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The Simplicity of the First Spectral Radius
of a Meromorphic Map

Tuyen Trung Truong

Abstract. Let X be a compact Kähler manifold, and let f : X → X

be a dominant rational map that is 1-stable (in the sense of Fornaess–
Sibony). Let λ1 and λ2 be the first and second dynamical degrees
of f . If λ2

1 > λ2, then we show that λ1 is a simple eigenvalue of
f ∗ : H 1,1(X) → H 1,1(X) and moreover the unique eigenvalue of
modulus >

√
λ2. A variant of the result, where we consider the first

spectral radius in the case the map f may not be 1-stable, is also given.
An application is stated for bimeromorphic selfmaps of 3-folds. For
another application, we estimate the second dynamical degree of a
class of birational maps that arises in lattice statistical mechanics and
is related to matrix inverses.

1. Introduction

Let X be a compact Kähler manifold of dimension k with a Kähler form ωX ,
and let f : X → X be a dominant meromorphic map. For 0 ≤ p ≤ k, the pth
dynamical degree λp(f ) of f is defined as follows:

λp(f ) = lim
n→∞

(∫
X

(f n)∗(ωp
X) ∧ ω

k−p
X

)1/n

= lim
n→∞ rp(f n)1/n,

where rp(f n) is the spectral radius of the linear map (f n)∗ : Hp,p(X) →
Hp,p(X) (see Russakovskii and Shiffman [29] for the case where X = P

k and
Dinh and Sibony [16; 15] for the general case). The dynamical degrees are log-
concave; in particular, λ1(f )2 ≥ λ2(f ). In the case f ∗ : H 2,2(X) → H 2,2(X)

preserves the cone of psef classes (i.e. those (2,2) cohomology classes that can be
represented by positive closed (2,2) currents), we have an analog r1(f )2 ≥ r2(f )

(see Theorem 1.4).
The present paper concerns the first dynamical degree λ1(f ) and more gener-

ally the first spectral radius r1(f ). We will say that f is 1-stable if for any n ∈ N,
(f n)∗ = (f ∗)n on H 1,1(X) (the first use of this notion appeared in Fornaess and
Sibony [18] in the case of rational selfmaps of projective spaces). When f is 1-
stable, we have λ1(f ) = r1(f ). There are many examples of 1-stable maps, for
example, those that are pseudoautomorphisms.

The first main result of this paper is the following
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Theorem 1.1. Let X be a compact Kähler manifold of dimension k, and let
f : X → X be a dominant meromorphic 1-stable map. Assume that λ1(f )2 >

λ2(f ). Then λ1(f ) is a simple eigenvalue of f ∗ : H 1,1(X) → H 1,1(X). Further,
λ1(f ) is the only eigenvalue of modulus greater than

√
λ2(f ).

Remark. The condition λ1(f )2 > λ2(f ) in Theorem 1.1 is needed, as can be
seen from automorphisms of complex torus. For more details, see the remark at
the end of this paper.

Theorem 1.1 answers Question 3.3 in Guedj [20]. An immediate consequence
of Theorem 1.1 is that if f is 1-stable and λ1(f )2 > λ2(f ), then the “degree
growth” of f satisfies deg(f n) = cλ1(f )n + O(τn) for some constants c > 0
and τ < λ1(f ). (Here, the degree of a map f with respect to a Kähler form ω is
defined by f ∗(ω).ωk−1. In the case X = P

k and ω has the cohomology class of a
hyperplane, this degree is the same as the usual “algebraic degree.”) In the case X

is a surface, the same estimate for the degree growth was obtained in Boucksom,
Favre, and Jonsson [12], where the condition that f is 1-stable is not needed. The
conclusion of Theorem 1.1 that λ1(f ) is simple is very helpful in constructing
Green currents and proving equidistribution properties toward it (see e.g. Guedj
[20], Diller and Guedj [14], and Bayraktar [3]).

