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On Factoriality of Threefolds with Isolated Singularities

Francesco Polizzi, Antonio Rapagnetta, &
Pietro Sabatino

Abstract. We investigate the existence of complete intersection
threefolds X ⊂ Pn with only isolated, ordinary multiple points and
we provide some sufficient conditions for their factoriality.

0. Introduction

Grothendieck–Lefschetz’s theorem ([Gro68, Exposé XII, Corollaire 3.7; Har70,
Chapter IV, Corollary 3.3; BS95, Corollary 2.3.4]) says that if X is an effective,
ample divisor of a smooth variety Y defined over a field of characteristic 0, then
the restriction map of Picard groups

PicY −→ PicX

is injective if dimX ≥ 2 and is an isomorphism if dimX ≥ 3. One might ask what
happens, with the same hypotheses, to the restriction map CH1(Y ) → CH1(X)

between rational equivalence classes of codimension 1 subvarieties. Under some
mild assumptions on the singularities of X (e.g., if X is normal), this is equivalent
to asking whether or not the conclusions of Grothendieck–Lefschetz’s theorem
for Picard groups remain true for the restriction map

ClY −→ ClX, (1)

where, as usual, ClX denotes the class group of X, namely the group of linear
equivalence classes of Weil divisors. When X is smooth, there is nothing new to
say since the groups PicX and ClX are isomorphic; however, when X is singular,
the problem becomes a delicate one.

We will restrict ourselves to the case where Y ⊂ Pn (n ≥ 4) is a smooth, com-
plete intersection fourfold and X ⊂ Y is a threefold with isolated singularities.
Since X is projectively normal and nonsingular in codimension 1, the map (1)
is an isomorphism precisely when PicX = ClX = Z, generated by the class of
OX(1). This is in turn equivalent to the fact that the homogeneous coordinate ring
of X is a UFD or that any hypersurface in X is the complete intersection of X

with a hypersurface of Pn. In this case we say that X is factorial.
In the recent years, the study of factoriality of threefolds in P4 having only

ordinary double points (“nodes”) has attracted the attention of several authors. In
particular, the following result was conjectured, and proven in a weaker form, by
Ciliberto and Di Gennaro ([CDG04a]). The proof of the general case is due to
Cheltsov ([Che10b; Che10a]).

Received November 19, 2013. Revision received June 5, 2014.

781

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


782 F. Polizzi , A. Rapagnetta, & P. Sabatino

Theorem. Let X ⊂ P4 be a nodal threefold of degree d , and set k = |Sing(X)|. If
k < (d − 1)2, then X is factorial, whereas when k = (d − 1)2, then X is factorial
if and only if the nodes are not contained in a plane. Moreover, if the nodes are
contained in a plane π , then necessarily π ⊂ X, and this explains the lack of
factoriality in this case.

In the present paper we deal with the situation where the singularities involved are
not necessarily nodes but, more generally, ordinary m-ple points with m ≥ 2. Here
“ordinary” means that the corresponding tangent cone is a cone over a smooth
surface in P3. We first prove the following Lefschetz-type result; see Theorem 3.4.

Theorem A. Let Y ⊆ Pn be a smooth, complete intersection fourfold, and let
X ⊆ Y be a reduced and irreducible threefold that is the intersection of Y with a
hypersurface of Pn. Suppose that the singular locus � of X consists of isolated,
ordinary multiple points and denote by X̃ ⊂ Ỹ the strict transform of X in the
blowing-up Ỹ := Bl� Y of Y at �. If X̃ is ample in Ỹ , then X is factorial.

The first consequence is that if X has “few” singularities, which are all ordinary
points, then X is factorial. More precisely, we have the following result; see The-
orem 4.1.

Theorem B. Let Y ⊂ Pn be a smooth, complete intersection fourfold, and X ⊂ Y

be a reduced, irreducible threefold that is the complete intersection of Y with
a hypersurface of degree d . Assume that the singular locus of X consists of k

ordinary multiple points p1, . . . , pk of multiplicities m1, . . . ,mk . If

k∑
i=1

mi < d, (2)

then X is factorial.

We also give a different proof of Theorem B in the case X ⊂ P4 and k = 1 (see
the Appendix) because we find it of independent interest.

Theorem B provides the first factoriality criterion for complete intersection
threefolds in Pn with ordinary singularities. Previously, only results for nodal
threefolds in P4 and P5 were known ([Che10b; Kos09]).

When X ⊂ P4 and the inequality (2) is not satisfied, we can still give a factori-
ality criterion, provided that the singularities of X are in general position and they
all have the same multiplicity. In fact, using Theorem A together with a result of
Ballico (Theorem 1.5), we deduce the following result; see Theorem 4.4.

Theorem C. Let � := {p1, . . . , pk} be a set of k distinct, general points in P4,
and let d , m be positive integers with d ≥ m.

(i) If ⌊
d + 5

m + 4

⌋4

> k, (3)
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then there exists a hypersurface X ⊂ P4 of degree d with k ordinary m-ple
points at p1, . . . , pk and no other singularities.

(ii) If the stronger condition

min

{⌊
d + 5

m + 4

⌋4

,

⌊
d

m

⌋4}
> k (4)

holds, then any hypersurface X as in part (i) is factorial.

Using Theorem C, we can easily provide new examples of singular, factorial pro-
jective varieties.

