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Cycle-Level Products in Equivariant Cohomology
of Toric Varieties

Benjamin P. Fischer & James E. Pommersheim

Abstract. In this paper, we define an action of the group of equi-
variant Cartier divisors on a toric variety X on the equivariant cycle
groups of X, arising naturally from a choice of complement map on
the underlying lattice. If X is nonsingular, then this gives a lifting
of the multiplication in equivariant cohomology to the level of equi-
variant cycles. As a consequence, one naturally obtains an equivariant
cycle representative of the equivariant Todd class of any toric variety.
These results extend to equivariant cohomology the results of [Th] and
[PT]. In the case of a complement map arising from an inner prod-
uct, we show that the equivariant cycle Todd class obtained from our
construction is identical to the result of the inductive, combinatorial
construction of Berline and Vergne [BV1; BV2]. In the case of arbi-
trary complement maps, we show that our Todd class formula yields
the local Euler–Maclaurin formula introduced in [GP].

1. Introduction

1.1. Overview

Intersection theory on a nonsingular algebraic variety provides a natural intersec-
tion product of cycles modulo rational equivalence. One might wonder in what
circumstances there is a reasonable lifting of this product to the level of cycles, so
that any two cycles on X on can be multiplied to produce a well-defined cycle on
X in a natural way that respects rational equivalence. If the cycles intersect prop-
erly, then there is a natural product, but if the intersection is not proper, then one
must settle for knowing the product only as a cycle modulo rational equivalence.
More generally, for arbitrary (possibly singular) algebraic varieties, intersection
theory provides an action of the Picard group of an arbitrary algebraic variety on
the Chow groups of the variety. One can ask if there is a natural lifting of the
action of the Picard group to the level of algebraic cycles. For toric varieties, such
an action was constructed in [Th]. The action depends on the choice of a comple-
ment map, which is a certain global choice of linear subspaces. (See Section 1.2
for details.)

One of the motivations for a cycle-level intersection theory is that it leads nat-
urally to a cycle expression for the Todd class of a toric variety. Indeed, the Todd
class of a nonsingular toric variety has a well-known expression as a product of
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torus-invariant cycles, so given the cycle-level multiplication derived from a com-
plement map, one obtains a natural expression for the Todd class of a toric variety.
This is worked out in [PT], where one finds a cycle expression for the Todd class
of an arbitrary toric variety with rational coefficents depending only on the local
information in the fan, giving an answer to a question of Danilov. From this Todd
class formula, via a well-known application of the Riemann–Roch theorem, one
obtains a local formula for the number of lattice points in a integral polytope.

The purpose of this paper is to extend the results of [Th] and [PT] to equivariant
cohomology. In particular, given a complement map, we produce a natural action
of the equivariant divisor group on the equivariant cycle group. In the simplicial
case, we obtain a natural ring structure on the group of equivariant cycles tensored
with Q. As a consequence of these results, for any choice of complement map, we
obtain a natural local and computable expression for the equivariant Todd class
of an arbitrary toric variety. We show that the expression for the equivariant Todd
class so obtained, in the special case of a complement map arising from an inner
product, is equivalent to that obtained by [BV2] by an entirely different, purely
combinatorial recipe.

Finally, we relate our expression of the Todd class to the Euler–Maclaurin for-
mulas of [GP]. In that paper, it is shown that a complement map naturally gives
rise to a function μ on cones that interpolates between exponential sums and in-
tegrals and hence gives rise to a local Euler–Maclaurin formula. In this paper, we
show that the functions μ arising from our Todd class construction are identical
to the functions μ constructed in [GP] through a different inductive combinato-
rial method. As a corollary, we prove a conjecture of [GP], which asserts that the
constant term of the power series constructed in [BV2] and [GP] agree with the
Todd class coefficients constructed in [PT].

1.2. Definition of the Action and Basic Properties

We now give the details of our construction. Let X = X� be a toric variety defined
by a fan � in a lattice N , with associated torus T . We follow notation that is
standard in the theory of toric varieties (see [Fu]). Let M = Hom(N,Z) denote
the lattice dual to N , and let � = Z[M]. For each cone σ ∈ �, let Nσ denote the
lattice Lσ ∩ N , where Lσ is the linear span of σ , and let N(σ) = N/Nσ . Dual to
N(σ) and Nσ are the lattices M(σ) = M ∩ σ⊥ and Mσ = M/M(σ). We will use
〈·, ·〉 to denote the natural pairing M × N → Z or indeed M(σ) × N(σ) → Z for
any σ ∈ �.

For any abelian group L (such as M , N , �, etc.), we denote LQ := L ⊗Q.
If a cone τ ∈ � contains σ as a maximal proper face, then we will write τ → σ .

In this case, the image of τ in N(σ) is a one-dimensional cone, and we use nτ,σ

to denote the unique primitive element of N(σ) contained in this cone.
Recall that for each σ ∈ �, there is a T -invariant subvariety V (σ) ⊂ X.
We wish to define a cycle-level action of the group DivT (X) of equivariant

Q-Cartier divisors on the equivariant cycle groups ZT∗ (X).
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Definition 1.1. Let X be the toric variety associated to a fan �. The cycle group
of X, denoted Z∗(X), is the free Abelian group generated by {V (σ) | σ ∈ �}.
The equivariant cycle group (with rational coefficients) ZT∗ (X) is defined as
ZT∗ (X) := Z∗(X) ⊗ �Q.

Since the classes of invariant cycles generate the Chow groups of X, there is
a natural surjection Z∗(X) → A∗(X). Similarly, there is a natural surjection
ZT∗ (X) → AT∗ (X)Q; indeed, [Br1] gives a presentation of the equivariant Chow
groups AT∗ (X) as a quotient of ZT∗ (X). For σ ∈ �, we use Vσ to denote the cycle
V (σ) considered as an element of ZT∗ (X).