As a consequence, we obtain the following:

Corollary 1.2. Let X be a compact Kähler manifold of dimension 3. Let
f : X → X be a bimeromorphic map such that both f and f −1 are 1-stable.
Assume moreover that λ1(f ) > 1. Then either f or f −1 satisfies the conclusions
of Theorem 1.1.

Proof. Observe that λ1(f
−1) = λ2(f ) and λ2(f

−1) = λ1(f ). Hence, when
λ1(f ) > 1, at least one of the following conditions hold: λ1(f )2 > λ2(f ) and
λ1(f

−1)2 > λ2(f
−1). �

Corollary 1.2 can be applied to pseudoautomorphisms f : X → X of a 3-fold X

with λ1(f ) > 1. By definition (see e.g. [17]), a bimeromorphic map f : X → X

is pseudoautomorphic if there are subvarieties V , W of codimension at least 2
such that f : X − V → X − W is biholomorphic. If X has dimension 3, then any
pseudoautomorphism f : X → X is both 1-stable and 2-stable (see Bedford and
Kim [4]). The first examples of pseudoautomorphisms with first dynamical degree
larger than 1 on blowups of P3 were given in [4] by studying linear fractional maps
in dimension 3. There are now several other examples in any dimension (see e.g.
Perroni and Zhang [27], Blanc [9], and Oguiso [26]).

Whereas the first dynamical degrees can be computed explicitly in various
examples (e.g. by making a map 1-algebraic stable and computing the spectral
radius of the action on H 1,1), it is much more difficult to compute the second
dynamical degrees (for instance, unlike the case of 1-algebraic stability, currently
there is no general criterion to check whether a map is 2-algebraic stable). In this
aspect, Theorem 1.1 can be used to estimate the second dynamical degrees. We
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illustrate this here for a class of birational maps that arises in lattice statistical me-
chanics and is related to matrix inverses (see Boukraa and Maillard [11], Bellon
and Viallet [8], Boukraa, Hassani, and Maillard [10], Auriac, Maillard, and Viallet
[1; 2], Bedford and Kim [5; 6], Preissmann, Auriac, and Maillard [28], Bedford
and Truong [7], and Truong [30]).

Corollary 1.3. Let q ≥ 5 be an integer. Let Mq be the space of q × q matrices
with complex coefficients. Let I : Mq → Mq be the inverse map I (x) = (x)−1

for x ∈ Mq , and let J : Mq → Mq be the Hadamard inverse J (x) = (1/xi,j )

for x = (xi,j ) ∈Mq . The map K = I ◦J defines a birational map K : P(Mq) →
P(Mq), where we identify P(Mq) with the projective space P

q2−1. Let δ1 be the
largest root of the equation t2 − (q2 − 4q + 2)t + 1 = 0, and let δ2 be the largest
root of the equation t2 − (q − 2)t + 1 = 0. Then

λ1(K) = δ1,

δ2
2 ≤ λ2(K) ≤ δ2

1 .

In particular, the growth of λ2(K), as a function of q , is of order at least q2 and
at most q4.

Proof. By results in [7], there is a finite composition of blowups along smooth
centers π : X → P(Mq) such that the lifting map KX = π−1 ◦K ◦π : X → X is
1-algebraic stable. Moreover, the characteristic of the pullback K∗

X : H 1,1(X) →
H 1,1(X) is

P(t)Q(t)(t − 1)q
2−q+2(t + 1)q

2−3q+2,

where P(t) = t2 − (q2 − 4q + 2)t + 1 and Q(t) = (t2 − (q − 2)t + 1)(t2 + (q −
2)t +1). Hence, the spectral radius of K∗

X : H 1,1(X) → H 1,1(X) is δ1, and hence
λ1(K) = λ1(KX) = δ1. We finish the proof by estimating λ2(K). First, by the log-
concavity of λ1(K) we have δ2

