poles of ϕ∗T from above (counted with multi-
plicity). The poles are intersection points of C̄ with the exceptional divisor. Since
C̄ → C is bijective, C̄ can meet each of the 48 exceptional curves at most once.
Hence, the set of poles contains at most 48 points.

We have to estimate the pole order. It is sufficient to do this for the standard
node, that is, the image of the cusp (∞,∞). Using the parameterization α(z),
we can see that the term (dz dw)8k contributes with 16k to the pole order and
	(z)	(w) contributes with a zero of order (a1 + a2)k ≥ 8k. Hence, the pole
order of the tensor at the node is at most 8k. Since we have 48 nodes, the total
pole order is at most 384k.

Next, we estimate the number of zeros from below. Each intersection point of
the zero divisor of f with the curve produces a zero. (Since we assumed that f

does not vanish at the nodes, there is no cancellation between poles and zeros
of T .) Since the zero divisor of f is a 2k-multiple of the canonical divisor, we get
that there are at least 2kd zeros. So we get

16(2g − 2)k = #zeros − #poles ≥ 2kd − 384k.

This finishes the proof of Theorem 3.1. �

Remark. As we mentioned, the tensor T = 	(z)k	(w)kf (z,w)(dz dw)8k can
have poles along the 48 exceptional divisors. The results of Theorem 3.1 could be
improved if one could find f such that T is holomorphic on the whole B̃. We did
not succeed to find such f , and we think that they do not exist, although we could
not prove this.

4. A Two-Fold Covering of the Box Variety

We consider the subgroup �′[4] of index two of �[4], which is generated by
�[8], T T ′, and T R. As can be seen via an explicit calculation in the finite group
SL(Z/8Z), this group is equal to the subgroup of �[4] given by the condition

a + b + c ≡ 1 mod 8.

Lemma 4.1. The group �′[4]/�[8] is isomorphic to Z/2Z×Z/2Z. It acts freely
on H/�[8].
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Proof. Let a be a point of the extended upper half-plane H∗ = H ∪ Q ∪ {∞}.
Assume that M ∈ �′[4]−�[8] is a matrix that fixes a mod �[8]. Then there exists
an element A ∈ �[8] such that M(a) = A(a). The matrix N = A−1M fixes a.
This matrix is also contained in �′[4] and not in �[8]. Modulo 8 it is one of the
following three matrices:(

1 4
4 1

)
,

(
5 4
0 5

)
,

(
5 0
4 5

)
.

Since it has a fixed point, the absolute value of its trace is bounded by 2. We treat
the three cases separately. In the first case, we have

N =
(

1 + 8α 4 + 8β

4 + 8γ 1 + 8δ

)
.

The condition for the trace implies δ = −α. The determinant is 1. But the condi-
tion δ = −α implies that the determinant is 1−16 mod 32. This is a contradiction.

In the second case, we have

N =
(

5 + 8α 4 + 8β

8γ 5 + 8δ

)
.

The condition for the trace now gives δ = −α − 1. Now the determinant would
be congruent to 25 − 40 = 17 mod 32, which is not possible. The same argument
works in the third case. �

We consider the (nonsingular) manifold

X := (H/�[8] ×H/�[8])/�′[4],
where �′[4] acts diagonally. The inclusion �′[4] ↪→ �[4] gives a two-fold cov-
ering X → B of the box variety. Locally around the 48 singularities of B, this
looks like the covering C2 → C2/±. We can desingularize the node at 0 by first
blowing up the origin in the covering C2. The involution (z,w) → (−z,−w) lifts
to this resolution, and the quotient is smooth. The same can be done globally. We
blow up X at the 48 inverse images of the nodes of B. This gives a manifold X̃.
The Galois involution of X over B lifts to X̃, and the quotient B̃ is just the blow
up of B at the nodes. So we have a commutative diagram

X̃ −→ B̃
↓ ↓
X −→ B

The map X̃ → B̃ is ramified along the exceptional divisors (48 lines). The exis-
tence of this covering and its uniqueness have been treated in [Be]. We call

X = (H/�[8] ×H/�[8])/�′[4]
the Beauville manifold. The existence of X is equivalent to the fact that the ex-
ceptional divisor is divisible by two in the Picard group Pic(B̃). The uniqueness
follows from the fact that this Picard group is torsion free [ST]. We refer to [Be]
for more interesting properties of the surface X. Some of them can be easily de-
rived from the modular picture.
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Since the universal covering of X is the product of two half-planes, it cannot
contain a rational or elliptic curve. So we obtain the following result.

Remark 4.2. Every rational or elliptic curve in the box variety contains at least
one node.