In the last part of the paper we construct some nonfactorial threefolds X ⊂ P4

of degree d with only k isolated, ordinary m-ple points as singularities. In all
these examples the equality k(m − 1)2 = (d − 1)2 is satisfied. On the other hand,
in [Sab05] it is proven that if the singular locus of X consists of k2 ordinary double
points and k3 ordinary triple points and if k2 + 4k3 < (d − 1)2, then any smooth
surface contained in X is a complete intersection in X. Motivated by this fact,
we make the following conjecture, which generalizes the results of Ciliberto, Di
Gennaro, and Cheltsov.

Conjecture D. Let X ⊂ P4 be a hypersurface of degree d whose singular locus
consists of k ordinary multiple points p1, . . . , pk of multiplicities m1, . . . ,mk . If

k∑
i=1

(mi − 1)2 < (d − 1)2,

then X is factorial.

We hope to come back to this problem in a sequel to this paper.
Let us now explain how this work is organized. In Section 1 we fix notation

and terminology, and we collect some preliminary results that are needed in the
sequel of the paper. In Section 2 we discuss the notion of factoriality of projec-
tive varieties and its relations with the close concepts of local factoriality and
Q-factoriality, providing several examples and counterexamples.

In Section 3 we prove Theorem A, whereas in Section 4 we present some of
its consequences, including Theorem B and Theorem C. Finally, in Section 5 we
describe our nonfactorial examples and state Conjecture D.

Notation and conventions. We work over the field C of complex numbers.
If X is a projective variety and D1, D2 are divisors on X, we write D1 ≡hom D2

for homological equivalence and D1 ≡lin D2 for linear equivalence.
The group of linear equivalence classes of Weil divisors on X is denoted by

ClX, whereas the group of linear equivalence classes of Cartier divisors is de-
noted by PicX.

We write SingX for the singular locus of X and bk(X) for its kth Betti number.
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1. Preliminaries

In this section we collect, for the reader’s convenience, some preliminary results
that are used in the sequel of the paper. We start by stating some versions of
Lefschetz’s theorem on hyperplane sections, both for cohomology groups and for
Picard groups.

Theorem 1.1. Let Y be a smooth, projective variety of dimension n, and X =
X1 ∩ · · · ∩ Xe ⊆ Y a smooth complete intersection of effective, ample divisors
on Y . Then the restriction map

Hi(Y,Z) −→ Hi(X,Z)

is an isomorphism for i ≤ dimX − 1 = n− e − 1 and is injective with torsion-free
cokernel for i = dimX = n − e.

Proof. See [Laz04, Remark 3.1.32]. �

Theorem 1.2. Let X ⊂ Pn be a complete intersection that has only isolated sin-
gular points. Then the restriction map

Hi(Pn,C) −→ Hi(X,C)

is an isomorphism for dimX + 2 ≤ i ≤ 2 dimX.

Proof. See [Dim92, Theorem 2.11, p. 144]. �

Theorem 1.3. Let X ⊂ Pn be a reduced complete intersection with dimX ≥ 3.
Then the restriction map

PicPn −→ PicX

is an isomorphism. In particular, PicX = Z, generated by OX(1).

Proof. See [Har70, Chapter IV, Corollary 3.2] or [Gro68, Exposé XII, Corol-
laire 3.7]. �

Theorem 1.3 admits the following generalization.

Theorem 1.4. Let Y be a smooth, projective variety, and X ⊂ Y a reduced, effec-
tive ample divisor. Then the restriction map

PicY −→ PicX

is an isomorphism if dimX ≥ 3 and is injective with torsion-free cokernel if
dimX = 2.

Proof. See [BS95, Corollary 2.3.4] and [Laz04, Example 3.1.25]. �

We will also need the following ampleness criterion for the blow-up of Pn at a
finite number of general points.
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Theorem 1.5. Fix integers n, k, d with n ≥ 2, d ≥ 2, and k > 0; if n = 2, then
assume that d ≥ 3. Let p1, . . . , pk ∈ Pn be general points, denote by π : P̃n −→
Pn the blow-up of Pn at p1, . . . , pk , with exceptional divisors E1, . . . ,Ek , and set
H := π∗OPn(1). Then the divisor

L := dH −
k∑

i=1

Ei

is ample in P̃n if and only if Ln > 0 or, equivalently, if and only if dn > k.

Proof. See [Bal99]. �

Corollary 1.6. With the notation of Theorem 1.5, if a, b are positive integers
such that � a

b
�n > k, then the divisor

L := aH − b

k∑
i=1

Ei

is ample.

Proof. Write a = � a
b
� · b + r , where r is an integer such that 0 ≤ r < b. Then we

have

L = aH − b

k∑
i=1

Ei =
(⌊

a

b

⌋
· b + r

)
H − b

k∑
i=1

Ei

= b

(⌊
a

b

⌋
H −

k∑
i=1

Ei

)
+ rH.

The first summand is ample by Theorem 1.5, and the second is nef, so L is ample
by [Laz04, Corollary 1.4.10, p. 53]. �

2. Factoriality

Definition 2.1. An integral domain A is called a unique factorization domain
(abbreviated to UFD) if any element, which is neither 0 nor a unit, factors
uniquely (up to order and units) into a product of irreducible elements.

By [Mat89, Theorem 20.1], a Noetherian integral domain is a UFD if and only if
every height 1 prime ideal is principal. Moreover a Noetherian, integrally closed
domain A is a UFD if and only if ClA = 0, where ClA denotes the divisor class
group of A, namely the group of divisorial fractional ideals modulo the subgroup
of principal fractional ideals, see [Mat89, p. 165].