1 ≥ λ2(K). If λ1(KX)2 = δ2
1 > λ2(K) = λ2(KX),

then Theorem 1.1 applied to the map KX implies that any other eigenvalue of
K∗

X : H 1,1(X) → H 1,1(X) is ≤ √
λ2(KX) = √

λ2(K). In particular, we have
λ2(K) ≥ δ2

2 . �

When X is a compact Kähler surface, Diller and Favre [13] proved a stronger con-
clusion than that of Theorem 1.1, where the condition of 1-stability is dropped.
The following variant of Theorem 1.1 gives a generalization of Diller and
Favre’s result to higher dimensions. Recall that r1(f ) is the spectral radius of
f ∗ : H 1,1(X) → H 1,1(X) and r2(f ) is the spectral radius of f ∗ : H 2,2(X) →
H 2,2(X).

Theorem 1.4. Let X be a compact Kähler manifold, and let f : X → X be a
dominant meromorphic map. Assume that f ∗ : H 2,2(X) → H 2,2(X) preserves
the cone of psef classes. Then

1) We have r1(f )2 ≥ r2(f ).
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2) Assume moreover that r1(f )2 > r2(f ). Then r1(f ) is a simple eigenvalue
of f ∗ : H 1,1(X) → H 1,1(X). Further, r1(f ) is the only eigenvalue of modulus
greater than

√
r2(f ).

The key tools in the proofs of Theorems 1.1 and 1.4 are the Hodge index theorem
(Hodge–Riemann bilinear relations), Hironaka’s elimination of indeterminacies
for meromorphic maps, and a pull–push formula for blowups along smooth cen-
ters. Section 2 is devoted to the proofs of Theorems 1.1 and 1.4.

All of the above results have analogues in the algebraic setting, where X is
a projective manifold over an algebraic closed field of characteristic zero, and
f : X → X is a rational map. This will be done in a forthcoming paper. Fur-
ther applications of the results in the current paper are being explored in ongoing
projects. These include pseudoautomorphisms of dimension at most 4, automor-
phisms of complex 3-tori, and dynamics over non-Archimedean fields.

2. Proofs of Theorems 1.1 and 1.4

Let X and Y be compact Kähler manifolds, and let h : X → Y be a dominant
meromorphic map. By Hironaka’s elimination of indeterminacies (see e.g. Corol-
lary 1.76 in Kollár [24] and Theorem 7.21 in Harris [21] for the case of projec-
tive X, and see Hironaka [22] and Moishezon [25] for the general case), there
is a compact Kähler manifold Z, a map π : Z → X which is a finite sequence
of blowups along smooth centers, and a surjective holomorphic map g : Z → Y

such that h = g ◦ π−1. (Since the analytic case of Hironaka’s elimination of in-
determinacies is less known, we give here a sketch of its proof, cf. the paper
Ishii and Milman [23] for related ideas. We thank Pierre Milman for his gener-
ous help with this. Consider � a resolution of singularities of the graph �h, and
let p,γ : � → X,Y be the induced holomorphic maps. In particular, p : � → X

is a modification. By global Hironaka’s flattening theorem, we can find a finite
sequence of blowups π : X′ → X along smooth centers, and let π� : �′ → � be
the corresponding blowup along the ideals that are pullbacks by p of the ideals
of the centers of the blowup π , so that the induced map p′ : �′ → X′ is still
holomorphic, bimeromorphic, and flat. A priori, �′ may be singular. But a holo-
morphic, bimeromorphic, and flat map must actually be a biholomorphic map.
Therefore, �′ is also smooth, p′ is biholomorphic, and the holomorphic maps
π : Z = X′ → X and g = γ ◦ π� ◦ p′−1 : Z = X′ → Y are what we need.)