Denote by Div(X) the group of T -invariant Q-Cartier divisors. Recall that a T -
invariant Q-Cartier divisor on X is given by local equations {dσ }σ∈� , where each
dσ ∈ Mσ,Q. These local equations are compatible in the sense that if σ, τ ∈ �

with σ ⊂ τ , then dσ is the image of dτ under the natural map Mτ,Q → Mσ,Q.
Let DivT (X) = Div(X) ⊗ �Q. This is the �Q-module that acts on ZT∗ (X), as we
assert below.

The idea of a complement map was introduced in [Th]. We give here a quick
definition, which is easily seen to be equivalent to the notion of rigid complement
map used in [Th].

Definition 1.2. Let L be a set of Q-subspaces of NQ that contains NQ. Then
a complement map � assigns, to each L1,L2 ∈ L such that L1 ⊂ L2, a section
i� : L∗

1 → L∗
2 of the natural (restriction) map L∗

2 → L∗
1. The sections are assumed

to be transitive with respect to inclusion. Given a fan � in N , we say that � is
�-generic if {Nσ,Q}σ∈� is a subset of L.

In particular, if � is �-generic, then we obtain a section i� : Mσ,Q → MQ for
each σ ∈ �. If d ∈ Mσ,Q, then we denote its image i�(d) ∈ MQ by d� . Denote
the Q-subspace of MQ generated by i�(σ ) as �(σ). We easily check that �(σ)⊕
M(σ)Q = MQ. In this sense, we may say that a complement map is a choice of
complementary spaces.

The following theorem asserts that a complement map gives rise to a natural
action of DivT (X) on ZT∗ (X). In the formula that defines this action, it is useful to
note that if D is a Cartier divisor with local equations {dσ }σ∈� and τ → σ , then
dτ and d�

σ have the same image in Mσ,Q. Thus, we can consider the difference
dτ − d�

σ to be an element of M(σ)Q. As such the expression 〈dτ − d�
σ ,nτ,σ 〉 is

well defined.

Theorem 1. Let X = X(�) be the toric variety associated to a fan � in N .
Given a generic complement map � on N , there is a natural action of the
group DivT (X) on ZT∗ (X), given as follows: for D ∈ Div(X) with local equa-
tions {dσ }σ∈� ,

D · Vσ =
∑

τ :τ→σ

〈dτ − d�
σ ,nτ,σ 〉Vτ + d�

σ Vσ . (1)
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The action satisfies the following properties:

• (Lifting) The action defined above is a lifting of the action of the Picard group
of X on the equivariant Chow groups AT∗ (X)Q.

• (Commutativity) For any D,E ∈ DivT (X) and C ∈ ZT∗ (X), we have D · (E ·
C) = E · (D · C).

• (Compatibility with nonequivariant cycle-level intersection) The action defined
above is a lifting of the cycle-level action of Div(X) on Z(X)Q defined in [Th].

For an illustration of the action defined above, see Example 3.4.

1.3. Ring Structure in the Simplicial Case

In the case where X is a simplicial toric variety, the action defined above provides
a ring structure on ZT∗ (X). As we show in Section 2.3, this is a consequence of
Theorem 1 together with the well-known fact that every Weil divisor on X is rep-
resented by a Cartier divisor. The ring structure obtained is a lifting of the product
structure on the equivariant cohomology ring A∗

T (X)Q, which is described (over
Z) in [Fu2]. We now describe the ring structure on ZT∗ (X) explicitly.

Theorem 2. Let � be a simplicial fan, and let X be the associated toric vari-
ety. Let � be a generic complement map. Then the action of Theorem 1 induces
a commutative ring structure on ZT∗ (X). This product is a lifting of the prod-
uct on the equivariant cohomology ring A∗

T (X)Q under the natural surjection
ZT∗ (X)Q → A∗

T (X)Q.
Furthermore, the ring structure on ZT∗ (X) is described explicitly as follows.

Let �(1) = {ρ1, . . . , ρs} be the one-dimensional cones of �, and let Di := Vρi
∈

ZT∗ (X) be the corresponding cycles. Denote by ni the primitive element of N ∩ρi .
Then

ZT∗ (X) ∼= �Q[D1, . . . ,Ds]
I + J�

,

where I is the Stanley–Reisner ideal

I = 〈Di1Di2 . . .Dik : ρi1 + ρi2 + · · · + ρik /∈ �〉,
and

J� =
〈
Di1Di2 . . .Dik

( s∑
j=1

〈m,nj 〉Dj − m

)
:

ρi1 + ρi2 + · · · + ρik = σ ∈ �,m ∈ �(σ)

〉
.

If we modify the definition of J� above by allowing all m ∈ MQ (eliminat-
ing the restriction m ∈ �(σ)), then we create a larger ideal J ′. The equivariant
cohomology ring over Q, denoted A∗

T (X)Q, then has a natural presentation as
�Q[D1, . . . ,Ds]/(I + J ′), as explained in [Fu2]. Note that the equivariant co-
homology ring can be defined over Z in the nonsingular case. However, the ring
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structure in Theorem 2 cannot, since our complement maps are in general only
defined over Q.

1.4. A Cycle Equivariant Todd Class

We now show how Theorem 2 can be used to obtain a cycle expression for the
equivariant Todd class of an arbitrary toric variety, given the choice of a com-
plement map. Recall that for a nonsingular toric variety X, the equivariant Todd
class, denoted TdT (X), which naturally lives in the equivariant cohomology ring
A∗

T (X)Q, can be expressed as

TdT (X) :=
s∏

i=1

Di

1 − e−Di
. (2)

(See [BV3] for a proof.) Using Theorem 2, we can multiply out the above product,
and the result is a cycle expression for the equivariant Todd class, living in the
completion ẐT∗ (X) of ZT∗ (X). This gives us an expression for TdT (X) in terms
of the cycles Vσ :

TdT (X) =
∑
σ∈�

r�(σ )Vσ ,

where the coefficients r�(σ ) live in �̂Q := Q̂[M], the completion of �Q. As
we show, these coefficients depend only on the complement map � and on the
nonsingular cone σ and are independent of the rest of �. Every cone σ has a
subdivision into nonsingular cones, allowing σ to be written as the union of a
finite collection of cones {σ1, . . . , σt } all of the same dimension, which intersect
only along boundaries. In this case, we define

r�(σ ) =
∑

i

r�(σi). (3)

It turns out, as asserted by our next theorem, that this sum is independent of the
chosen subdivision, and thus we obtain a local formula for the equivariant Todd
class of a toric variety.