Proposition 2.2. If A is a Noetherian UFD and S ⊂ A is a multiplicative part,
then S−1A is a UFD. In particular, if p ⊂ A is a prime ideal, then the local ring
Ap is a UFD.
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Proof. Take a height 1 prime ideal P ⊂ S−1A; then there exists a prime ideal I

of A such that P = S−1I . Localization does not change height, so I has height 1
in A, and since A is a UFD, we conclude that I is principal, say I = 〈a〉. Then
P = S−1〈a〉 = 〈 a

1 〉, so P is principal, and this concludes the proof. �

Let (X,OX) = (SpecA, Ã) be the affine scheme associated with a commutative
ring A; then we write PicA in place of PicX. Assuming that A is a Noetherian
domain with only a finite number of maximal ideals m1, . . . ,mk such that Ami

is
not a UFD, there is a short exact sequence

0 −→ PicA −→ ClA −→ Cl(S−1A) −→ 0, (5)

where S = A − ⋃k
i=1 mi . See [Fos73, Chapter V] for more details.

Proposition 2.3. Let (A,m) be a Noetherian, normal local ring with dimA ≥ 2
and set U := SpecA −m. Then

(i) there is a monomorphism PicU −→ ClA;
(ii) if Ap is a UFD for all p ∈ U , then PicU −→ ClA is an isomorphism.

Proof. See [Fos73, Proposition 18.10]. �

Definition 2.4. Let X ⊂ Pn be a projective variety. We say that X is factorial if
its homogeneous coordinate ring S(X) = C[x0, . . . , xn]/IX is a UFD.

Proposition 2.5. If X is projectively normal and nonsingular in codimension 1,
then X is factorial if and only if the group ClX is isomorphic to Z, generated by
OX(1). Equivalently, X is factorial if and only if the restriction map

ClPn −→ ClX

is an isomorphism.

Proof. See [Har77, Exercise 6.3 (c), p. 147]. �

Remark 2.6. Using Proposition 2.5 and Theorem 1.3, we see that if X is a com-
plete intersection, nonsingular in codimension 1 and such that dimX ≥ 3, then X

is factorial if and only if PicX = ClX = Z, generated by OX(1).

Proposition 2.7. Let X ⊂ Pn be a complete intersection such that dim(SingX) <

dimX − 3. Then X is factorial.

Proof. This follows from Grothendieck’s proof of Samuel’s conjecture, see
[Gro68, Exp. XI, Corollaire 3.14] and [Mat89, p. 168]. �

Notice that Proposition 2.7 implies that any complete intersection of dimension at
least 4 and with only isolated singularities is necessarily factorial. This explains
why in the sequel we will restrict ourselves to the case where X is a threefold.

Let us provide now a couple of examples showing that factoriality is a subtle
property, which cannot be detected by merely looking at the type of singularities
of X.
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Example 2.8. Take a hypersurface X ⊂ P4 of degree d with a unique ordinary
double point and no other singularities. If d ≥ 3, then X is factorial; see [Che10b].
By contrast, if d = 2, then X is a cone over a smooth quadric surface in P3, which
is not factorial because any plane contained in X is a Weil divisor that is not
Cartier. Notice that, since all ordinary double points are analytically isomorphic,
it is impossible to tell locally analytically the difference between the two cases
d ≥ 3 and d = 2, see also [Deb01, pp. 160–161].

Example 2.9. Take a hypersurface X ⊂ P4 of degree d with exactly (d − 1)2

ordinary double points and no other singularities. Then X is factorial if and only if
the nodes are not contained in a plane; see [Che10a]. Up to change of coordinates,
the fact that the nodes are contained in a plane is equivalent to the fact that the
equation of X can be written as x0F + x1G = 0, and hence the whole plane
{x0 = x1 = 0} is contained in X. Such a plane is a Weil divisor that is not Cartier,
and this explains the lack of factoriality in this case.

Definition 2.10. We say that X ⊂ Pn is locally factorial if the local ring OX,p

is a UFD for any p ∈ X. We say that X ⊂ Pn is locally analytically factorial if
the complete local ring ÔX,p is a UFD for any p ∈ X.

Since every regular local ring is a UFD ([Mat89, Theorem 20.3]) and the com-
pletion of a regular local ring is again regular ([Eis94, Exercise 19.1, p. 488]),
it suffices to check the UFD property only at the points p ∈ SingX. An imme-
diate consequence of Proposition 2.2 is that if an irreducible projective variety
X ⊂ Pn is factorial, then it is locally factorial. By using Remark 2.6 and [Har77,
Chapter II, Proposition 6.11] we can prove the following more precise result.

Proposition 2.11. Let X ⊂ Pn be a complete intersection, nonsingular in codi-
mension 1, and such that dimX ≥ 3. Then X is factorial if and only if X is locally
factorial.

The condition dimX ≥ 3 in the statement of Proposition 2.11 is an essential one.
In fact, take any smooth surface V ⊂ P3 of degree at least 2 and containing a line.
Then V is not factorial (since the line is a divisor that is not an integer multiple of
the hyperplane section), but it is locally factorial because it is nonsingular.

By Mori’s theorem ([Fos73, Corollary 6.12]) there is a monomorphism
ClOX,p −→ Cl ÔX,p; this implies that if X is locally analytically factorial, then
X is locally factorial. The converse is in general not true, as shown by the follow-
ing examples.

Example 2.12. Take a factorial hypersurface X ⊂ P4 with a node p. Then X

is locally factorial (Proposition 2.11), so the ring OX,p is a UFD. However, its
completion ÔX,p is not a UFD since it is isomorphic to C[[x, y, z,w]]/(xy − zw)

and the equality xy = zw is a product of irreducibles in two different ways.