5. Relation to a Kummer Variety

In this section, we consider the Q-structure of the box variety. It is the projective
variety associated with the algebra

B = Q[W1,W2,W3,Z1,Z2,Z3,C]
(with the defining relations of the box variety). We consider the involution
σ(Z3) = −Z3 of the ring B . It induces an involution of the box variety. The
invariant ring is

Bσ = Q[Z1,Z2,C,W1,W2,W3]
with defining relations

W 2
1 + W 2

3 = Z2
2,

W 2
2 + W 2

3 = Z2
1,

W 2
1 + W 2

2 + W 2
3 = C2.

The associated projective variety is the quotient of the box variety by σ . This is a
also a modular variety since in the picture of Theorem 2.4, the transformation σ

is induced by the modular substitution

(z,w) −→ (T z,w).

This gives the following result.

Lemma 5.1. The variety B/σ is defined over Q. Over C, it agrees with the mod-
ular variety defined by the subgroup of SL(2,Z) × SL(2,Z) that is generated by
�[8] × �[8] and the elements

(T ,E), (E,T ), (T ′, T ′), (R,R).

We already considered in Proposition 2.8 the group �1[8] ∩ �[4] and explained
the structure of the ring of modular forms. We defined four generators a, b, c, d

with defining relations

a2 = c2 + d2, b2 = c2 − d2.

Since these relations are defined over Q, we can consider this algebra over Q

A(�1[8] ∩ �[4]) = A0 ⊗Q C, A0 := Q[a, b, c, d],
and obtain an elliptic curve E over Q. We can compute its normal form over Q:

y2 = x3 − x.

Its projective form is y2z = x3 − xz2. An explicit isomorphism is given by

x = a − b, y = 2d, z = 2c − a − b.
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We consider the automorphisms

τ(a, b, c, d) = (a,−b, c, d), ρ(a, b, c, d) = (a, b,−c,−d)

of the algebra. They correspond to the modular transformations T ′ and R, whereas
T acts as the identity. The two transformations generate a group H ∼= Z/2Z ×
Z/2Z.

Lemma 5.2. The transformation ρ is an involution without fixed point of the ellip-
tic curve E. Hence, it is a translation by a two-torsion point. The transformation
τ is an involution with the fixed point [√2,0,1,1]. Hence, the following is true.
If we consider E as an elliptic curve over Q(

√
2) with origin [√2,0,1,1], then τ

corresponds to the map “x → −x”.

We want to consider the product of two copies of this curve. This is the projective
variety associated with the graded algebra

A2 = Q[a ⊗ a, a ⊗ b, . . . , d ⊗ d].
In the modular picture, we have to identify

a ⊗ a = ϑ00(z)ϑ00(w), . . . , d ⊗ d = ϑ10(2z)ϑ10(2w).

The group H acts diagonally on A2. The ring of invariants is just Bσ . Hence, we
get the following result.

Proposition 5.3. There is a biholomorphic map

(E × E)/H
∼−→ B/σ,

defined over the field of Gauss numbers.

The variety (E × E)/H can be understood as follows. We first take the quotient
by the translation �. This gives an Abelian variety over Q,

X = (E × E)/�.

Then we take the quotient by τ . If we extend the base field Q by
√

2 and take
[√2,0,1,1] diagonally embedded as the origin, then τ corresponds to the nega-
tion, and

(E × E)/H = X/±
appears as a Kummer variety. Hence, over the field Q(i,

√
2) of eighth roots of

unity, the variety B/σ can be identified with a Kummer variety.

6. A Moduli Problem

In this section, we give a modular interpretation of the variety (H×H)/	(N,N ′).
First, we recall from [KM] some basic facts. We denote by (Sch/S) the category
of schemes over a base scheme S. For S = SpecA, we write (Sch/A). We fix
an algebraic number field K . We also fix an embedding K ↪→ C. The category
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(Ell) = (Ell)/K has as objects elliptic curves π : E → S over a variable base-
scheme S ∈ (Sch/K), and its morphisms are Cartesian squares of elliptic curves.
A contravariant functor

P : (Ell) −→ (Sets)

is called a moduli problem for elliptic curves. The moduli problem is called rel-
atively representable over (Ell) if for every elliptic curve E/S, the functor on
Sch/S defined by

T −→P(ET /T )

is representable by an S-scheme denoted by PE/S . The moduli problem is called
representable if there exists an elliptic curve over a scheme

E −→ M(P)

together with a functorial isomorphism

P(E/S)
∼−→ Hom(Ell)(E/S,E/M(P)).

If the moduli problem P is representable, then the scheme M(P) represents the
functor over (Sch)

S −→ {isomorphism classes of (E/S,α)}.
Here E is an elliptic curve over S, and α ∈ P(E/S). Any representable moduli
problem P is relatively representable.

If P ′ is representable and P ′′ is relatively representable, then the simultaneous
moduli problem (P ′,P ′′)

E/S −→P ′(E/S) ×P ′′(E/S)

is representable. In fact, if E/M(P ′) represents P ′, then

M(P ′,P ′′) = P ′′
E/M(P ′).