Theorem 3. Let � be a complement map on a lattice N . The above construction
produces a well-defined map

r� : {�-generic cones in N} −→ �̂Q.

This function satisfies the following properties:

• (Local expression for TdT (X)) For every �-generic fan �, we have

TdT (X) =
∑
σ∈�

r�(σ )Vσ . (4)

• (Additivity) If σ = ⋃t
i=1 σi is a subdivision of a �-generic cone σ in N into

cones σi , all of the same dimension, which intersect only along boundaries,
then

r�(σ ) =
∑

i

r�(σi).
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• (Analytic properties) For any �-generic cone σ , the power series r�(σ ) ∈ �̂Q

represents a meromorphic function on N ⊗C, regular at the origin.
• (Agreement with nonequivariant cycle Todd class) The constant term r�(σ )(0)

agrees with the cycle Todd class coefficients μ(σ) constructed in [PT].

1.5. SI-Interpolators and Euler–Maclaurin Formulas for Polyhedra

Finally, we indicate some connections with sum-integral interpolation and Euler–
Maclaurin formulas for polyhedra. A cycle expression for the Todd class allows
one, via the Riemann–Roch theorem, to express exponential sums (S) over a poly-
hedron P in terms of exponential integrals (I) over the faces F of P .

To make this connection explicit, suppose that P is a rational polyhedron in M .
One can associate to P two meromorphic functions, the exponential sum S(P ) ∈
M(N), and the exponential integral I (P ) ∈ M(N) where M(N) is the algebra
of meromorphic functions on N ⊗C. These functions are given by the equations

S(P )(ξ) =
∑

x∈P∩M

e〈ξ,x〉, I (P )(ξ) =
∫

P

e〈ξ,x〉 dx (5)

for ξ ∈ N ⊗ C, provided that |e〈ξ,x〉| is summable (resp. integrable) over P . The
fact that the equations define meromorphic functions, as well as the precise char-
acterization and properties of the functions S and I , is essentially the content of
Lawrence’s theorem [La].

The fact that the functions r� defined above satisfy equation (4) implies that
they interpolate between exponential sums and integrals, as stated in the following
corollary. If F is a face of a lattice polyhedron P in M , then we use σP,F to
denote the cone in N dual to the tangent cone to P along F ; the cone σP,F is the
cone in the inner normal fan � corresponding to F . (See Section 2.4 for detailed
definitions.)

Corollary 1.3. Let � be a complement map on N . Then for any �-generic
integral polyhedron P in M , we have

S(P )(ξ) =
∑
F

r�(σP,F )(−ξ) · I (F )(ξ),

where the sum is taken over all faces F of P .

Finally, we note that these results connect with existing results in [PT; BV1; GP]
and strengthen the connections between those results. In Theorem 4, we show
that our interpolators r� agree with those constructed in [GP] for general � , and
for � arising from an inner product, our r� coincides with the μ constructed in
[BV1; BV2]. Note, however, that both [BV1] and [GP] allow rational polyhedra,
whereas in the current case we are restricted to integral polyhedra.

Theorem 4. Let � be a complement map on a lattice N , and let μ� be the SI-
interpolator defined in [GP]. Let σ be a cone in N , and σ̌ be its dual in M . We
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then have
r�(σ )(ξ) = μ�(σ̌ )(−ξ).

Note that for � derived from an inner product, the theorem relates our r� to the
μ defined in [BV2] restricted to lattice cones.

As a corollary of Theorem 4, using the last part of Theorem 3, we see that the
constant term of the [GP] construction coincides with the rational numbers μ from
the [PT] construction. In particular, the constant term of the [BV1] construction
is the μ from [PT] in the case of complement maps arising from inner products.
This gives a positive answer to Conjecture 1 in [GP].

Corollary 1.4. Suppose that � is a complement map on a lattice N . Let μ�
0

denote the cycle Todd class coefficients constructed in [PT, Corollary 1], and let
μ� be the SI-interpolator defined in [GP]. Let σ be a cone in N , and σ̌ be its dual
in M . We then have

μ�
0 (σ ) = μ�(σ̌ )(0).

2. Details and Proofs

2.1. Constructing the Group Action

The following section is included in order to provide motivation for the unusual
formula for the group action given in Theorem 1. In the process, we will prove
why the action is a lift of the action of the Picard group on the equivariant Chow
groups. We also explain why the choice of a complement map appears to be nec-
essary.

We require an action of DivT (X) on ZT∗ (X) that respects �Q-multiplication.
Since, as �Q-modules, DivT (X) is generated by Div(X), and ZT∗ (X) is gener-
ated by {Vσ : σ ∈ �}, it is enough to describe how Div(X) acts on each Vσ . We
first recall the natural map from divisors to cycles. Let D ∈ Div(X) be a divisor
with local equations dσ . Let ρ1, . . . , ρs be the one-dimensional cones in �. For
simplicity, we notate Vi := Vρi

. Associated to D, we define the cycle

[D] :=
s∑

i=1

〈dρi
, ni〉Vi,

where ni is the primitive generator of ρi (the first lattice point along ρi ). The map
D �→ [D] clearly induces a �-module homomorphism from DivT (X) to ZT∗ (X).

Let σ ∈ �. We wish to consider the action of D on Vσ as an intersection
product of [D] and Vσ . Formally, we consider

[D] · Vσ =
s∑

i=1

〈dρi
, ni〉Vi · Vσ .

Now we break up the summation and use the mapping property of local equa-
tions:

[D] · Vσ =
∑
ρi⊀σ

〈dρi
, ni〉Vi · Vσ +

∑
ρi≺σ

〈dσ ,ni〉Vi · Vσ .
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We have separated the terms so that the left-hand summation contains only
terms that intersect properly, so that their intersection product is natural and well
defined. However, the right-hand summation contains terms that do not intersect
properly. We recall that the intersection product is always well defined in the
equivariant Chow ring AT∗ (X)Q, so we consider [D] as an element of this ring.
As described in [Fu2] (over Z), AT∗ (X)Q ∼= �Q[V1, . . . , Vs]/J ′, where

J ′ =
〈 ∑
τ :τ→σ

〈m,nτ,σ 〉Vi − mVσ : σ ∈ �,m ∈ MQ

〉
.