Example 2.13 ([Lip75]). Let X be a cone over a smooth, projectively normal
variety V ⊂ Pn−1. Then X is factorial if and only if PicV = Z, generated by
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OV (1). Moreover, X is locally analytically factorial if and only if it is factorial
and, in addition,

H 1(V ,OV (k)) = 0 for all k > 0. (6)

Condition (6) is satisfied, for example, if V is a complete intersection and
dimV ≥ 2.

Definition 2.14. A projective variety X is called Q-factorial if every Weil divi-
sor on X has an integer multiple that is a Cartier divisor.

Setting G(X) := ClX/PicX, we see that X is factorial if and only if G(X) = 0
and X is Q-factorial if and only if G(X) is a torsion group. In particular, if X is
factorial, then it is Q-factorial. For threefolds that are a complete intersection in a
smooth ambient space, the converse also holds.

Proposition 2.15. Let Y ⊂ Pn be a smooth fourfold, and let X ⊂ Y be a reduced
and irreducible threefold with isolated singularities that is the intersection of Y

with a hypersurface of Pn. Then X is factorial if and only if X is Q-factorial.

Proof. Let us assume that G(X) is a torsion group; we want to prove that
G(X) = 0. According to [BS81, §1] and [HP13, Section 2], from (5) we obtain
the so-called Jaffe’s exact sequence, namely

0 −→ PicX −→ ClX −→
⊕

p∈SingX

ClOX,p, (7)

so we have a monomorphism

G(X) −→
⊕

p∈SingX

ClOX,p. (8)

Let mp be the maximal ideal of OX,p and set Up := SpecOX,p −mp; then there
is an isomorphism PicUp −→ ClOX,p; see Proposition 2.3. On the other hand,
PicUp is torsion-free by [Rob76]; see also [Dao12]. It follows that ClOX,p is
torsion-free, so (8) yields G(X) = 0. �

Remark 2.16. It is possible to give a different proof of Proposition 2.15 using
Theorem 1.4; see [Sab09]. It is also true that any Q-factorial Gorenstein threefold
with terminal singularities is factorial ([Cut88]); however, notice that an ordinary
threefold singularity of multiplicity m is terminal if and only if m ≤ 3 ([Rei87,
p. 351]). For the relevance of the concept of Q-factoriality in the setting of bira-
tional geometry, we refer the reader to [Mel04].

Remark 2.17. If X is not a complete intersection, then Proposition 2.15 is in
general not true. For instance, the cone over the Veronese surface V ⊂ P5 is Q-
factorial but not factorial; see [BS95, p. 20].
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3. A Lefschetz-type Result

In this section, which is devoted to the proof of Theorem A, we use the following
notation.

Let Y ⊆ Pn be a smooth, complete intersection fourfold, and let X ⊆ Y be a
reduced and irreducible threefold that is the intersection of Y with a hypersurface
of Pn. We suppose that the only singularities of X are isolated multiple points,
and we denote by � = {p1, . . . , pk} the singular locus of X.

We also assume that the tangent cone of X at each point pi is a cone over a
smooth surface of degree mi in P3, and we express this condition by saying that
pi is an ordinary multiple point of multiplicity mi , or an ordinary mi -ple point.

Let Ỹ := Bl�(Y ) be the blow-up of Y at �, let η : Ỹ −→ Y be the blowing-up
map, with exceptional divisors E1, . . . ,Ek , and write X̃ ⊂ Ỹ for the strict trans-
form of X; notice that X̃ is a smooth threefold. Moreover, let H be the pullback
on Ỹ of the hyperplane section of Y , namely H = η∗OY (1).

Finally, we denote by π : X̃ −→ X the restriction of η to X and by Ei ⊂ X̃ the
exceptional divisor of π over the point pi , that is, Ei = X̃ ∩Ei . Since each pi ∈ X

is an ordinary mi -ple point, Ei is a smooth surface of degree mi in P3, and we
obtain

H 1(Ei ,C) = 0, H 3(Ei ,C) = 0. (9)

We can summarize the situation by means of the following commutative diagram:

Ei X̃
π

X

Ei Ỹ
η

Y.

Proposition 3.1. We have

b4(X̃) = b4(X) + k.

Proof. Let C be the constant sheaf relative to C on X̃ and consider the corre-
sponding Leray spectral sequence for π : X̃ −→ X, namely

Ep,q

2 = Hp(X,Rqπ∗C), E∞ ⇒ H ∗(X̃,C).

Observe that R0π∗C = C, where by abuse of notation we continue to write C for
the constant sheaf relative to C on X. Moreover, since any semialgebraic set has
locally a conic structure ([BCR98, Theorem 9.3.6, p. 225]), it follows that X is
locally contractible and

Rqπ∗C =
k⊕

i=1

Hq(Ei ,C)pi
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for every q > 0, where the subscript denotes the skyscraper sheaf supported at the
point pi . Summing up, we obtain

Ep,q

2 =

⎧⎪⎨
⎪⎩

Hp(X,C), p ≥ 0, q = 0,⊕k
i=1 Hq(Ei ,C), p = 0, q > 0,

0, p > 0, q > 0.

(10)

The relevant part of Ep,q

2 is shown in Table 1.