For our purpose here, it is important to study the blowups whose center is a
smooth submanifold of codimension exactly 2. We consider first the case of a
single blowup. We use the conventions that if W is a subvariety, then [W ] denotes
the current of integration along W , and if T is a closed current, then {T } denotes
its cohomology class (for the case T = [W ] where W is a subvariety, we write
{W } instead of {[W ]} for convenience). For two cohomology classes u and v, we
denote by u.v the cup product.

We have the following pull–push formulas for a single blowup (a more precise
version of this for birational surface maps was given in [13]).



First Dynamical Degree 627

Lemma 2.1. Let X be a compact Kähler manifold of dimension k. Let π : Z →
X be a blowup of X along a smooth submanifold W = π(E) of codimension
exactly 2. Let E be the exceptional divisor, and let L be a general fiber of π

over W .

(i) There is a constant cE > 0 such that

(π)∗({E}.{E}) = −{W }.
(ii) If α is a closed smooth (1,1) form with complex coefficients on Z, then

π∗(π)∗(α) = α + ({α}.{L})[E].
(iii) If α is a closed smooth (1,1) form with complex coefficients on Z, then

(π)∗(α ∧ [E]) = ({α}.{L})[W ].
(iv) If α is a closed smooth (1,1) form with complex coefficients on Z, then

(π)∗((π)∗(π)∗(α) ∧ α) − (π)∗(α ∧ α) = |{α}.{L}|2[W ].
Remarks. Parts (i), (iii), and (iv) of Lemma 2.1 are trivially true when the center
of blowup W = π1(E) has codimension at least 3. For example, then in (i) we
have π∗({E}.{E}) = 0. In fact, by the same argument as in the subsequent proof of
(i), the cohomology class π∗({E}.{E}) can be represented by a difference of two
positive closed (2,2) currents supported in W = π(E). Since W has codimension
at least 3, it follows that π∗({E}.{E}) = 0.

Proof of Lemma 2.1. (i) Let θ be a smooth closed (1,1) form on Z representing
the cohomology class of E. We can write θ = θ+ − θ−1, where θ± are Kähler
forms. Let α = θ+ ∧ [E] and β = θ− ∧ [E]. Then α and β are positive closed
(2,2) currents with support in E and in cohomology {α − β} = {E}.{E}. There-
fore, π∗({E}.{E}) can be represented by the difference π∗(α) − π∗(β) of two
positive closed (2,2) currents π∗(α) and π∗(β). Each of the latter has support
in W = π(E); hence, since W has codimension exactly 2, each of them must be
a multiple of the current of integration [W ] by the support theorem for normal
currents. We infer

π∗({E}.{E}) = −cE{W }
for a constant cE . It remains to show that cE = 1. To this end, we let ωX be a
Kähler form on X. Then we get

{E}.{E}.{π∗(ωk−2
X )} = (π)∗({E}.{E}).{ωk−2

X } = −cE{W }.{ωk−2
X }.

Since {W }.{ωk−2
X } = {[W ] ∧ ωk−2

X } is a positive number (equal the mass of
W ), to show that cE = 1, it suffices to show that {E}.{E}.{π∗(ωk−2

X )} =
−{W }.{ωk−2

X }. If we can show that {E}.{π∗(ωk−2
X )} = a{L} for a = {W }.{ωk−2

X },
then {E}.{E}.{π∗(ωk−2

X )} = a{E}.{L} = −{W }.{ωk−2
X }, as desired. To this end,

we first observe that {E}.{π∗(ωk−2
X )} = a{L} for some constant a because

Hk−1,k−1(Z) is generated by π∗Hk−1,k−1(X) and {L}, and by the projection for-
mula (π)∗({E}.{π∗(ωk−2

X )}) = (π)∗({E}).{ωk−2
X )} = 0. It remains to show that
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the constant a is exactly {W }.{ωk−2
X }. In fact, if ιE : E → X and ι : W → Y are

the inclusion maps and πE : E → W is the projection, then

{E}.{π∗(ωk−2
X )} = (ιE)∗(ι∗Eπ∗{ωk−2

X })
= (ιE)∗(π∗

E(ωk−2
X |W)).