The solution is to shift [D] by an element of J ′ in order to eliminate the terms
that do not intersect properly with σ , thus preserving the intersection product in
the Chow ring. We would like to pick an element E ∈ J ′:

E =
s∑

i=1

〈m,ni〉Vi − mV{0},

where m �→ dσ under the quotient map MQ → Mσ,Q. It is clear that [D] − E

would then only contain terms that intersect properly with Dσ . However, we run
into some ambiguity: there is no natural choice of m since there is no natural
section Mσ,Q → MQ. This is why we must choose a complement map.

Let � be a complement map on V with each cone in � included in the domain.
Recall that we write d�

σ as the image of dσ in MQ under � . Define the cycle

E�
σ :=

s∑
i=1

〈d�
σ ,ni〉Vi − d�

σ V{0}.

Note that E�
σ is in J ′ as required. Thus, the product ([D] − [E�

σ ]) · Vσ is a
product of cycles that intersect properly, and furthermore, each term in the product
corresponds either to σ or to a cone τ that contains σ as a maximal proper face.
Then we define

D · Vσ = ([D] − [E�
σ ]) · Vσ .

.
When we work this out explicitly, we recover the formula in Theorem 1:

D · Vσ =
∑

τ :τ→σ

〈dτ − d�
σ ,nτ,σ 〉Vτ + d�

σ Vσ . (6)

2.2. Well-definedness and Properties

We now begin the proof of Theorem 1.

Proof or Theorem 1. The fact that the map respects the properties of a group ac-
tion follows immediately from the additivity of all maps involved in the definition.
The characterization of the map in the previous section proves that the action on
ZT∗ (X) is a lifting of the action on AT∗ (X)Q.

In order to prove that the action generalizes the cycle-level action defined in
[Th], we must reconcile our definition with his. Let D ∈ DivT (X), C ∈ ZT∗ (X).
Let � be the action of Div(X) on Z∗(X)Q as defined in [Th]. Finally, let φ be the



Cycle-Level Products in Equivariant Cohomology of Toric Varieties 853

natural homomorphism from equivariant divisors (or cycles) to basic divisors (or
cycles) that maps MQ to 0. Then we wish to prove that

φ(D · C) = φ(D) � φ(C).

Since φ is a module homomorphism, it suffices to assume that C = Vσ and
D ∈ Div(X). Let {dσ } be the local equations for φ(D). For this proof, we briefly
introduce notation from [Th]. As defined in [Th],

φ(D) � Vσ =
∑

τ :τ→σ

〈πσ (mτ ), nτ,σ 〉Vτ ,

where πσ : Mτ → M(σ)τ is the projection map derived from � . Using the above
definition,

φ(D · Vσ ) =
∑

τ :τ→σ

〈mτ − m�
σ ,nτ,σ 〉Vτ .

It suffices to show that for τ → σ ,

〈mτ − m�
σ ,nτ,σ 〉 = 〈πσ (mτ ), nτ,σ 〉.

Following through the definitions of each term makes the statement clear. For
purely aesthetic reasons, the authors have chosen to define the action using the
embedding map i� rather than the projection map πσ , although they are certainly
equivalent.

Since the basic cycle-level action was proven to be commutative in [Th], most
of the work in proving the commutativity of the equivariant-level action is done.
Let D,E ∈ DivT (X), C ∈ ZT∗ (X). We wish to show that D · (E ·C) = E · (D ·C).
Once again, it suffices to assume that D,E ∈ Div(X), C = Vσ . Expanding upon
the definition, we see that

D · (E · Vσ ) =
∑

δ:δ→σ

∑
τ :τ→δ

〈eδ − e�
σ ,nδ,σ 〉〈dτ − d�

δ ,nτ,δ〉Vτ

+
∑

δ:δ→σ

(〈eδ − e�
σ ,nδ,σ 〉d�

δ + 〈dδ − d�
σ ,nδ,σ 〉e�

σ )Vδ + d�
σ e�

σ Vσ .

The expression E · (D · Dσ ) is of course the same, with e and d switched.
Notice that the top row of the expression, by itself, is the basic cycle-level action.
Since the commutativity of that action was shown in [Th], it suffices to focus
exclusively on the bottom half. By the symmetry of the last term, it suffices to
show that for δ → σ ,

〈eδ − e�
σ ,nσ,δ〉d�

δ + 〈dδ − d�
σ ,nσ,δ〉e�

σ = 〈dδ − d�
σ ,nσ,δ〉e�

δ + 〈eδ − e�
σ ,nσ,δ〉d�

σ

or equivalently,

〈dδ − d�
σ ,nσ,δ〉(e�

δ − e�
σ ) = 〈eδ − e�

σ ,nσ,δ〉(d�
δ − d�

σ ).

Since δ → σ , both e�
δ − e�

σ and d�
δ − d�

σ lie in the one-dimensional space
�(δ) ∩ M(σ). The result follows immediately. �
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2.3. A Ring Structure on Z(X) for Simplicial Fans

Our goal in this section is to prove Theorem 2, which gives a ring structure on the
equivariant cycle group ZT∗ (X) in the simplicial case. This generalizes a similar
result for the action on Z∗(X)Q found in [Th]. We note that the (nonequivariant)
cycle ring Z∗(X) has a similar presentation as a quotient of a polynomial ring;
however, this presentation does not appear in full generality in [Th] or [PT].

For this section, suppose that � is simplicial. This implies that the group of
divisors Div(X) is isomorphic to Zn−1(X), the group of cycles of codimension 1.
Then clearly DivT (X) and ZT

n−1(X) are also isomorphic as �Q-modules. Under
this isomorphism, the action of DivT (X) on ZT∗ (X) translates to a binary opera-
tion on ZT∗ (X).