Table 1 The table Ep,q
2

q

4
⊕k

i=1 H 4(Ei ) 0 . . . . . . . . . . . . 0

3
⊕k

i=1 H 3(Ei ) = 0 0 . . . . . . . . . . . . 0

2
⊕k

i=1 H 2(Ei ) 0 . . . . . . . . . . . . 0

1
⊕k

i=1 H 1(Ei ) = 0 0 . . . . . . . . . . . . 0

0 H 0(X) H 1(X) H 2(X) H 3(X) H 4(X) H 5(X) H 6(X)

0 1 2 3 4 5 6 p

Computing the differentials, it is not difficult to check that Ep,q

6 = Ep,q∞ , so
there is a direct sum decomposition

H 4(X̃,C) = E4,0
6 ⊕ E3,1

6 ⊕ E2,2
6 ⊕ E1,3

6 ⊕ E0,4
6 . (11)

Using (9) and (10), we obtain

E4,0
6 = H 4(X,C),

E3,1
6 = E2,2

6 = E1,3
6 = 0,

E0,4
6 = ker

{
d5 :

k⊕
i=1

H 4(Ei ,C) −→ H 5(X,C)

}
.

Moreover, X is a complete intersection threefold with only isolated singularities;
hence, Theorem 1.2 yields H 5(X,C) ∼= H 5(Pn,C) = 0. Then (11) becomes

H 4(X̃,C) = H 4(X,C) ⊕
k⊕

i=1

H 4(Ei ,C).

Since each Ei is a smooth surface, by the Poincaré duality we deduce H 4(Ei ,C) ∼=
C, and this completes the proof. �

Proposition 3.2. If b4(X) = 1, then X is factorial.
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Proof. Assume that b4(X) = 1 and let S ⊂ X be any reduced, irreducible surface;
we must show that S is a complete intersection in X. Let S′ and X′ be general hy-
perplane sections of S and X, respectively, and let HX ∈ |OX(1)|, HX′ ∈ |OX′(1)|.
By assumption it follows that there exist integers p, q such that

pS ≡hom qHX

on X, and hence
pS′ ≡hom qHX′

on X′. Since X′ is a smooth complete intersection surface, by Theorem 1.1 the
map

H 2(Pn−1,Z) −→ H 2(X′,Z)

is injective with torsion-free cokernel, and hence there exists an integer r such
that

S′ ≡hom rHX′ (12)

on X′. Again by Theorem 1.1 we deduce H 1(X′,Z) = 0, and hence H 1(X′,
OX′) = 0. Therefore, by looking at the exponential sequence

0 −→ Z −→ OX′ −→ O∗
X′ −→ 0

we see that there is an injective map

PicX′ = H 1(X′,O∗
X′) ↪→ H 2(X′,Z),

so (12) implies
S′ ≡lin rHX′ (13)

on X′. Since any smooth complete intersection is projectively normal ([Har77,
ex. 8.4 (b), p. 188]), it follows that S′ is the complete intersection of X′ with a
hypersurface of Pn−1 of degree r , say F ′. Then the Koszul resolution of IS′/Pn−1

shows that
H 1(Pn−1,IS′/Pn−1(i)) = 0 for all i ∈ Z. (14)

Applying the snake lemma ([GM99, Chapter 2]) to the diagram

0 OPn(i − 1) OPn(i) OPn−1(i) 0

0 OS(i − 1) OS(i) OS′(i) 0

we obtain the short exact sequence

0 IS/Pn(i − 1) IS/Pn(i) IS′/Pn−1(i) 0,

which in turn gives, passing to cohomology,

H 1(Pn,IS/Pn(i − 1)) H 1(Pn,IS/Pn(i)) H 1(Pn−1,IS′/Pn−1(i)). (15)

Since H 1(Pn,IS/Pn) = 0, by using (14) and (15) we find by induction that
H 1(Pn,IS/Pn(i)) = 0 for any i ≥ 0. In particular, the map

H 0(Pn,IS/Pn(r)) −→ H 0(Pn−1,IS′/Pn−1(r))
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is surjective, so we can lift the hypersurface F ′ ∈ H 0(Pn−1,IS′/Pn−1(r)) to a hy-
persurface F ∈ H 0(Pn,IS/Pn(r)). Moreover, such a F does not contain X (since
F ′ does not contain X′). Hence, it follows by degree reasons that S is the complete
intersection of X with F . �

Remark 3.3. If X ⊂ P4 is a hypersurface of degree d whose only singularities are
ordinary double points, then the converse of Proposition 3.2 also holds, namely X

is factorial if and only if b4(X) = 1. In fact, in the nodal case we have b4(X) = 1+
δ, where δ is the defect of X, namely the number of dependent conditions imposed
by the reduced subscheme � to the homogeneous forms of degree 2d −5. In other
words,

δ = k + h0(P4,I�(2d − 5)) − h0(P4,OP4(2d − 5)) = h1(P4,I�(2d − 5)),

and we have δ = 0 precisely when X is factorial, see [Dim92, Chapter 6; Cyn01;
Che10b].

If the singular points of X have higher multiplicity, then the converse of Propo-
sition 3.2 is in general no longer true. For instance, let X ⊂ P4 be a cone over a
surface V ⊂ P3 of degree d ≥ 4 with PicV = Z. Then X is factorial (Exam-
ple 2.13), but [Dim92, formula (4.18), p. 169] shows that

b4(X) = b2(V ) = d3 − 4d2 + 6d − 2 > 1.

We are now ready to prove our Lefschetz-type result, namely Theorem A of the
Introduction.

Theorem 3.4. Let Y ⊂ Pn be a smooth, complete intersection fourfold, and let
X ⊂ Y be a reduced and irreducible threefold that is the intersection of Y with
a hypersurface of Pn. Suppose that the singular locus � = {p1, . . . , pk} of X

consists only of ordinary multiple points and denote by X̃ ⊂ Ỹ the strict transform
of X in the blowing-up Ỹ := Bl� Y of Y at �. If X̃ is ample in Ỹ , then X is
factorial.

Proof. By Theorem 1.1 we have h2(Y,C) = h2(Pn,C) = 1, so after blowing up
the k points in � we obtain

h2(Ỹ ,C) = h2(Y,C) + k = 1 + k.