The cohomology class {ωk−2
X }|W is a positive multiple of the class of a point, the

multiple constant being {W }.{ωk−2
X }. In fact, if ιW : W ⊂ X is the inclusion of W

in X, then the multiple constant is

(ιW )∗({ωk−2
X }|W) = (ιW )∗(ι∗W(ωk−2

X )) = {ωk−2
X }.{W }.

Now, since the map πE is a fibration, π∗
E{point} = {L}. Therefore, {E}.

{π∗(ωk−2
X )} = a{L}, where a = {ωk−2

X }.{W } > 0. Thus, the proof of part (i) is
finished.

(ii) This is a standard result using {E}.{L} = −1 (see also the proof of (iii)).
(iii) Since (π)∗(α ∧ [E]) is a normal (2,2) current with support in W = π(E),

which is a subvariety of codimension 2 in X, by support theorem it follows that
there is a constant c such that (π)∗(α ∧ [E]) = c[W ]. It is clear that c depends
only on the cohomology class of (π)∗(α ∧ [E]). Since H 1,1(Z) is generated by
π∗(H 1,1(X)) and {E}, we can write {α} = aπ∗(β) + b{E}, where β ∈ H 1,1(X).
Then using (i) and the projection formula, we obtain

(π)∗{α ∧ [E]} = (π)∗({α}.{E}) = b(π)∗({E}.{E})
= −bcE{π(E)}.

Therefore, c = −bcE . The constant −b can be computed as follows:

{α}.{L} = (aπ∗(β) + b{E}).{L} = b{E}.{L} = −b.

Hence, c = ({α}.{L})cE , as claimed.
(iv) We have

(π)∗(π∗(π)∗(α) ∧ α) = (π)∗((α + ({α}.{L})[E]) ∧ α)

= (π)∗(α ∧ α) + ({α}.{L})(π)∗([E] ∧ α)

= (π)∗(α ∧ α) + cE |{α}.{L}|2[π(E)].
Thus, (iv) is proved. �

In particular, Lemma 2.1 shows that for a single blowup π : Z → X, if α is a
closed smooth (1,1) form with complex coefficients, then (π)∗((π)∗(π)∗(α) ∧
α) − (π)∗(α ∧ α) is a positive closed (2,2) current. (If the center of blowup W

has codimension exactly 2, then this follows from Lemma 2.1 (iv), whereas if
W has codimension at least 3, then (π)∗((π)∗(π)∗(α) ∧ α) − (π)∗(α ∧ α) =
0, as observed in the remarks after the statement of Lemma 2.1.) It follows
that if u ∈ H 1,1(Z) is a cohomology class with complex coefficients, then
π∗(u).π∗(u) − π∗(u.u) is a psef class, that is, can be represented by a positive
closed (2,2) current. In fact, let α be a closed smooth (1,1) form representing u.
Then, (π)∗(u.u) is represented by (π)∗(α ∧ α), and by the projection formula,
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(π)∗(u).(π)∗(u) is represented by (π)∗(π∗(π)∗(α)∧α). Hence, from (iv) we in-
fer that π∗(u).π∗(u) − π∗(u.u) is psef, as claimed. We now give a generalization
of this to the case of a finite blowup and to meromorphic maps.

Proposition 2.2. 1) Let X be a compact Kähler manifold, and let π : Z →
X be a finite composition of blowups along smooth centers. Further, let
u ∈ H 1,1(Z) be a (1,1) cohomology class with complex coefficients. Then
(π)∗(u).(π)∗(u) − (π)∗(u.u) is a psef class.

2) Let X and Y be compact Kähler manifolds, and let h : X → Y be a dom-
inant meromorphic map. Further, let v ∈ H 1,1(Y ) be a cohomology class with
complex coefficients on Y . Then h∗(v).h∗(v)−h∗(v.v) is a psef class in H 2,2(X).