Proof or Theorem 2. The first part of the proof is identical to the argument
in [Th]. Since � is simplicial, the cycles {Di} correspond to Q-Cartier di-
visors. Then, by the commutativity of the action, ZT∗ (X) is a module over
�Q[D1, . . . ,Ds]. In fact, ZT∗ (X) is a cyclic module generated by V{0}. Indeed,
let σ ∈ �, σ = ρi1 + ρi2 + · · · + ρik . Then

Di1 · Di2 · · · · · Dik · V{0} = rVσ ,

where r is a nonzero rational number, since the divisors Di intersect properly.
(Note that if X is nonsingular, r is always 1.)

Since ZT∗ (X) is a cyclic module over �Q[D1, . . . ,Ds], ZT∗ (X) ∼= �Q[D1, . . . ,

Ds]/K for some ideal K . It remains to show that K = I + J� . We first prove
I ⊂ K . Let Di1Di2 . . .Dik ∈ I . Since the set {Di} intersects properly, this product
must be a linear combination of {Dτ : ρi1 + ρi2 + · · · + ρik ⊂ τ }. Since there are
no such τ ∈ �, the product is 0.

Next, we show that J� ⊂ K . Given any m ∈ M , we consider the principal
divisor D with local equations mτ = m for all τ ∈ �. Then

Di1 · Di2 · · · · · Dik

( s∑
j=1

〈m,nj 〉Dj − m

)
= ([D] − m) · rVσ = 0

by (1).
In order to prove K ⊂ I + J� , it must be shown that any polynomial F ∈

�Q[D1, . . . ,Ds]/(I + J�) can be written as a linear combination of {Vσ : σ ∈
�}. By the definition of I , this is equivalent to expressing F as a square-free
polynomial in �[D1, . . . ,Ds]. Since square-free polynomials are closed under
addition and multiplication by �Q, we may assume without loss of generality
that F is a monomial term with coefficient 1 such that F /∈ I .

Renumbering the cones of �, we can assume that F = D
a1
1 D

a2
2 . . .D

ak

k , where
ρ1 + ρ2 + · · · + ρk = σ ∈ �, and a1 > 1. Our goal is to shift by an element of
J� so as to decrease the exponent a1 without increasing any of the other nonzero
exponents. Then, by induction, we are done. Since σ is a simplicial cone, we can
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choose m ∈ Mσ,Q such that 〈m,n1〉 = 1 and 〈m,ni〉 = 0 for 2 ≤ i ≤ k. Then set

E = D
a1−1
1 D

a2
2 . . .D

ak

k

( s∑
j=1

〈m�,nj 〉Dj − m�

)
.

Clearly, E ∈ J� , and F − E is a sum of terms that all satisfy our requirement.
Thus, K = I + J� , and the theorem is proven. �

It is easy to show that under the surjective homomorphism ZT∗ (X) → Z∗(X)Q,
Z∗(X)Q ∼= Q[D1, . . . ,Ds]/I ◦ + (Jψ)◦, where I ◦ and (Jψ)◦ are the images of I

and J� , respectively. This gives another characterization of the ring structure on
Z∗(X)Q of [Th]. In the case that � is induced from an inner product or a complete
flag, there are more concrete descriptions of the ideal J� . See [Th] and [PT] for
details in the basic case.

2.4. Todd Class Expressions and SI-Interpolators

In this section we prove Theorems 3, Theorem 4, and Corollary 1.4. To this end, it
will be useful to recall a few definitions and theorems regarding exponential sums
and integrals over polyhedra.

Let P be a polyhedron in V := MQ, with outer normal fan �. Let F be a face
of P . Let aff(F ) be the affine span of F , that is, the smallest affine subspace of
V that contains F . Let lin(F ) be the linear subspace parallel to aff(F ). Since P

is rational, there is a natural lattice on lin(F ). By translation, there is a lattice
measure dmF on aff(F ).

Let x be an interior point in F . The tangent cone Tan(P,F ) := {v ∈ V | x +
εv ∈ P for some x ∈ F ◦, ε > 0} is the cone of directions that one can go from any
point x in the interior of F and stay in P . The supporting cone Supp(P,F ) :=
Tan(P,F ) + x. Both cones are independent of x.

The following theorem is a version of Lawrence’s theorem [La].

Lawrence’s Theorem. Let P be a polyhedron in V := MQ. Then there exist
meromorphic functions S(P ) and I (P ) on V ∗ (i.e., elements of �̂Q) with the
following properties:

• If P contains a straight line, then S(P ) = I (P ) = 0.
• S (resp. I ) is a valuation (resp. a solid valuation). That is, if the characteristic

functions of a family of polyhedra satisfy a relation
∑

i riχ(Pi) = 0, then the
functions S(Pi) satisfy the relation

∑
i riS(Pi) = 0 (resp. restrict the sum to

those Pi that do not lie in a proper affine subspace of V ).
• For every v ∈ V , we have

I (v + P) = evI (P ) (7)

and

S(v + P) = evS(P ). (8)
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• If ξ ∈ V ∗ is such that |e〈ξ,x〉| is integrable (resp. absolutely summable) over P ,
then

I (P )(ξ) =
∫

P

e〈ξ,x〉 dmP (x), S(P )(ξ) =
∑

x∈P∩�

e〈ξ,x〉,

where dmP denotes the relative Lebesgue measure on aff(P ). The use of
this measure prevents I from being trivial on polyhedra that are not full-
dimensional.

Let K be a nonsingular cone in V with primitive generators v1, . . . , vk . Then a
straightforward computation shows that

I (K) = (−1)k∏k
i=1 vi

, S(K) =
k∏

i=1

1

1 − evi
. (9)

We also recall the notion of SI -interpolator from [GP].

Definition 2.1. Let V be a real vector space, and let M(V ∗) be the set of mero-
morphic functions on V ∗. Let C be a set of cones in V . An SI-interpolator is a
map

μ : C → M(V ∗)
such that given any rational polyhedron P with Supp(P,F ) ∈ C for all F ⊂ P ,

S(P ) =
∑
F⊂P

μ(Supp(P,F ))I (F ).

We are now ready for the proofs of Theorems 3 and 4.