By assumption X̃ is ample in Ỹ , so again by Theorem 1.1 we can write

h2(X̃,C) = h2(Ỹ ,C) = 1 + k. (16)

Using Proposition 3.1, the Poincaré duality, and (16), we get

b4(X) + k = b4(X̃) = h2(X̃,C) = 1 + k;
hence, b4(X) = 1, and X is factorial by Proposition 3.2. �

Corollary 3.5. With the same notation as before, if X̃ is ample in Ỹ , then the
restriction maps ClPn −→ ClX and ClY −→ ClX are both isomorphisms.
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Proof. The map ClPn −→ ClX is an isomorphism by Theorem 3.4, whereas the
map ClPn −→ ClY is an isomorphism by Theorem 1.3. Hence, ClY −→ ClX is
an isomorphism as well. �

Theorem 1.4 and Corollary 3.5 imply that if X̃ is ample in Ỹ , then there is a
commutative diagram

ClY

η∗

ClX

π∗

Cl Ỹ Cl X̃

(17)

whose horizontal arrows are both isomorphisms. Moreover, the pull-back map
π∗ : ClX −→ Cl X̃ (which can be defined because ClX = PicX) is injective.

Remark 3.6. The converse of Theorem 3.4 is in general not true. In fact, let V ⊂
P3 be a smooth surface of degree d ≥ 4 such that PicV = Z, and let X ⊂ P4 be the
cone over V . Then the divisor X̃ ⊂ P̃4 belongs to the linear system |d(H − E)|;
hence, X̃4 = 0, and by the Nakai–Moishezon criterion X̃ is not ample. However,
X is factorial (see Example 2.13).

4. Applications

Let us give now some applications of the previous results. We start by showing
that if a threefold hypersurface in a good ambient space has “few” singularities,
which are all ordinary points, then X is factorial.

Theorem 4.1. Let Y ⊂ Pn be a smooth, complete intersection fourfold, and X ⊂
Y be a reduced, irreducible threefold that is the complete intersection of Y with a
hypersurface of degree d . Assume that the singular locus of X consists precisely
of k ordinary multiple points p1, . . . , pk of multiplicities m1, . . . ,mk . If

k∑
i=1

mi < d, (18)

then X is factorial.

Proof. We use the same notation as in Section 3. By Theorem 3.4 it is sufficient
to show that X̃ is an ample divisor in Ỹ . Since each pi ∈ X is an ordinary singular
point, X̃ is smooth, and we have

X̃ = dH −
k∑

i=1

miEi =
(

d −
k∑

i=1

mi

)
H +

k∑
i=1

mi(H − Ei). (19)

By (18) the linear system |(d − ∑k
i=1 mi)H | is base-point-free; since the same

is clearly true for |mi(H − Ei)|, equation (19) shows that O
Ỹ
(X̃) is a globally

generated line bundle on Ỹ . By [Laz04, Corollary 1.2.15, p. 28] it remains only
to prove that X̃ has a positive intersection with every effective, irreducible curve
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C̃ ⊂ Ỹ . If C̃ ⊂ Ei for some i, then this is clear. Otherwise, C := η∗C̃ is an effec-
tive and irreducible curve on Y , and by the projection formula we have

H · C̃ = η∗OY (1) · C̃ = OY (1) · η∗C̃ = OY (1) · C > 0.

On the other hand, (H − Ei) · C̃ ≥ 0 because |H − Ei | is base-point-free. Then
(19) implies X̃ · C̃ > 0, and we are done. �

As far as we know, Theorem 4.1 provides the first factoriality criterion for com-
plete intersection threefolds in Pn with ordinary singularities. For nodal three-
folds in P4 and P5, some sharper results were previously obtained in [Che10b]
and [Kos09], respectively. See also [Sab05] and [CDG04b]. When X ⊂ P4 and
k = 1, namely when we have exactly one (ordinary) singular point, Theorem 4.1
can be deduced from [Dim92, Theorem 4.17, p. 214]. Since we find this other
proof of independent interest, for the sake of completeness, we include it in the
Appendix.

Example 4.2. Let m,d ∈ N with m < d and take a homogeneous polynomial
fm(x0, x1, x2, x3) of degree m such that V := V (fm) ⊂ P3 is a smooth sur-
face. Given general forms fm+1, fm+2, . . . , fd ∈ C[x0, x1, x2, x3], of respective
degrees m + 1,m + 2, . . . , d , the polynomial

f := xd−m
4 fm + xd−m−1

4 fm+1 + · · · + fd

defines a hypersurface X ⊂ P4 of degree d with a unique singular point, namely
p = [0 : 0 : 0 : 0 : 1], which is ordinary of multiplicity m. Then X is factorial by
Theorem 4.1.

Remark 4.3. In the statement of Theorem 4.1, the condition that all the singu-
larities are ordinary is an essential one, as shown by the following example of
Kollár, see [Mel04, p. 108]. Consider a general quartic hypersurface X ⊂ P4

whose defining polynomial is in the span of the monomials {x4
0 , x4

1 , (x2
4x3 +

x3
2)x0, x

3
3x1, x

2
4x2

1}. Then X has the unique singular point p = [0 : 0 : 0 : 0 : 1],
but it is not factorial because it contains the plane {x0 = x1 = 0}. Notice that
p ∈ X is a nonordinary double point because the corresponding tangent cone is a
cone over a singular quadric surface in P3 (in fact, p is a so-called cA1-singularity,
see [Rei87]).

If the bound (18) is not satisfied, we can still give a factoriality criterion for a
hypersurface X ⊂ P4, provided that its singularities are in general position and
they all have the same multiplicity.