Proof. 1) We prove by induction on the number of single blowups performed. If
π is a single blowup, then this follows from the above observation. Now assume
that 1) is true when the number of single blowups performed is ≤ n. We prove that
1) is true also when the number of single blowups performed is ≤ n + 1. We can
decompose π = π1 ◦ π2 : Z → Y → X, where π2 : Z → Y is a single blowup,
and π1 : Y → X is a composition of n single blowups. Applying the inductional
assumption to π1 and the cohomology class (π2)∗(u), we get

π∗(u).π∗(u) = (π1)∗((π2)∗(u)).(π1)∗((π2)∗(u)) ≥ (π1)∗((π2)∗(u).(π2)∗(u)).

Here ≥ means that the difference of the two currents is psef. Now using the result
for the single blowup π2 and the fact that push-forward by the holomorphic map
π1 preserves psef classes, we have

(π1)∗((π2)∗(u).(π2)∗(u)) ≥ (π1)∗(π2)∗(u.u) = π∗(u.u).

Hence, π∗(u).π∗(u) ≥ π∗(u.u), as desired.
2) By Hironaka’s elimination of indeterminacies (see Hironaka [22], Moishe-

zon [25], and also the beginning of this section), we can find a compact Kähler
manifold Z, a finite blowup along smooth centers π : Z → X, and a surjective
holomorphic map g : Z → Y such that h = g ◦ π−1. Here Z is a desingulariza-
tion of the graph of h and hence has the same dimension as that of X. We will
apply part 1) for the map π : Z → X.

By definition, h∗(v) = π∗g∗(v) and h∗(v.v) = π∗(g∗(v.v)) = π∗(g∗(v).g∗(v))

(to see these equalities, we choose a smooth closed (1,1) form α representing v

and see immediately the equalities on the level of currents). Therefore, applying
1) to the blowup π : Z → X and to the (1,1) cohomology class u = g∗(v) on Z,
we obtain

h∗(v).h∗(v) − h∗(v.v) = π∗(g∗(v)).π∗(g∗(v)) − π∗(g∗(v).g∗(v)) ≥ 0. �

For the proofs of Theorems 1.1 and 1.4, we need to use the famous Hodge index
theorem (Hodge–Riemann bilinear relations; see e.g. the last part of Chapter 0 in
Griffiths and Harris [19]). Let X be a compact Kähler manifold of dimension k.
Let w ∈ H 1,1(X) be the cohomology class of a Kähler form on X. We define the
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Hermitian quadratic form that for cohomology classes with complex coefficients
u,v ∈ H 1,1(X) takes the value

H(u, v) = u.v.wk−2.

The Hodge index theorem says that the signature of H is (1, h1,1 − 1), where h1,1

is the dimension of H 1,1(X).
We are now ready for the proofs of Theorems 1.1 and 1.4.

Proof of Theorem 1.1. First, we show that there cannot be two noncollinear vec-
tors u1, u2 ∈ H 1,1(X) for which f ∗u1 = τ1u1 and f ∗u2 = τ2u2, where τ =
min{|τ1|, |τ2|} >

√
λ2(f ). Assuming otherwise, we will show that for any u in

the complex vector space of dimension 2 generated by u1 and u2, H(u,u) ≥ 0,
and this gives a contradiction to the Hodge index theorem. To this end, it suffices
to show that u.u is psef. Let u = a1u1 + a2u2. For n ∈N, we define

vn = a1

τn
1

u1 + a2

τn
2

u2.