Let ẐT∗ (X) be the ring of power series in ZT∗ (X). Recall that for nonsingular
toric varieties, the equivariant Todd class of X, denoted TdT (X), has a product
expression in A∗

T (X)Q. (See [BV3].) Letting {Bi} be the Bernoulli numbers for
1 ≤ i < ∞, we have

TdT (X) =
s∏

i=1

(
1 +

∞∑
j=1

Bj

j ! D
j
i

)
.

Using the induced ring structure on ZT∗ (X), we can express TdT (X) as a poly-
nomial in {Dσ : σ ∈ �} with coefficients in �̂Q. The following lemma will show
that the coefficient of Dσ in this expression, which we will denote r�(σ ), is in-
dependent of the other cones in �. Thus, we can consider r�(σ ) as a function of
σ , independent of any fan that contains it.

Lemma 2.2. Let F be any power series in �Q[[D1, . . . ,Ds]], and let σ ⊂ N be
contained in two fans � and �′, both generic with respect to � , correspond-
ing to toric varieties X, X′. Let F� , F�′ be the images of F in Z∗(X), Z∗(X′),
respectively. Then the coefficient of Dσ is the same in F� and F�′ .
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Proof. By (1), Dτ ∗ Dσ is a sum of cycles corresponding to cones containing σ .
By commutativity, it is also a sum of cycles corresponding to cones containing τ .
Thus, the coefficient of Dσ in F� or F�′ only depends on the terms of F corre-
sponding to faces of σ . Thus, in calculating that coefficient, we may restrict � or
�′ to the fan consisting of σ itself and all its faces. Then the coefficient must be
the same in both cases. �

We will use the following lemma, a version of the equivariant Riemann–Roch
theorem, which says that if one replaces cycles by the corresponding exponential
integrals, then the Todd class is carried to the exponential sum. (Note that this is
only true for nonsingular cones.) A version of this idea first appeared in [KP]; see
[BR] for an elementary argument.

We will use S̃, Ĩ , and μ̃ to denote S, I , and μ with the substitution ξ �→ −ξ .

Lemma 2.3. Let K = Cone(m1, . . . ,mn) be a full-dimensional nonsingular cone
in M , and let σ = Ǩ = Cone(v1, . . . , vn), with {vi} denoting the basis of N dual
to {mi}. Let

Rσ = �Q[D1, . . . ,Dn]
J

, J =
〈∑

〈m,vi〉Di − m : m ∈ M

〉
.

Let R̂σ denote the completion of Rσ , and let �̂Q be the field of Laurent series
over M . Then there is a �Q-linear map � : R̂σ → �̂Q such that

• for any subset T ⊂ {1, . . . , n}, with KT = {m ∈ K | 〈m,vi〉 = 0, i ∈ T }, we
have

�

(∏
i∈T

Di

)
= Ĩ (KT )

• and

�

(∏ Di

1 − e−Di

)
= S̃(K).

Proof. For any power series γ , map γ (D1, . . . ,Dn) to P −1γ (m1, . . . ,mn), where
P = ∏n

i=1 mi , and extend by �Q-linearity. We check that J maps to 0:

�

(∑
〈m,vi〉Di − m

)
= P −1

(∑
〈m,vi〉mi − m

)
= 0.

Additionally,

�

(∏
i∈T

Di

)
=

∏
i /∈T

m−1
i = Ĩ (KT ),

where the last equality follows from the fact that KT = Cone({mi | i /∈ T }). Fi-
nally,

�

(∏ Di

1 − e−Di

)
=

∏ 1

1 − e−mi
= S̃(K). �

We now prove Theorem 3, Theorem 4, and Corollary 1.3 together. We will first
see that the interpolator equation of Corollary 1.3 holds for nonsingular cones.
This will enable us to argue inductively that the equation of Theorem 4 holds
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for nonsingular cones. Once this relation between r and μ is established in the
nonsingular case, the fact that r extends to a well-defined additive map on singular
cones follows from the corresponding property of μ.

We now proceed to use Lemma 2.2 to prove the equation of Corollary 1.3 in
the case that K is a nonsingular n-dimensional cone. We use the notation of the
lemma. Note that by construction of r�(σ ) it follows that we have the following
equation in ZT∗ (X): ∏ Di

1 − e−Di
=

∑
τ

r�(τ)Dτ .

Applying the natural map ZT∗ (X) → Rσ followed by �, we get

S̃(K) =
∑
τ≺σ

r�(τ)Ĩ (Kτ ),

where Kτ = K ∩ τ⊥ is the face of K dual to τ . For this face F = Kτ , we have
that the dual to the supporting cone Supp(K,F ) is σK,F = τ . Thus, we see that
the equation of Corollary 1.3 holds in the case that K is a full-dimensional non-
singular cone.

Our next lemma states that for cones σ that are not necessarily of maximum
dimension, r�(σ ) can be computed by viewing σ as a top-dimensional cone in
the subspace Nσ and then applying the inclusion i� : Mσ,Q → MQ. We note that
a complement map on N induces a complement map on all �-generic sublattices,
including Nσ .

Lemma 2.4. Let � be a complement map on N and suppose that σ is a �-generic
nonsingular cone in N . Let � be the induced complement map on Nσ . Let σ̃ = σ ,
but considered as a cone in Nσ . Then

r�(σ ) = i�(r�(σ0)).

Proof. Let X be the toric variety corresponding to the fan given by σ , and all of its
faces, in N , and let Xσ correspond similarly to σ0 ⊂ Nσ . Extend the inclusion map
i� : Mσ,Q → MQ to a map from �σ,Q := Q[Mσ ] to �Q := Q[M]. This extends
further to a natural map from ZT∗ (Xσ ) to ZT∗ (X), using the characterization in
Theorem 2. The well-definedness of this map hinges on the transitivity of the
inclusions i� , which is part of the definition of a complement map. This ensures
that the ideal J�

σ is sent to J� .
It is easy to see that this map preserves the product expression of the Todd

class, and since the square-free expression of the Todd class is unique in each ring,
the map must preserve these expressions as well. In particular, the coefficient of
Vσ̃ is taken to the coefficient of Vσ . �

We now show that r�(σ ) = μ̃�(σ̌ ) holds for nonsingular cones, which we argue
by inducting both on dimM and dimσ . If σ is full-dimensional, then we have
seen that

S̃(K) =
∑
τ≺σ

r�(τ)Ĩ (Kτ ),
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where K = σ̌ and Kτ = K ∩ τ⊥. Since μ is an interpolator, we also have

S̃(K) =
∑
τ≺σ

μ̃�(τ̌ )Ĩ (Kτ ).