Theorem 4.4. Let � := {p1, . . . , pk} be a set of k distinct, general points in P4,
and let d , m be positive integers with d ≥ m.

(i) If ⌊
d + 5

m + 4

⌋4

> k, (20)
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then there exists a hypersurface X ⊂ P4 of degree d , with k ordinary m-ple
points at p1, . . . , pk and no other singularities.

(ii) If the stronger condition

min

{⌊
d + 5

m + 4

⌋4

,

⌊
d

m

⌋4}
> k (21)

holds, then any hypersurface X as in part (i) is factorial.

Proof. We set Y = P4 and we use the same notation as in Section 3. Since d ≥ m,
we have ⌊

d + 4

m + 3

⌋4

>

⌊
d + 5

m + 4

⌋4

> k,

so by Corollary 1.6 the two divisors

(d + 4)H − (m + 3)

k∑
i=1

Ei and (d + 5)H − (m + 4)

k∑
i=1

Ei

are ample on Ỹ , and by the Kodaira vanishing theorem we deduce

H 1
(

Ỹ , (d − 1)H − m

k∑
i=1

Ei

)
= 0 and

H 1
(

Ỹ , dH − (m + 1)

k∑
i=1

Ei

)
= 0.

(22)

By using the two exact sequences

0 −→ O
Ỹ

(
(d − 1)H − m

k∑
i=1

Ei

)
−→ O

Ỹ

(
dH − m

k∑
i=1

Ei

)

−→ OH

(
dH − m

k∑
i=1

Ei

)
−→ 0,

0 −→ O
Ỹ

(
dH − (m + 1)

k∑
i=1

Ei

)
−→ O

Ỹ

(
dH − m

k∑
i=1

Ei

)

−→ O∑k
i=1 Ei

(
dH − m

k∑
i=1

Ei

)
−→ 0

and (22), we now see that the restriction maps

H 0
(

Ỹ , dH − m

k∑
i=1

Ei

)
−→ H 0

(
H,dH − m

k∑
i=1

Ei

)
, (23)

H 0
(

Ỹ , dH − m

k∑
i=1

Ei

)
−→ H 0

(
Ej ,dH − m

k∑
i=1

Ei

)
, j = 1, . . . , k, (24)
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are all surjective. This means that the linear system |dH −m
∑k

i=1 Ei | restricts to
a complete linear system on the general element of |H | and on each Ej ; therefore,
|dH −m

∑k
i=1 Ei | is base-point-free, and by Bertini’s theorem its general element

X̃ is smooth and irreducible. Then X := η∗(X̃) is the desired hypersurface, and
this proves (i).

Finally, if (21) holds, then X̃ is ample in Ỹ by Corollary 1.6; hence, X is
factorial by Theorem 3.4. This proves (ii). �

Corollary 4.5. If d ≥ 5
4m and (20) holds, then any hypersurface as in Theo-

rem 4.4(i) is factorial.

Proof. The assumptions imply⌊
d

m

⌋4

≥
⌊

d + 5

m + 4

⌋4

> k,

so the claim follows by Theorem 4.4, part (ii). �

The following examples show that the numerical inequalities in Theorem 4.4 are
not sharp.

• Let X ⊂ P4 be a hypersurface of degree 3 with two ordinary double points and
no other singularities. Then (21) is not satisfied, but X is factorial ([Che10b]).

• Let V ⊂ P3 be a smooth surface of degree d ≥ 4 such that PicV = Z, and
let X ⊂ P4 be the cone over V . Then (21) is not satisfied, but X is factorial
(Example 2.13).

• Let X ⊂ P4 be a hypersurface of degree d with a unique singularity that is
ordinary of multiplicity m. If m < d < 2m + 3, then (21) is not satisfied, but X

is factorial (Theorem 4.1).

5. Nonfactorial Examples

This section is devoted to the construction of some examples of nonfactorial hy-
persurfaces in P4 with only ordinary multiple points as singularities. They gener-
alize the examples of nonfactorial, nodal hypersurfaces described in Example 2.9.
More precisely, we prove the following result.

Proposition 5.1. For any pair (t, δ) of positive integers, there exists a nonfac-
torial hypersurface X ⊂ P4 of degree d with k ordinary m-ple points as only
singularities, where

d = δt + 1, k = δ2, m = t + 1.

Proof. Consider a general pencil of curves of degree δ in the projective
plane P2 with homogeneous coordinates [x2 : x3 : x4]. Let F1,F2, . . . ,Ft and
G1,G2, . . . ,Gt be general elements in the pencil; then the product of the Fi de-
fines a plane curve of degree δt with δ2 points of multiplicity t at the base points
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[ak : bk : ck] of the pencil, and similarly for the product of the Gi . Next, let us
define

F =
t∏

i=1

Fi(x2, x3, x4) +
δt∑

j=t

( ∑
α+β+γ=δt−j



j
αβγ (x0, x1)x

α
2 x

β

3 x
γ

4

)
,

G =
t∏

i=1

Gi(x2, x3, x4) +
δt∑

j=t

( ∑
α+β+γ=δt−j

�
j
αβγ (x0, x1)x

α
2 x

β

3 x
γ

4

)
,

(25)

where 

j
αβγ (x0, x1), �

j
αβγ (x0, x1) are general homogeneous forms of degree j in

the variables x0, x1. Now, set

f = x0F + x1G. (26)

We claim that the hypersurface X = V (f ) ⊂ P4 (whose degree is d = δt + 1) has
the desired properties. Indeed, varying Fi , Gi , 


j
αβγ , �

j
αβγ , the polynomials f

define a linear system contained in |OP4(d)|, whose base locus is the plane π of
equations x0 = x1 = 0. Thus, using Bertini’s theorem, we easily deduce that the
only singular points of the general hypersurface X constructed in this way are the
δ2 points [0 : 0 : ak : bk : ck] ∈ π . Moreover, X is obviously not factorial since
π ⊂ X.