Then it is easy to check that (f ∗)n(vn) = u. Because f is 1-stable, we have from
Proposition 2.2 that

u.u = (f ∗)n(vn).(f
∗)n(vn) = (f n)∗(vn).(f

n)∗(vn) ≥ (f n)∗(vn.vn)

for any n ∈ N. (Here the inequality ≥ means that the difference of the two co-
homology classes is psef.) We fix an arbitrary norm ‖ · ‖ on the vector space
H 1,1(X). Then ‖vn‖ is bounded by 1/τn; hence, the assumption that τ >

√
λ2(f )

implies that (f n)∗(vn.vn) converges to 0. Therefore, u.u ≥ 0, as desired.
Hence λ1(f ) is the unique eigenvalue of modulus >

√
λ2(f ) of f ∗ :

H 1,1(X) → H 1,1(X). It remains to show that λ1(f ) is a simple root of the charac-
teristic polynomial of f ∗ : H 1,1(X) → H 1,1(X). Assuming otherwise, by using
the Jordan normal form of a matrix we get that there will be two noncollinear vec-
tors u1, u2 ∈ H 1,1(X) for which f ∗(u1) = λ1(f )u1 and f ∗(u2) = λ1(f )u2 + u1.
Let u = a1u1 + a2u2. For any n ∈ N, we define

vn = a1

λ1(f )n
u1 − na2

λ1(f )n+1
u1 + a2

λ1(f )n
u2.

Then it is easy to check that (f ∗)n(vn) = u, and we can proceed as in the first part
of the proof. �

Proof of Theorem 1.4. 1) First, we observe that for any v ∈ H 1,1(X) with com-
plex coefficients, (f ∗)n(v).(f ∗)n(v) ≥ (f ∗)n(v.v) for all n ∈ N. For example, we
show how to do this for n = 2. Applying Proposition 2.2, we have

(f ∗)2(v).(f ∗)2(v) = f ∗(f ∗(v)).f ∗(f ∗(v)) ≥ f ∗(f ∗(v).f ∗(v)).

By Proposition 2.2 again and the assumption that f ∗ : H 2,2(X) → H 2,2(X) pre-
serves psef classes, we obtain

f ∗(f ∗(v).f ∗(v)) ≥ (f ∗)2(v.v),

and hence (f ∗)2(v).(f ∗)2(v) ≥ (f ∗)2(v.v), as desired.
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We now finish the proof of 1). Let ωX be a Kähler form on X. Then from the
first part of the proof we get

(f ∗)n(ωX).(f ∗)n(ωX) ≥ (f ∗)n(ω2
X)

for all n ∈ N. For convenience, we let ‖ · ‖ denote an arbitrary norm on either
H 1,1(X) or H 2,2(X). There is a constant C > 0, independent of n, such that for
all n ∈N, we have

‖(f ∗)n(ωX).(f ∗)n(ωX)‖ ≤ C‖(f ∗)n(ωX)‖2 ≤ C‖(f ∗)n|H 1,1(X)‖2

and
C(f ∗)n(ω2

X) ≥ ‖(f ∗)n|H 2,2(X)‖.
(In the second inequality we used the assumption that f ∗ : H 2,2(X) → H 2,2(X)

preserves the cone of psef classes.)
Therefore,

C2‖(f ∗)n|H 1,1(X)‖2 ≥ ‖(f ∗)n|H 2,2(X)‖
for any n ∈ N. Taking the nth root and letting n → ∞, we obtain r1(f )2 ≥ r2(f ).

2) Using the ideas from the proofs of Theorem 1.1 and 1), we obtain 2) imme-
diately. �

Remark. Here we give the final remark. The condition λ1(f )2 > λ2(f ) is nec-
essary in Theorem 1.1. In fact, let ζ > 1 be a quadratic algebraic number that is
a root of t2 + at + 1 = 0, where a ∈ Z. Let A be a matrix in GL(2;Z) whose
characteristic polynomial is t2 + at + 1. Then A gives rise to an automorphism
of a complex 2-torus T 2, and the product map f = (A,A) gives rise to an auto-
morphism of the 4-torus T 2 × T 2. Then λ1(f ) = ζ 2 is not a simple root of the
characteristic polynomial of f . In this case, λ2(f ) = ζ 4 = λ1(f )2.
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