Let E/S be an elliptic curve, and N be a natural number. We denote by E[N ] the
kernel of multiplication by N from E to E. This is a group scheme over S. If T

is a scheme over S, then the T -valued points are

E[N ](T ) = kernel(E(T )
·N−→ E(T )).

It may be that E[N ](S) is isomorphic (Z/NZ× Z/NZ)(S). A level N structure
on E then means the choice of an isomorphism

(Z/NZ×Z/NZ)(S)
∼−→ E[N ](S).

It extends to an isomorphism of E(N) to the constant group scheme associated
with Z/NZ×Z/NZ.

The kernel of the N th power is the group scheme μN . Hence,

μN(S) = {a ∈ O(S);aN = 1}.
For an elliptic curve E over S ∈ (Sch/K), there exists the Weil pairing. It asso-
ciates with each S-scheme T an alternating map

E[N ](T ) × E[N ](T ) −→ μN(T ).
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When K contains the cyclotomic field of N th roots of unity, μN is the constant
group scheme associated with the abstract group

μN(C) = {ζ ∈C; ζN = 1} ∼= Z/NZ.

We also can consider the symplectic pairing

eN : Z/NZ×Z/NZ −→ μN(C),

e((a1, a2), (b1, b2)) = e2π i(a1b2−a2b1)/N .

From now on we assume that K contains the N th roots of unity. Since we consider
a fixed embedding of K into C, we can identify μN(C) and μN(K). So it makes
sense to consider level N structures that preserve the symplectic pairings.

We denote by P ′
N the moduli problem that classifies the level N structures pre-

serving the symplectic pairings. It is known (see [KM]) that this moduli problem
is representable if N ≥ 3.

We formulate a second moduli problem P ′′
N on (Ell),

P ′′
N(E/S) = Isomorphy classes of pairs (F/S,β),

where β : E[N ] ∼−→ F [N ] is an isomorphism of S-groups that preserves the Weil
pairings. This is a moduli problem studied in [FK]. There has been proved that it
is relatively representable, quasi-affine, smooth, and geometrically connected of
relative dimension 1 if N ≥ 3. We now consider two natural numbers N |N ′ such
that N ≥ 3. The simultaneous problem

P(N,N ′) = (P ′
N,P ′′

N ′)

is representable. Hence, we can summarize with the following theorem.

Theorem 6.1. Let us assume that N ≥ 3. The moduli problem P(N,N ′) is rep-
resentable as a moduli problem on (Ell).

We denote the moduli space of P(N,N ′) by M(N,N ′). This is an affine alge-
braic scheme over the cyclotomic field Q(ζN).

Lemma 6.2. The scheme M(N,N ′) ⊗K C can be identified with (H × H)/

	(N,N ′).

This is a generalization of the well-known fact that H/�[q] parameterizes elliptic
curves over C with a level q structure. In the case N = 1, the variety M(N,N ′)
is a particular case of the diagonal quotient surfaces ZN ′,ε [KS], which, over C,
have been introduced by Hermann [He] in 1991. The proof in [KS] works for
arbitrary N . We can omit it here.

We are interested in the group 	(4,8). Theorem 2.4 says that the surface
(H × H)/	(4,8) is embedded as an open part of the box variety. We call this
the finite part of the box variety. We have now two Q(i)-structures, one coming
from the defining equations of the box variety and the other coming from the
moduli problem P(4,8).
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Theorem 6.3. The variety M(4,8), as a variety over Q(ζ8), is isomorphic to the
finite part of the box variety (considered as a variety over Q(ζ8)).

Proof. Let K = Q(ζ8). The Galois group Gal(C/K) acts on M(4,8) ⊗K C

and hence on (H × H)/	(4,8). We have to show that the seven modu-
lar functions (generators of the field of modular functions) corresponding to
Z2/Z1, . . . ,W3/Z1,C/Z1 (see Theorem 2.4) commute with the action of the
Galois group. For example, Z2/Z1 corresponds to

ϑ00(z)

ϑ01(z)

ϑ00(w)

ϑ01(w)
.

So it is sufficient to prove that ϑ00(z)/ϑ01(z), considered as a rational function
on the modular curve X(8) (see [DR]) commutes with the action of this Galois
group. Since this modular function has rational Fourier coefficients, it is defined
over K as follows from the q-expansion principle in [DR]. �
From Theorem 6.3 we obtain the following result.

Theorem 6.4. The Q(ζ8)-valued points of the finite part of the box variety are in
one-to-one correspondence with the isomorphy classes of pairs of elliptic curves
E, F over Q(ζ8), equipped with a level 4 structure and a compatible isomorphism
of group schemes E[8] → F [8] that preserves the Weil pairing.
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