For proper faces τ of σ , we may assume by induction that r�(τ) = μ̃�(τ̌ ), and it
follows that r�(σ ) = μ̃�(σ̌ ) as well.

Now suppose that σ is nonsingular but not full-dimensional. We apply
Lemma 2.4. With the notation of that lemma, we have

r�(σ ) = i�(r�(σ0)).

Since the interpolator μ� is �-hereditary (see [GP]), we also have

μ̃�(σ̌ ) = i�(μ̃�(σ̌0)).

But by induction, r�(σ0) = μ̃�(σ̌0). Thus, it follows that r�(σ ) = μ̃�(σ̌ ).
At this point, we have established that r�(σ ) = μ̃�(σ̌ ) for nonsingular cones.

By the additive property of μ̃ it follows that r� may be extended to a well-defined
additive function on all cones (independent of subdivision) such that r�(σ ) =
μ̃�(σ̌ ) for all σ . The analytic and interpolator properties of r� follow from those
of μ� . This completes the proof of Theorems 3 and 4 and Corollary 1.3.

Finally, Corollary 1.4 follows directly from Theorem 4 together with the final
assertion of Theorem 3.

3. Examples

In this section, we illustrate theorems of this paper by computing explicit for-
mulas for r�(σ ) for nonsingular cones of dimension 2 or less with an arbitrary
complement map � . We also match these formulas with those of [GP].

Our first two propositions concern cones of dimensions 0 and 1 in an arbitrary
lattice.

Proposition 3.1. For any complement map � on N , we have r�(0) = 1.

Proof. The constant term in the expansion of equation (2) is 1. All other terms in
this expansion are divisible by some Di , which will remain true when the term is
evaluated in ZT∗ (X). Thus, these terms do not contribute to r�(0). �

To state the formula for r�(σ ) where σ is a cone of dimension greater than 0, it
will be useful to introduce notation for the meromorphic function

B(z) = 1

1 − exp(z)
+ 1

z
.

Note that if we let g(z) = z
1−exp(−z)

be the analytic function that defines the Todd
class, then we have

g(z) = 1 + zB(−z). (10)
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Proposition 3.2. Let � be a complement map on a lattice N and suppose that
σ = cone(ρ) is a one-dimensional cone generated by a primitive element ρ ∈ N .
Assume that σ is in the domain of � and let c ∈ M be a generator of the one-
dimensional space �(σ). Then

r�(σ ) = B

(
− c

〈c,ρ〉
)

.

Proof. Taking ρ = ρ1, we expand equation (2) to find the coefficient of D1, work-
ing modulo Dj , j > 1. According to Theorem 2, we find the relation

D1(〈c,ρ〉D1 − c) = 0,

from which it follows that D2
1 = c

〈c,ρ〉D1, and hence

Di
1 =

(
c

〈c,ρ〉
)i−1

D1

for all i ≥ 1. Hence, using equation (10), we find that

g(D1) = 1 + B

(
− c

〈c,ρ〉
)

D1.

The proposition follows. �

Proposition 3.3. Let � be a complement map on a two-dimensional lattice N

and suppose that σ = cone(ρ1, ρ2) is a two-dimensional nonsingular cone gener-
ated by primitive elements ρ1, ρ2 ∈ N . Let m1, m2 be the dual basis of M , so that
〈mi,ρj 〉 = δi,j . Assume that σ is in the domain of � and for i = 1,2, let ci ∈ M

be a generator of the one-dimensional space �(ρi). Then

r�(σ ) = B(−m1)B(−m2)

− 1

m2

(
B

(
− c1

〈c1, ρ1〉
)

− B(−m1)

)

− 1

m1

(
B

(
− c2

〈c2, ρ2〉
)

− B(−m2)

)
.

In the equation above, note that, in spite of the appearance of fractions 1/mi on the
right-hand side, the expression given is actually a power series. Indeed, using the
fact that B(z)−B(w) is divisible by z−w, we easily see that these denominators
cancel.

Proof of Proposition 3.3. We wish to find the coefficient of D1D2 in g(D1)g(D2)

working in the ring ZT∗ (X) modulo Dj , j > 2. We have the relations

D1(〈c1, ρ1〉D1 + 〈c1, ρ2〉D2 − c1) = 0,

D2(〈c2, ρ1〉D1 + 〈c2, ρ2〉D2 − c2) = 0,

and
D1D2(D1 − m1) = 0, D1D2(D2 − m2) = 0.
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These imply, for i, j > 0, that

Di
1D

j

2 = mi−1
1 m

j−1
2 D1D2.

We also get

D2
1 = −〈c1, ρ2〉

〈c1, ρ1〉D1D2 + L1D1,

where Lj is defined as (1/〈cj , ρj 〉)cj . By induction, it follows that for i ≥ 2,

Di
1 = −〈c1, ρ2〉

〈c1, ρ1〉 (m
i−2
1 + mi−3

1 L1 + · · · + Li−2
1 )D1D2 + Li−1

1 D1.

Now using mi−2
1 + mi−3

1 L1 + · · · + Li−2
1 = (Li−1

1 − mi−1
1 )/(L1 − m1) and L1 −

m1 = (〈c1, ρ2〉/〈c1, ρ1〉)m2, we have

Di
1 = − 1

m2
(Li−1

1 − mi−1
1 )D1D2 + Li−1

1 D1,

which holds also for i = 1. Hence,

D1B(−D1) = − 1

m2
(B(−L1) − B(−m1))D1D2 + B(−L1)D1,

with a similar formula for D2B(−D2). Thus, the coefficient of D1D2 in
g(D1)g(D2) = (1 + D1B(−D1))((1 + D2B(−D2)) is given by

− 1

m2
(B(−L1) − B(−m1)) − 1

m1
(B(−L2) − B(−m2)) + B(−m1)B(−m2),

as desired. �

We note that Propositions 3.2 and 3.3 allow us to check directly, for nonsingular
cones σ of dimension at most 2, the agreement of the r� in this paper with the
μ� of [GP], as asserted in Theorem 4. Indeed, with the substitution of ξ for −ξ ,
we find exact agreement of Proposition 3.2 above with [GP], Propostion 5.3, in
both the complete flag and inner product cases. Similarly, in dimension 2, we see
agreement between Proposition 3.3 and [GP], Proposition 5.4.