It remains only to show that each pi ∈ X is an ordinary (t + 1)-ple point. Up
to a linear change of coordinates involving only x2, x3, and x4, we may assume
that pi = [0 : 0 : 1 : 0 : 0]. Write

t∏
i=1

Fi(1, x3, x4) =
t∏

i=1

(u3,ix3 + u4,ix4) + higher order terms,

t∏
i=1

Gi(1, x3, x4) =
t∏

i=1

(v3,ix3 + v4,ix4) + higher order terms,

where u3,i , u4,i , v3,i , v4,i ∈ C. Since the variable x2 appears in the expression of
the second summands of F and G with exponent at most t (δ − 1), the equation
of the tangent cone of X at pi is given by

x0

( t∏
i=1

(u3,ix3 + u4,ix4) + 
t
t(δ−1)00(x0, x1)

)

+ x1

( t∏
i=1

(v3,ix3 + v4,ix4) + �t
t(δ−1)00(x0, x1)

)
= 0,

and for a general choice of the parameters, this defines a cone over a smooth
surface of degree t + 1 in P3. Then the proof is complete. �

Observe that all the examples in Proposition 5.1 satisfy

k(m − 1)2 = (d − 1)2.
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On the other hand, in [Sab05] it is proven that if the singular locus of X consists of
k2 ordinary double points and k3 ordinary triple points and if k2 +4k3 < (d −1)2,
then any smooth surface contained in X is a complete intersection in X. Motivated
by this result, we make the following conjecture, which generalizes the theorem
of Ciliberto, Di Gennaro, and Cheltsov stated in the Introduction.

Conjecture 5.2. Let X ⊂ P4 be a hypersurface of degree d , whose singular lo-
cus consists of k ordinary multiple points p1, . . . , pk of multiplicities m1, . . . ,mk .
If

k∑
i=1

(mi − 1)2 < (d − 1)2, (27)

then X is factorial.

Theorem 4.1 shows that Conjecture 5.2 is true for k = 1.

Appendix

In the present Appendix we give a different proof of Theorem 4.1 in the case
k = 1 (i.e., for hypersurfaces with only one singularity) by applying some results
from [Dim92]. More precisely, we make use of the following lemma.

Lemma A.1. Let (X,0) be a germ of an affine hypersurface in C4, defined by the
polynomial f , such that X has an isolated singularity of multiplicity m at 0. If the
singularity is ordinary, then

μ-det(X,0) = m,

where μ-det(X,0) denotes the smallest positive integer s such that the family
ft = f + th, t ∈ [0, ε), is μ-constant for any germ h vanishing of order s at 0 and
ε > 0 small enough (here μ is the Milnor number, and ε may depend on h).

Proof. If deg(f ) = d , then we can write

f = fm + fm+1 + · · · + fd,

where fi is the homogeneous piece of degree i. Since 0 ∈ X is an ordinary sin-
gularity, the tangent cone V (fm) ⊂ C4 has an isolated singularity at the origin;
then f defines a so-called semiquasihomogeneous (SQH) hypersurface singular-
ity with principal part fm, see [GLS07, p. 123]. So by [Dim92, p. 74] or [GLS07,
Corollary 2.18] we obtain

μ(f ) = μ(fm) = (m − 1)4.

Let h be a general homogeneous polynomial of degree s with s < m. For t �= 0, the
polynomial ft = f + th defines an SQH hypersurface singularity with principal
part th; hence,

μ(f + th) = μ(th) = (h − 1)4 < (m − 1)4 = μ(f ),

and the family ft is not μ-constant. Therefore, we have μ-det(X,0) ≥ m.
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It remains to show that μ-det(X,0) ≤ m. Let h be a germ vanishing of order m

at the origin; then we want to prove that μ(f + th) = μ(f ) if t is small enough.
We have

f + th = (fm + thm) + g,

where all the monomials appearing in g have degree at least m + 1. Moreover, if
t is small enough, V (fm + thm) has an isolated singularity at the origin. Hence,
f + th defines an SQH hypersurface singularity with principal part fm + thm, so

μ(f + th) = μ(fm + thm) = (m − 1)4 = μ(f ).

This completes the proof. �

Now let Y ⊂ Pn be a smooth, complete intersection fourfold, and X ⊂ Y be a
reduced, irreducible threefold that is the complete intersection of Y with a hy-
persurface of degree d . Assume that the singular locus of X consists precisely of
one ordinary multiple point p of multiplicity m < d . We want to show that X is
factorial. By Lemma A.1 the assumption m < d becomes

m = μ-det(X,p) < d,

and then by [Dim92, Theorem 4.17, p. 214] we obtain 
X = 1, where 
X is the
Alexander polynomial of X. By [Dim92, p. 146 and p. 206] this in turn implies
H 4

0 (X) = 0, where H0 stands for the primitive cohomology, namely

H 4
0 (X) = coker{H 4(P4,C) −→ H 4(X,C)}.

In other words, the restriction map H 4(P4,C) −→ H 4(X,C) is surjective, and
hence b4(X) ≤ 1. Since the class of the hyperplane section of X is certainly
nonzero in H 4(X,C), it follows b4(X) = 1, and thus X is factorial by Propo-
sition 3.2.
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