Example 3.4. We illustrate the action of Theorem 1 using a nonsimplicial fan �

in N = Z3, defined as follows. Let ρ1 = (1,0,0), ρ2 = (0,1,0), ρ3 = (0,0,1),
ρ4 = (1,1,−1), and ρ5 = (−1,−1,0). The cone generated by ρi , ρj , . . . , ρk will
be denoted σi,j,...,k , with σ∅ = {0}. Consider the fan � with rays ρi , i = 1, . . . ,5,
whose maximal cones are σ1234, σ135, σ145, σ235, and σ245. Then � is a complete
fan with eight two-dimensional cones σ13, σ14, σ15, σ23, σ24, σ25, σ35, σ45. Let
X = X� , and for each cone σi,j,...,k ∈ �, let Vi,j,...,k denote the corresponding
cycle on X. Note that affine toric variety corresponding to σ1234 is the affine cone
on P1 ×P1.

Let � denote the complement map obtained from the standard inner product
on Q3. We will illustrate the action of DivT (X) on ZT∗ (X) given in Theorem 1.
First, note that for D ∈ Div(X), the local equations {dσ }σ∈� specify a continuous
piecewise Q-linear function on � that is determined by its values on ρi , i =
1, . . . ,5. Denote these values by αi , i = 1, . . . ,5. The αi are any rational numbers
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that satisfy α1 + α2 = α3 + α4. For such D, we compute the D · Vσ for various
σ ∈ �.

First, let σ = σ∅ = {0}. Then d�
σ = 0, and the formula in Theorem 1 gives

D · V∅ = α1V1 + α2V2 + α3V3 + α4V4 + α5V5.

This is simply the Weil divisor determined by the Cartier divisor D.
Next, let σ = σ1 = ρ1. Then using {m1,m2,m3} to denote the standard basis

of M = Z∗
3, we have d�

σ = α1m1, and the formula in Theorem 1 gives

D · V1 = α3V13 + (α4 − α1)V14 + (α1 + α5)V15 + α1m1V1.

For i �= 1, D · Vi may be computed similarly.
Turning to a two-dimensional cone, say σ = σ13, we find d�

σ = α1m1 + α3m3,
and

D · V13 = α2V1234 + (α5 + α1)V135 + (α1m1 + α3m3)V13.

Finally, take σ = σ1234. Then d�
σ = α1m1 + α2m2 + α3m3, and

D · V1234 = (α1m1 + α2m2 + α3m3)V1234.

Example 3.5. As a final example, we consider the two-dimensional nonsin-
gular triangle in M = Z2 with vertices v0 = (0,0), v1 = (1,0), v2 = (0,1).
The corresponding inner normal fan � in N = Z2 has rays generated by
ρ0 = (−1,−1), ρ1 = (0,1), ρ2 = (1,0). The two-dimensional cones of this fan
are σ0 = Cone((0,1), (1,0)), σ1 = Cone((−1,−1), (0,1)), σ2 = Cone((0,1),

(−1,−1)).
Let � be the complement map induced by the standard inner product on Z2.

We take {x = (1,0), y = (0,1)} to be the standard basis of M , so that � =
Z[x, y]. Then one calculates according to Theorem 2 that the ring structure on
the equivariant cycle groups is given by

ZT∗ (X) ∼= �Q[D0,D1,D2]
I + J�

,

where I = 〈D0D1D2〉, and

J� = 〈D1(D1 − D0 − x),D2(D2 − D0 − y),D0(2D0 − D1 − D2 + x + y)〉.
To compute the equivariant Todd class of X� , we multiply out the expression∏2

i=0 Di/(1 − exp(−Di)) in the completion of the above ring. Either working di-
rectly with the relations above or using Proposition 3.3, we find that the coefficient
r(σ0) of D1D2 is given by

r(σ0) = B(−x)B(−y).

Likewise, the coefficient r(σ1) of D0D2 is

r(σ1) = B(x − y)B(x)

− 1

x
[B(−y) − B(x − y)] − 1

y − x

[
B

(
1

2
(x + y)

)
− B(x)

]
,
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and the coefficient of D0D1 is

r(σ2) = B(y)B(y − x)

− 1

x − y

[
B

(
1

2
(x + y)

)
− B(y)

]
+ 1

y
[B(−x) − B(y − x)].

Note that the r(σi) may be expanded in power series about the origin (shown
here to order 2):

r(σ0) = 1

4
+ 1

24
x + 1

24
y + 1

144
xy + · · · ,

r(σ1) = 3

8
− 1

12
x + 1

24
y + 5

1,152
x2 − 1

288
xy − 5

1,152
y2 + · · · ,

r(σ2) = 3

8
+ 1

24
x − 1

12
y − 5

1,152
x2 − 1

288
xy + 5

1,152
y2 + · · · ,

and we recover the constant terms from the local lattice point formula of [PT],
namely μ0(σ0) = 1

4 , μ0(σ1) = 3
8 , μ0(σ2) = 3

8 (cf. [GP, Example 5.7]).
Finally, we can verify by direct computation that r(σ0)+ r(σ1)+ r(σ2) = 1, in

agreement with Theorem 3. We can also use the above expressions for the r(σi)

to verify the SI -interpolator property of Corollary 1.3:∑
F

r�(σP,F )(−ξ) · I (F )(ξ) = S(P )(ξ) = 1 + ex + ey.
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